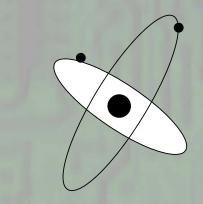
Cost Metrics for Reversible and Quan ogic Synthesis Dmitri Maslov¹ D. Michael Miller² ¹Dept. of ECE, McGill University ²Dept. of CS, University of Victoria


Outline

- Introduction (background, motivation)
- Motivation for our research
- Definitions and Problem Statement
- Our solution: Pruned Prioritized Breadth-first Search
- Results and Conclusions

Quantum bit could be a state of a single proton in a static magnetic field (magnetic spin). For a fixed proton state of a magnetic spin is known to be probabilistic, in other words, only the measurement tells what was the state.

 $\alpha|0>+\beta|1>$ - state of a proton. $|\alpha|$ - probability of finding the proton in a lower energy state $|\beta|$ - probability of finding the proton in a higher energy state

 $\left| \stackrel{\bullet}{\bullet} \right\rangle + \left| \stackrel{\bullet}{\bullet} \right\rangle$

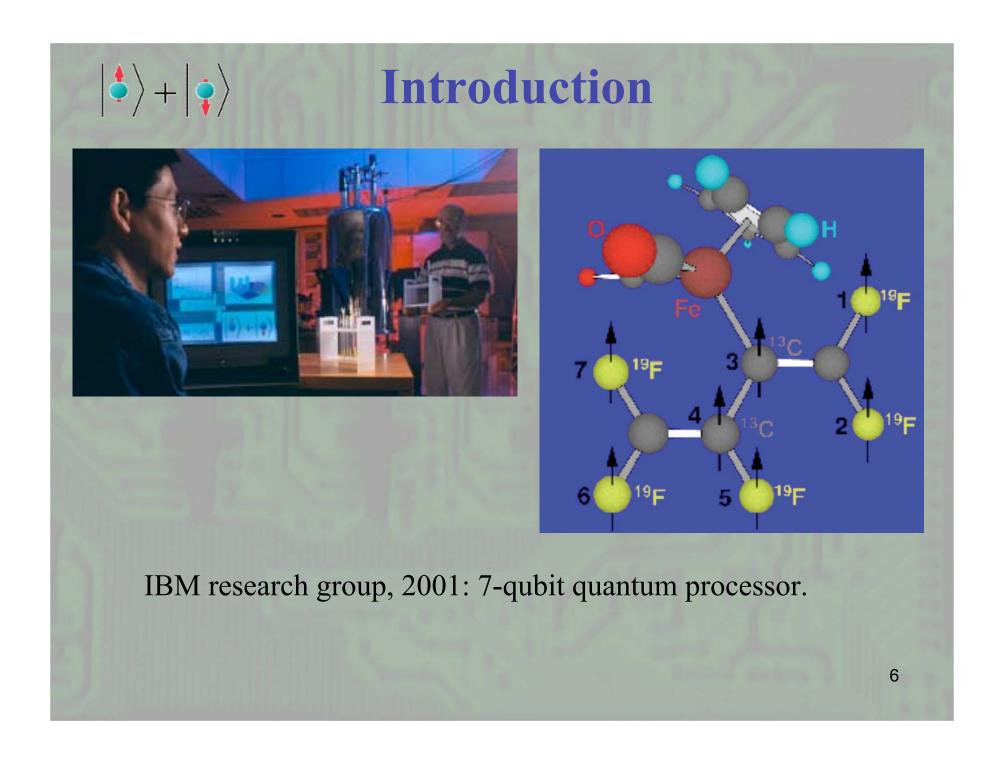
 $\left| \stackrel{\bullet}{\bullet} \right\rangle + \left| \stackrel{\bullet}{\bullet} \right\rangle$

Quantum n-bit system is described by a vector of length 2ⁿ with complex coefficients, called amplitudes.

 $\alpha_{00...0} | 0,0,...,0 \rangle + \alpha_{00...01} | 0,0,...,0,1 \rangle + ... + \alpha_{11...1} | 1,1,...,1 \rangle$

Quantum computation is done through multiplication of the state vector by $2^{n}x2^{n}$ unitary matrices.

Rather than working with huge matrices, we consider a **circuit computation** model. This saves space and illustrates what happens better.


Quantum computation features:

- 1. Quantum errors. At any time state |0> can spontaneously change to the state |1> and vice versa.
- 2. Measurement kills the system.
- 3. Copying is impossible. No fan outs.
- 4. **Computation lifetime is limited** by approximately 2 sec.
- 5. Limited number of basic (elementary) gates.
- 5.5. All the computations are **reversible**.
- 6. Scaling is difficult.

 $\left| \stackrel{\bullet}{\bullet} \right\rangle + \left| \stackrel{\bullet}{\bullet} \right\rangle$

7. Quantum superposition. Quantum system with n qubits is associated with presence of 2ⁿ complex numbers.

8. **Quantum parallelism.** It is possible to compute a Boolean function on all the possible inputs simultaneously.

Quantum key distribution.

Main features

 $\left| \stackrel{\bullet}{\bullet} \right\rangle + \left| \stackrel{\bullet}{\bullet} \right\rangle$

•First commercial quantum key distribution system

•Key distribution distance: up to 100 km

Quantum random number generator.

Main features

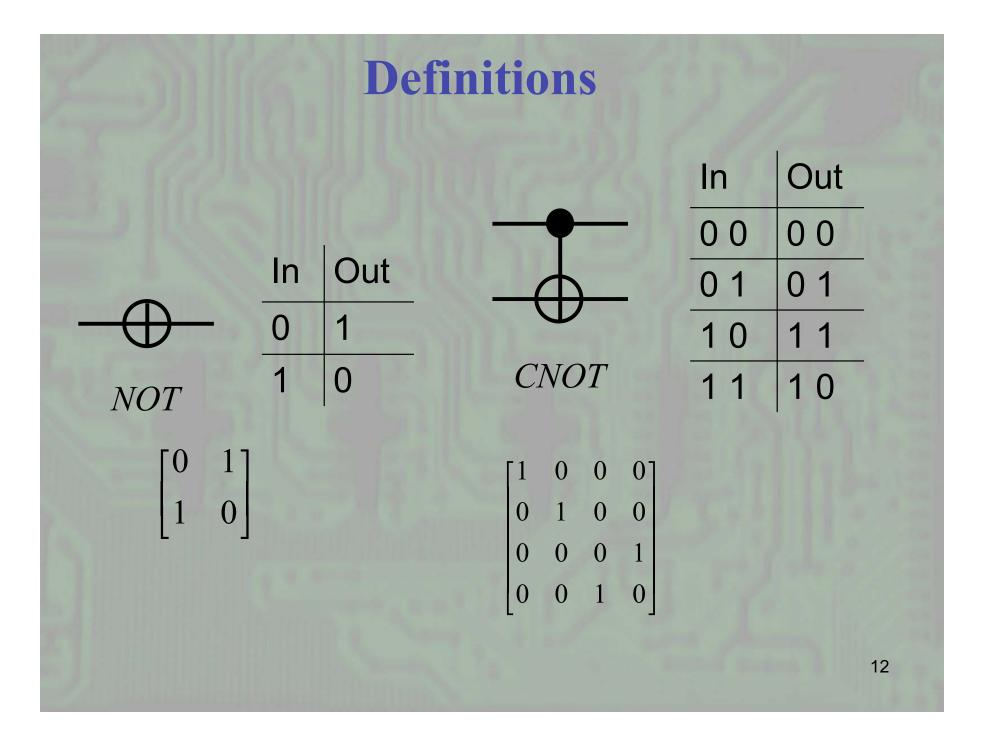
- PCI card
- random bit rate of up to 16Mbps

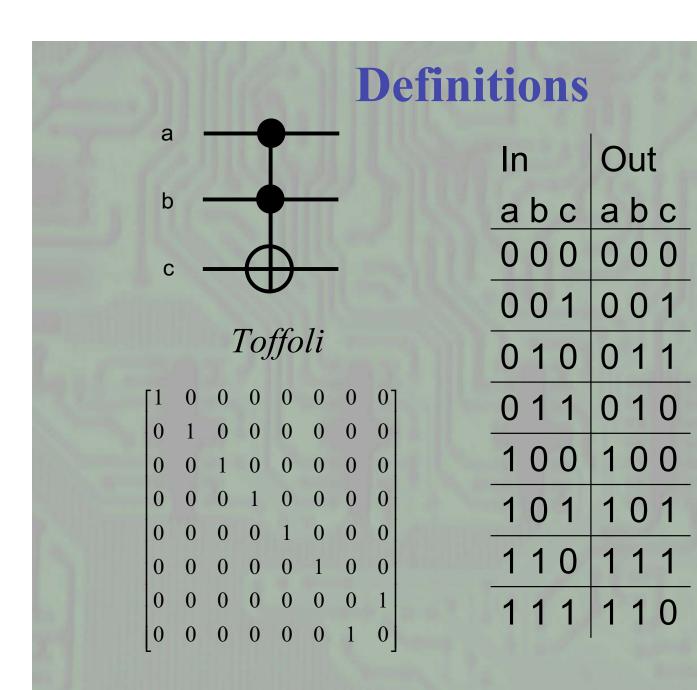
www.idquantique.com

Problem Statement

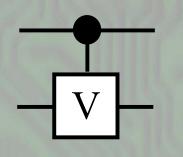
- Find optimal NCV circuits for the 8! 3-variable quantum Boolean (reversible) functions.
- Optimal can be based on gate count or on total gate cost for some costing model.
- Gate count is just a cost model where all gates have cost 1.

Motivation


- NOT, CNOT, controlled-V and controlled-V+ (NCV) gates are elementary and well studied blocks.
- We are interested in the *direct* synthesis of *small* circuits composed of NCV gates (rather than of libraries with macros).
- Observing optimal circuits for small cases often will shed light on good (if not optimal) synthesis approaches.
- Since we know the optimal results for 3-line Toffoli circuits, it is of interest to know what the optimal NCV circuits might look like.
- It is in its own right a challenging problem (21¹⁶=1,430,568,690,241,985,328,321 ~ 10²¹).

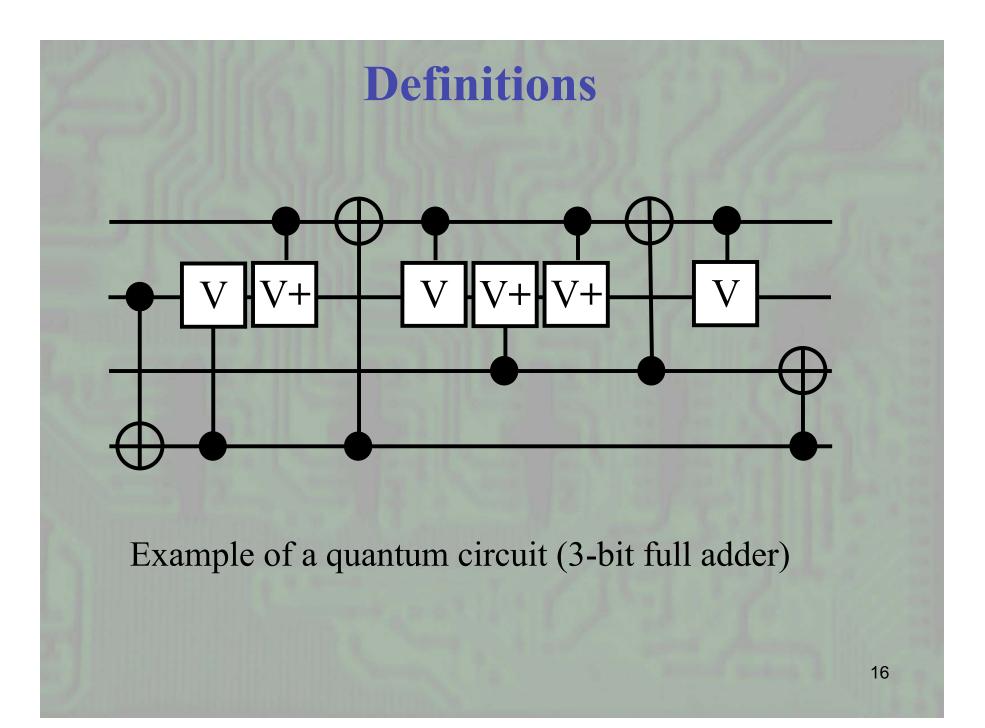

Definitions

- A Boolean function f: {0,1}ⁿ → {0,1}ⁿ is reversible if it maps each input pattern to a unique output pattern (it is a bijection).
- There are 2ⁿ! n-variable reversible functions.
- For n=3, this yields 8! = 40,320 functions.


Definitions

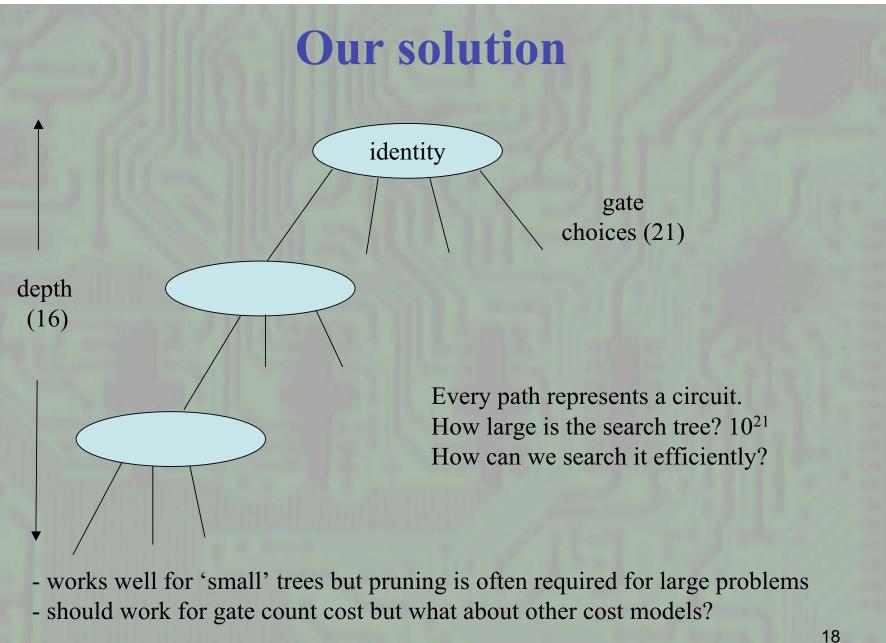
- A quantum circuit is a sequence of quantum gates (cascade), linked by "wires"
- The circuit has fixed "width" corresponding to the number of qubits being processed
- Logic design (classical and quantum) attempts to find circuit structures for needed operations that are
 - Functionally correct
 - Independent of physical technology
 - Low-cost, e.g., use the minimum number of qubits or gates
- Quantum logic design is not at all well developed.

Definitions



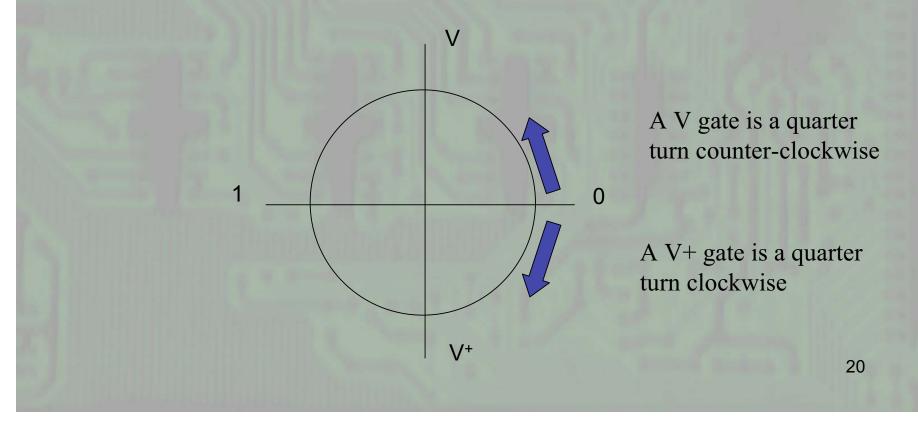
Controlled-V

[1	0	0	0]
0	1	0	0
0	0	$\frac{1}{2} + \frac{1}{2}i$	$\frac{1}{2} - \frac{1}{2}i$
0	0	$\frac{1}{2} - \frac{1}{2}i$	$\frac{1}{2} + \frac{1}{2}i$


In	Out
00	00
01	01
10	1 v0
11	1 v1
0 v0	0 v0
0 v1	0 v1
1 v0	11
1 v1	10

Problem Statement

- Find optimal NCV circuits for the 8! 3-variable quantum Boolean functions.
- Optimal can be based on gate count or on total gate cost for some costing model.
- Gate count is just a cost model where all gates have cost 1.



• Issues:

- How to code the functions accounting for Boolean and quantum values?
- How to limit the search space?
- How to search the tree efficiently?
- How to account for different gate costs?
- Assumption: never use a 'quantum' line as a control for a V or V⁺ gate.

How to code functions?

• The Boolean and quantum values can be treated as follows:

A simple coding is sufficient 0 V

We can think of a quantum function as having a base Boolean function (reversible parent) with a quantum signature added.

а	b	С	A	В	С	а	b	С	A	В	С
0	0	0	0	0	0	0	0	0	00	00	0 0
0	0	1	0	0	1	0	0	1	0 <mark>0</mark>	0 0	10
0	1			1	V	0	1	0	0 <mark>0</mark>	10	01
0	1	1	0	1	V+	0	1	1	0 <mark>0</mark>	10	11
1	0	0	1	0	V	1	0	0	1 <mark>0</mark>	0 0	11
1	0	1	1	0	V+	1	0	1	10	0 0	01
1	1	0	1	1	1	1	1	0	10	10	10
1	1	1	1	1	0	1	1	1	10	10	00

00

01

10

1 1

V+

How to limit the search space?

Theorem. A circuit realizing a Boolean reversible function realizes the same function if controlled-V gates are replaced by controlled-V+ gates and controlled-V+ gates are replaced by controlled-V gates.

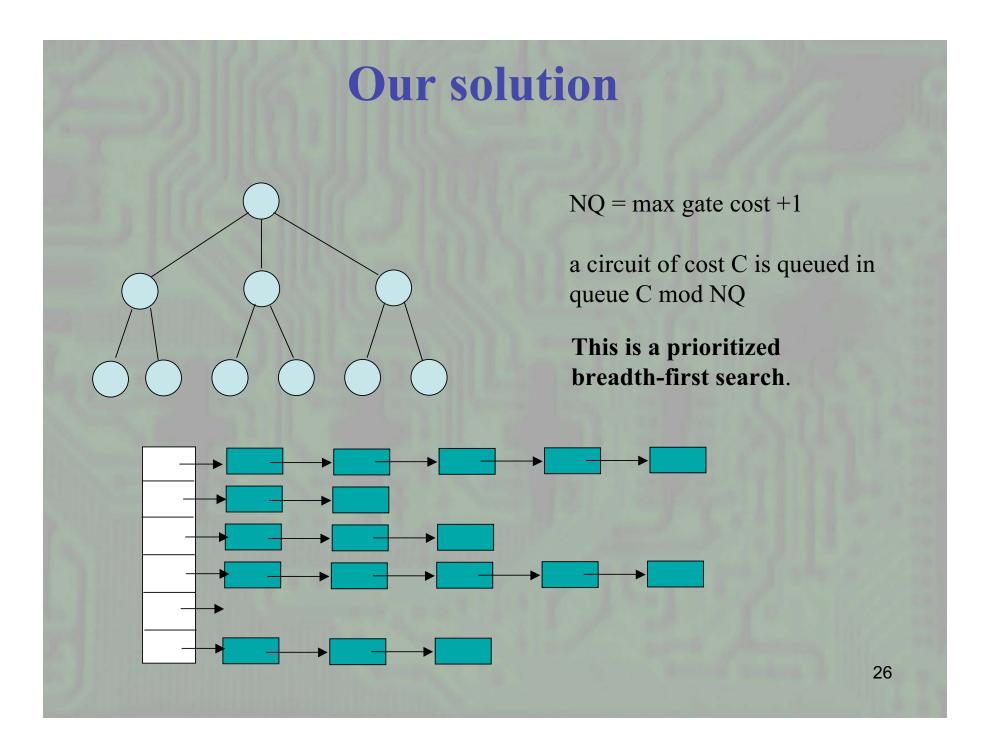
Proof: Obvious from circle of values.

Hint 1: during the search it is always enough to use gate controlled-V as the first quantum gate.

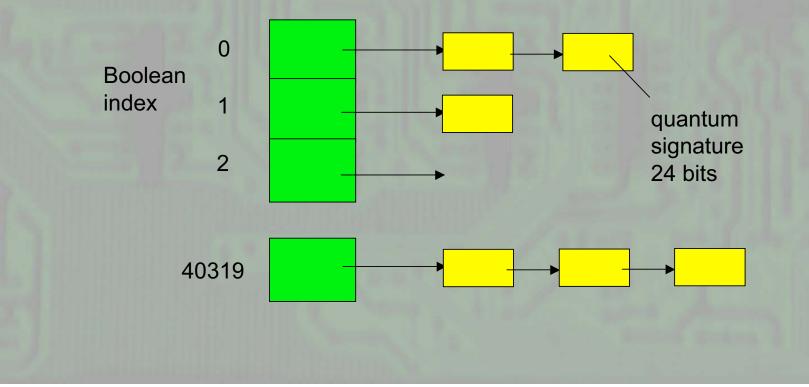
The number of gate choices is 21:

- 3 NOT
- 6 CNOT
- 6 controlled-V
- 6 controlled-V⁺

But not all gate choices are applicable in all situations.


Hint 2: Don't follow a gate with another gate with the same control and target – such a pair can always be reduced to one gate regardless of the gate types. *Assumes no gate type is realizable by a lower cost composition of other gates types.*

Hint 3: Once an optimal implementation of a function is found, we have also found an optimal implementation for all functions that differ from this one only by their input-output labeling.


Hint 4: don't consider a circuit (tree node) if we have already found a cheaper realization for that function.

Hint 5 (not used): once $G_1G_2...G_k$ is an optimal circuit for a reversible function f, $G_k^{-1}G_{k-1}^{-1}...G_1^{-1}$ is an optimal circuit for f^{-1} .

- There are 40,320 3-line Boolean reversible functions.
- We don't know how many quantum function will have to be considered.
- In the breadth-first search we want to visit the cheaper circuits first. For gate count cost, this is easy and can be done with one queue.
- But for a cost model with different costs for different gate types, multiple queues are required.

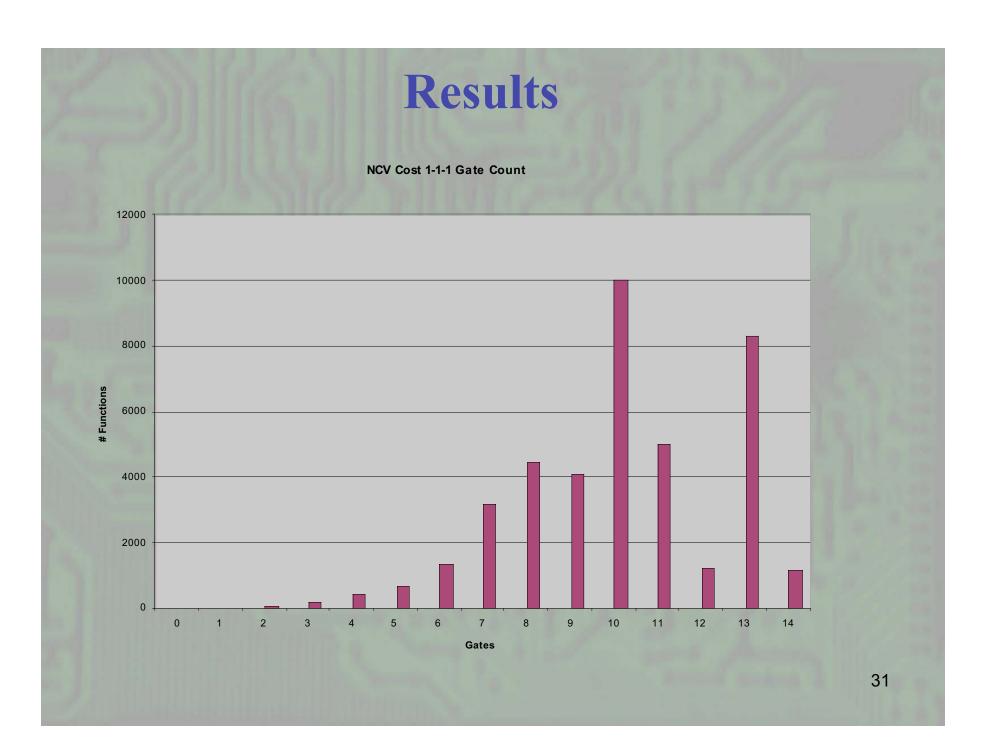
• A *reversible parent* is readily mapped to an index (integer) and vice versa (see p. 161 in Combinatorial Algorithms, by Reingold, Nievergelt and Deo).

27

NCV-111 cost model

- average gate count: 10.03
- average cost: 10.03
- Boolean functions queued: 6,828
- Boolean function cost reductions: 0
- Quantum functions queued: 206,410
- Quantum function cost reductions: 0
- user time: 61 seconds on a fairly fast UNIX box

0	:	0	1	2	3	4	5	6	7	:	0	:	;
5167	:	1	0	3	2	5	4	7	6	:	0	:	N(1,0);
11536	:	2	3	0	1	6	7	4	5	:	1	:	N(2,0);
23616	:	4	5	6	7	0	1	2	3	:	2	:	N(3,0);
121	:	0	1	3	2	4	5	7	6	:	0	:	N(1,2);
1565	:	0	3	2	1	4	7	6	5	:	1	:	N(2,1);
3109	:	0	5	2	7	4	1	6	3	:	2	:	N(3,1);
7	:	0	1	2	3	5	4	7	6	:	3	:	N(1,3);
16	:	0	1	2	3	6	7	4	5	:	4	:	N(2,3);
592	:	0	1	6	7	4	5	2	3	:	5	:	N(3,2);
5046	:	1	0	2	3	5	4	6	7	:	0	:	N(1,0).N(1,2);
10814	:	2	1	0	3	6	5	4	7	:	1	:	N(2,0).N(2,1);
21410	:	4	1	6	3	0	5	2	7	:	2	:	N(3,0).N(3,1);
5160	:	1	0	3	2	4	5	6	7	:	3	:	N(1,0).N(1,3);

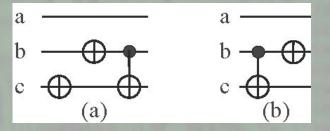

28024 : 5 3 7 2 4 6 0 1 : 2 : N(3,1).V(1,3).N(1,0).V(1,2).N(2,3).VP(1,2).V(3,1) .VP(3,2).N(2,1).V(3,2).V(2,3).VP(2,1).N(1,3).VP(2,1);

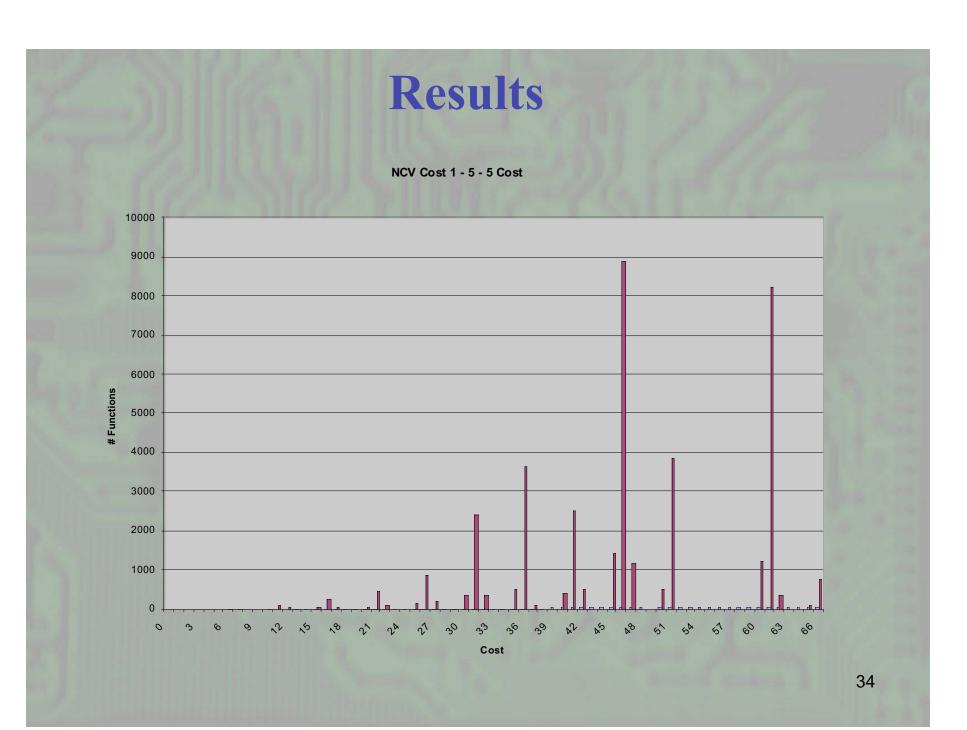
37137 : 7 2 4 3 1 5 6 0 : 0 :
 N(1,2).V(3,1).V(3,2).N(2,1).V(3,2).V(1,2).N(2,3).
VP(1,2).VP(1,3).V(3,1).N(2,0).N(1,2).V(3,1).V(3,2);

38337 : 7 4 1 3 2 5 6 0 : 0 : N(1,2).V(3,1).V(3,2).N(2,1).V(3,2).V(1,2).N(2,3). VP(1,2).VP(1,3).V(3,1).N(2,0).N(1,2).V(3,1).V(3,2);

36209 : 7 1 2 5 4 6 3 0 : 0 : V(1,2).N(2,3).V(1,3).VP(1,2).V(2,1).V(2,3).N(3,1) .VP(2,3).V(1,2).N(3,0).N(3,2).N(2,3).VP(1,2).VP(1,3);

36231 : 7 1 2 6 4 3 5 0 : 0 : V(1,2).N(2,3).V(1,3).VP(1,2).V(2,1).V(2,3).N(3,1) .VP(2,3).V(1,2).N(3,0).N(3,2).N(2,3).VP(1,2).VP(1,3);

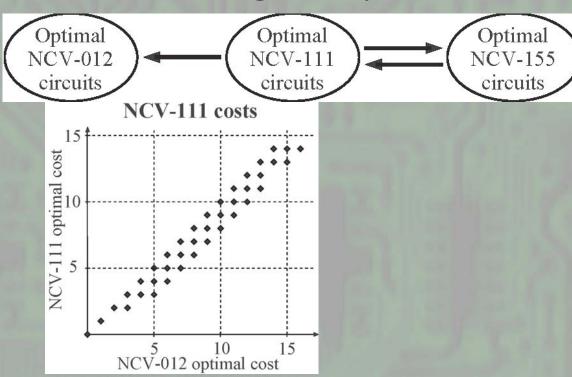



Results										
Opt. NC	т		Opt. NCV	13	0	4009	8340			
Cost	GC	NCV-1	11 NCV-111	14	0	8318	1180			
0	1	1	1	15	0	4385	0			
1	12	9	9	16	0	255	0			
2	102	a - • (₽	a —	•	-1297	0			
3	625	b —		b	$-\Phi$	4626	0			
4	2780		₩ Å	4	₩ L	4804	0			
5	8921	° ⊕		с Ф		⁺ 475	0			
6	17049	233	(a)	۷ ا	(b)	106	0			
7	10253	335	3176	22	0	503	0			
8	577	1300	4470	23	0	357	0			
9	0	3037	4122	24	0	4	0			
10	0	3394	10008	27	0	17	0			
11	0	793	5036	_28	0	2	0			
12	0	929	1236	WA	5.8655	14.0548	10.0319			

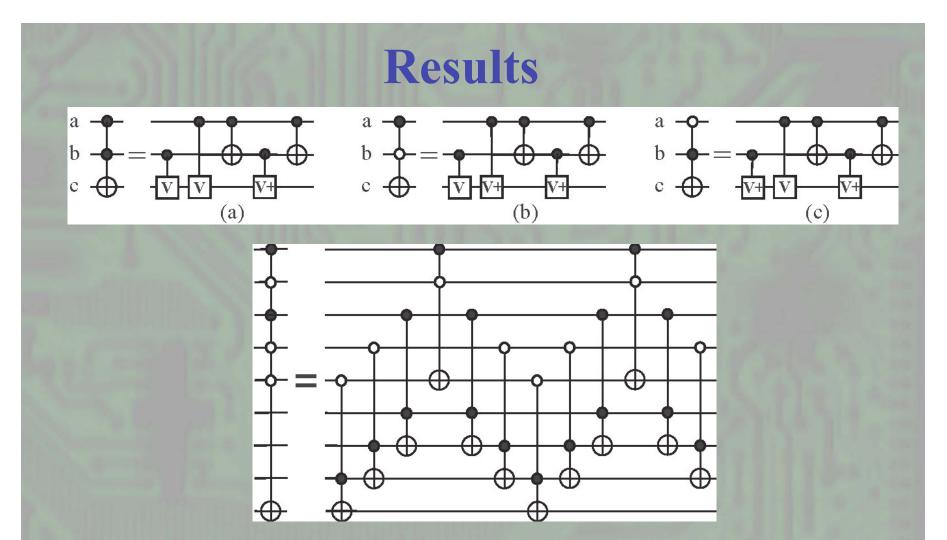
Conclusion 1: small Toffoli gate count is not an effective illustration of the implementation cost.

NCV-155 cost model

- average gate count: 10.03
- average cost: 46.35
- Boolean functions queued: 6,878
- Boolean function cost reductions: 50
- quantum functions queued: 232,406
- Quantum function cost reductions: 19,038
- user time: 68 seconds



Distribution of controlled-V/controlled-V+ gates.


	0	1	2	3	4	5	6	7	8	9	10
0	2	0	0	0	0	0	0	0	0	0	0
1	9	0	0	0	0	0	0	0	0	0	0
2	51	0	0	0	0	0	0	0	0	0	0
3	187	0	0	0	0	0	0	0	0	0	0
4	393	0	0	24	0	0	0	0	0	0	0
5	474	0	0	240	0	0	0	0	0	0	0
6	215	0	0	1158	0	0	0	0	0	0	0
7	14	0	0	3162	0	0	0	0	0	0	0
8	0	0	0	4110	0	0	360	0	0	0	0
9	0	0	0	714	0	0	3408	0	0	0	0
10	0	0	0	0	0	0	10008	0	0	0	0
11	0	0	0	0	0	0	5036	0	0	0	0
12	0	0	0	0	0	0	4	0	0	1232	0
13	0	0	0	0	0	0	0	0	0	8340	0
14	0	0	0	0	0	0	0	0	0	1180	0
15	0	0	0	0	0	0	0	0	0	0	0

Conclusion 2: number of controlled-V/controlled-V+ gates in optimal implementations is divisible by 3.

Interchangeability chart.

Conclusion 3: for small functions, it does not matter much in which metric to minimize a circuit. NCV-111 metric, however, seems to be more useful.

Conclusion 4: multiple control Toffoli gates with some but not all negations are no more expensive than Toffoli gates with all positive controls.

37

Acknowledgements

- Gerhard Dueck, Faculty of Computer Science, University of New Brunswick
- Natural Sciences and Engineering Research Council of Canada
- NB IEEE

