Modeling & Simulation of Nonlinear
Dynamic Systems

Prof. James H. Taylor
Department of Electrical & Computer Engineering
University of New Brunswick
Frederiction, NB CANADA E3B 5A3
e-mail: jtaylorQunb.ca
web site: www.ee.unb.ca/jtaylor/

22 July 2002

JUV RESCCE’02 Summer School
Danang, Viet Nam
05-09 August 2002



Modeling & Simulation 2

Modeling & Simulation Overview

e Motivation

e Basic concepts

e Modeling; model categories

e Matching methods to models
e Predictor/corrector algorithms
e Runge-Kutta methods

e Stiff systems of equations

e Systems with discontinuities

® (General considerations

Basic simulation references:

e S. M. Pizer, Numerical Computing and Mathematical Analysis, Sci-

ence Research Associates Inc., Chicago, 1975.
e A. C. Hindmarsh, “Large Ordinary Differential Equation Systems

and Software”, IEEE Control Systems Magazine, December 1982.
e C. W. Gear, Numerical Initial Value Problems in Ordinary Differ-

ential FEquations, Prentice-Hall, 1971.

References on handling discontinuity:

e J. H. Taylor, “A Modeling Language for Hybrid Systems”, Proc.

Joint Symposium of CACSD, Tucson, AZ, March 1994.
e Taylor, J. H. and Kebede, D., “Modeling and Simulation of Hybrid

Systems”, Proc. IEEE CDC, New Orleans, LA, December 1995.

Warning: The literature is not standardized with respect to algorithm
names or the definition of stability!



Modeling & Simulation 3
Motivation

e Simulations often tell more about the behavior of a system
than any other information (e.g., simulations vs eigenval-
ues).

e In many (most) cases there are no practical analysis meth-
ods available.

e However: if the differential equation can be solved analyt-
ically, it’s less error-prone, and it yields direct access to
parametric effects.

e You can interface simulations with hardware and/or human
operators to determine unmodelable or poorly modelable
aspects effecting the system behavior.

e Simulation is commonly used for:
— Design trade-off studies

— Design verification

— Design optimization (but this can be tricky)

Use of modeling and simulation is growing as fast as:

computer_power
cost

in many fields ...




Modeling & Simulation 4

Model Types

Some fundamental dynamic model categories:

e Ordinary Differential Equations (ODEs) — “Lumped-parameter
Systems”

e Partial Differential Equations (PDEs) — “Distributed-parameter
Systems”

e Differential / Algebraic Equations (DAEs)

e Subcategories of ODEs:
— Continuous (“nice”)
— Stiff
— Discontinuous

e Any of the above may be interfaced with Discrete-time
Algorithms (DTAs); typically modeling and simulation is
no more complicated



Modeling & Simulation 5

Model Types (Cont’d)

Model type is not crisp: some considerations:

e The model type is dictated in part by “the physics” and in
part by what you want to study/observe

e PDEs can be converted into ODEs if you don’t need ulti-
mate fidelity and bandwidth (e.g., a flexible shaft — lumped
inertias and springs)

e DAEs can be converted into ODEs (e.g., an algebraic loop
may be eliminated by introducing high-frequency roll-off)

o ...or a stiff ODE can be converted into a DAE

e Modeling is as much an art as a science, and requires good
judgement (and often some trial-and-error and iteration)



Modeling & Simulation 6
Basic Concepts

e Hereafter we consider first-order vector ODEs; & = f(x,1)
where xr = state vector, { = time

e This form is often directly obtainable from a higher-order
ODE (e.g., Newton — ¢ = ¢(&,6,1) = 27 = [¢ £ ])

e This includes & = f(z,u,t) once u(t) = input is defined
e The complete problem:
&= flx,1), (1)

z(to) = o (2)
defines an initial value problem to solve, usually over a finite
time interval {; <t < tp.




Modeling & Simulation 7
Conceptual framework

Equation (1) defines a flow field in the z,t plane —
at each point, z defines where the solution curve is
headed:

Simulation of a nonlinear mass—spring—damper system
1 T T T T T

slope = f(x, t) -~

o
(2}
T

State, x (units)
(@]
T

| | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time, t (sec)

This flow field is the domain of an infinite number
of solutions to the ODE; Equation (2) defines which
solution curve is the one sought:

2 T T T T T T
| X _ _ _ . T/ N
12 Y -
| AN
S
- t N SN Y ]
0 b . P
=
/
_l -
-2 ] | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Note: Always remember that the model f(z,t) is gen-
erally not globally valid — watch for simulations that
pass out of its region of validity!



Modeling & Simulation 8

Mathematical well-posedness

Before you can say anything rigorous about solutions
to Eqns. (1) and (2) you have to impose some con-
ditions:

e differentiable right-hand sides - not

D_

—— -D

e single-valued right-hand sides - not

D

-D

e Lipschitz conditions - e.g., |f(2/,t)— f(2",t)| < L|z'—
2”| for all 2" in some region of '

Unfortunately, many engineering models are not so

nice, and our approach must recognize this and take

precautions!




Modeling & Simulation

The Essence of Numerical Integration:
The Euler algorithm

Algorithm: given z(t;) —
x(ty + h) = x(ty) + ha(ty) (3)

Geometrical interpretation:

Illustration of First—-Order Euler Integration

1 T T T
slope =f(x, t) -
@ 0.5 =
5 Xk+1’ tk+1
x 0 |
)
o]
N o5 -
_1(_’\/ | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time, t (sec)

Neglecting the terms 1123 (t;)+. .. leads to truncation

E€rror: |
Etrunc ~ ih% = O(h%) (4)

= one must take small steps to keep ¢/, small.



Modeling & Simulation 10

Error Analysis for the Euler Algorithm

However: In addition to truncation error we have
round-off error : z(t;+h) ~ x(t;)+hi(t;) — adding small
increments to large numbers (as inevitably happens
as h is made small) loses significant digits.

e Note the step-size trade-off:

" Euler Numerical Integration Error Behavior
10 \ \ T

10

=
(@]
=)

integration error

[N
O|
a

10—10

10*15 — \7 \7 \74 \7 \
10 10 10 10
integration step, h

10

e Note the implicit differentiability assumption in
analyzing truncation error.



Modeling & Simulation 11

The Euler-Heun Predictor/Corrector —
The “Trapezoidal Rule”

Algorithm: given z(t;)

lep(tk + h) = CIZ(tk;) + hib(t@
Ty = f(@p tk + D) (5)
zo(tr +h) = x(tr) + %h[;'c(tk) + @)

e Geometrical interpretation: the area being added
in taking a step is a trapezoid, not a rectangle —
however, the vertex z, is only approximate since
T,(t;) is an approximation

e The error is O(h?)

e This is, strictly speaking, not the trapezoidal rule
because 7, is not the true value of the integrand.

e This is not very effective because the predictor is
first order, the corrector is second = we cannot
estimate or mop up errors (later).



Modeling & Simulation 12

Modified Euler-Heun Predictor/Corrector

Algorithm: given x(t;) and z(t;_1)

Cl?p(tk + h) = Zl?(tk_1) + thf(tk)
Ty = f(@p,te+h) (6)
z.(ty +h) = z(t) + %h([b(tk) + i)

e The predictor is now “symmetric”

e Note: you don’t have z(¢_;) = you need to “start”
this algorithm some other way.

e stability:

— The predictor alone is seriously unstable

— The combined P /C is relatively stable for —0.601 <
hJ; < 0 and 0.701 < hJ;; the worst case is “only
mildly unstable . ..common property ...” (Pizer)



Modeling & Simulation 13

Modified Euler-Heun P/C —
Error Estimation and Mop-up

Truncation error (usually dominates):
1
€, = —ghéﬂ$-+cxhﬂ
_ s e 4
€ = 12h£1: + O(h%)

Therefore, z, and z. “bracket” the true value; in fact,

I 1
Te— Tp= (E + g)h3az<3) + O(h*) = 5e,

So, we have a good error magnitude estimate:

1
el ~ Zlae — 2, (7

...and we can “mop up” the truncation error to ob-
tain the final integration value z(t; + h):

vy = 4z + 1) )

which has error O(h') — a significant improvement.



Modeling & Simulation 14

Higher-order P/C Methods —
Methods of Adams et al

e General form: given x;_,,,...x_1,2; and corre-
sponding past derivatives,

m
Tpk+l = ,Zo(aixk—z' + hb;xy_;)
1=
Ter1r = f(@phet, thrr) (9)

m

Teptl = ,Zl(cixk—i‘khdix'k—i)
=

e Coeflicients: — stability plus minimum trunca-
tion error (make (9) exact for r =t") — example:
m = 4:

Tpktl = Tg+ ﬂ(55$k — 89251 + 3TTp_9 — 9j3k_3>

h . . . .
Tek+rl = T+ ﬂ@ﬂ?k_ﬂ + 1921 — dxp—1 + Zlfk;_g) (10)

(Adams-Bashford / Adams-Moultin)

e Starting method: use a high-order Runge Kutta
method until enough points are available.

e Problem: with discrete-time subsystems, you have
to re-start every sample time

® Serious problem: whenever 1 is discontinuous the
previous derivatives are meaningless



Modeling & Simulation 15

Runge Kutta methods

Algorithm (fourth order): given z; and 1}

h . 1
h 1
5'31(<+)1 = T+ hx'gjz% —  Tpy1 = f($1(<1+)1> tr+h)

— Tyl = Tk + g(afkr + 2j3k+% ‘k+% +ap) (1)

Geometrical interpretation: take tentative steps to
“explore the flow field” ahead of the current accepted
point t;, xj

Motivation:

e Need for a method with error O(h’) to start high-
order P/C algorithms

e Makes more sense for systems with sampled-data
components and /or non-differentiable right-hand
sides.



Modeling & Simulation 16

Variable Step-size Algorithms

Given an integration algorithm with error estimates,
we have a mechanism for “optimizing” the step size.

Rough idea: assume an error ¢y, is available at each

step.

e from a P/C method based on z,;,; and x4

e from a R-K method by looking at the differences
among the exploratory steps used to obtain x;

Compare the error estimate with a tolerance on max-
imum acceptable error; adjust h accordingly (e.g., h
may be halved or doubled if the error estimate is
too large or well below the tolerance). For a P/C
algorithm this is somewhat complicated:

e doubling requires saving more past values;

e halving requires interpolation;

for R-K methods this is less of a burden.

This is handled invisibly by a good variable step-size
algorithm. Modern variable step-size algorithms are
quite sophisticated (for example, the integration step
may be adjusted more subtly)



Modeling & Simulation 17

Selection of Algorithm Class

Summary of basic considerations:

e Predictor / Corrector methods have a firm, clas-
sical numerical basis, including error analysis and
techniques such as “mopping up” error — if your
problems/models satisfy the required conditions
of continuity, then good P/C algorithms will do
an excellent job

e However, engineering problem models are so of-
ten “not nice” that Runge Kutta methods have
become dominant; they have also been developed
to the point that they are nearly as effective as
the P/C methods for “nice” models



Modeling & Simulation 18

“Stiff Systems”

e Informal definition: a model is “stiff” if it com-
bines very fast and very slow dynamics.

e First question: are the very fast dynamics needed?

e Problem: the previous methods won’t converge
if the system is too stiff (e.g., an integration step
cannot be found that is satisfactory for all states).

e Solution # 1: modify the algorithm to improve
convergence — Gear’s algorithm and variants (see

Hindmarsh, Gear).

e Solution # 2: convert the fast dynamics into al-
gebraic constraints by assuming they are “instan-
taneous” — in other words, the fast states are at
“steady state” over most of the integration inter-
val, so all you need to do is find their equilibrium
condition at each long integration step for the
slow dynamics. This produces a DAE set. For

example:
r = [xfast xslow]T
x.fast — ffast(xfasty Lslow t) (12>
jjslow — fslow(xfasta L slows t)
yields the DAE set
Tslow = fslow(xfasta Lslow, t)

0 = ffast(xfashxleIU)t) (13>



Modeling & Simulation 19

Systems with Algebraic Loops

Differential /algebraic systems of equations occur nat-
urally in controls:

r x=f(xu) | ¥
CT>_ y = h(x,u)

(a) System with algebraic loop

LQQ X = f(x,u) y

y = h(x,u)
|V2:Az+By<
v=Cz

(b) Loop broken with finite-bandwidth dynamics

In case (a) we have a differential /algebraic system of
equations, namely = = f(x,u) subject to 0 = r(t) —u —
h(z,u)

In case (b) the finite-bandwidth dynamics added to
the model (perhaps modeling sensor dynamics) elim-
inates the loop and produces an ODE



Modeling & Simulation 20

Systems with Discontinuities

e Nonlinear systems with discontinuous ODEs (or
worse yet, those with multi-valued nonlinearities)

are very difficult:

— nonphysical things may happen, e.g., gears en-
gage with “overlap”, relays switch at incorrect
times

— a numerical integrator may even become con-
fused and miss switching events

e Variable step-size algorithms may reduce the first
problem, but at the expense of longer simulation
time (— “creeping solutions”)

e The correct solution is to include an “state-event
handler” in the simulation environment

e ACSL has a rudimentary state-event handler; we
developed a more advanced approach in MAT-
LAB (Taylor & Kebede, see references; this soft-

ware is available on my web site)



Modeling & Simulation 21
Systems with Discontinuities (Cont’d)

Physical and practical motivation:

e Modeling & simulation of physical objects con-
tacting is difficult ...

e Modeling & simulation of friction is very difficult

-

[

e Prediction of limit cycles, chaos, deadlocks, ... may
be highly questionable ...

Rigorous simulation is important for process under-
standing, prototyping, system design validation, ...



Modeling & Simulation 22

Systems with Discontinuities (Cont’d)

In general we have the “mode” of the model changing
at each discontinuity (switching event):




Modeling & Simulation 23
Systems with Discontinuities (Cont’d)

What do we need for a complete characterization?

e System model

t = f(x,u,m,t)
y = h(x,u,m,t) (14)

where r = state, © = input, m = mode and ¢t =
time

e State events are characterized by zero-crossings,

S(x,m,t) =0 (15)

e ...and may require instantaneous state reset,

zt =) = r(z(t;),mt,) (16)



Modeling & Simulation 24

Systems with Discontinuities (Cont’d)

To handle discontinuities with good generality:

e The model has to be told what “mode” it is in at
the present time (e.g., engaged/disengaged)

e The model has to indicate when the discontinuity
occurs — switching (zero-crossing) function S

e The model has to take care of state reset x_ (if
needed, e.g., to preserve momentum)

The following model scheme takes care of this:

x = £(x,t) — X

(a) Standard MATLAB model schema

X x = f(x,t,mode)
mode —— S = S(x,t,mode) — S
+ _
N xc = r(x,t,mode) Xz

(b) Extended MATLAB model schema



Modeling & Simulation 25

Hybrid Integration Algorithm Framework

function [tout,yout] = method(ydot,tO,tf,y0,tol,trace)
To
% integrates a system of ordinary differential equations
% using a "good" algorithm, with a hybrid interpolation
%» scheme to catch state events (points where phi changes
% sign). Includes provision to handle state reset.
To
%% Initialization
< model called to determine mdim = number of modes >
%% Main integration loop
while (t < tfinal) & (t + h > t)
% save data from last "accepted" point:
y_old = y(:); t_old = t; phi_old=phi(:);
%» Update the solution (TRIAL point!)
tt =t + h;
<yt =y at tt using a "good" algorithm >
< phi at tt also determined >
% Check for state events (SEs)
for im = 1:mdim
if sign(phi(im)) == -sign(phi_old(im))
%/ OK - we have detected a state event:
% set up fzero-like zero-finding scheme:
< h*x(im), yh*(:,im) found for each crossing >
end
end
% now, check for earliest/simultaneous SEs:



Modeling & Simulation 26

< imx*, hx*x, yhxx(:) ; later points discarded >
% see if reset is called for:
[junk,trash,reset] = feval(dyfun, t, y, rmode);
if reset "= [],
< yr = y at tt+ according to model >
end
% now, at last, update mode:
< mode (im**) = sign(phi(im*x*)) >
end % of main WHILE loop
tout = tout(1l:k);
yout = yout(l:k,:);



Modeling & Simulation 27

Modes for Systems with Discontinuities

oK)

X | A
| |

i S(x,-1) =x -0 l S(x,f1) = x+d

x = f(x,t,—1) x = f(x,t,+1)
ox)=-F oxX)=+F

The mode “remembers” the state of the relay.



x(t), xdot(t)

Modeling & Simulation

Examples:

20

15

10

-10

-15

Systems with Discontinuities (Cont’d)

e Mass with viscous and Coulomb friction:

Stiction model: M*x—double—dot = Fa - fv*xdot - fc*mode

28

State—Event Handling: ode45, tol = 0.002: B
posn velo posn velo)
1 1 1 1 1 1 1
0.5 1 15 2.5 3 3.5 4

time

4.5



Modeling & Simulation 29

Systems with Discontinuities (Cont’d)

e Bouncing ball (with velocity reset):

lo T T T T T T T T

We can now simulate systems with discontinuities
with complete rigor!



Modeling & Simulation 30
Conclusions / General Considerations

e Class of problem =- algorithm selection:

— multi-valued nonlinearities (e.g., hysteresis, back-
lash) require a state-event handler (Euler might
work).

— non-differentiable nonlinearities require Euler
or Runge Kutta at least (using past deriva-
tives doesn’t make sense); a state-event han-
dler is highly desirable.

— variable step-size algorithms are almost always
preferable unless part of the system is discrete-
time.

For a first exploration, fourth-order Runge Kutta
with variable step size is recommended.

e Safety checks:
— try a different algorithm

— halve the step size; try again

— use double precision; try again

Never take the first results on faith!




