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1
JOINT COMMUNICATION AND
ELECTROMAGNETIC OPTIMIZATION OF A
MULTIPLE-INPUT MULTIPLE-OUTPUT
ULTRA WIDEBAND BASE STATION
ANTENNA

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
application Ser. No. 61/099,078 filed Sep. 22, 2008, and U.S.
Provisional application Ser. No. 61/008,591 filed Dec. 21,
2007.

FIELD OF THE INVENTION

This invention relates to multi-user antenna in general and
methods of configuring antennas in an array in particular.

BACKGROUND OF THE INVENTION

Recent work in the area of wireless communications has
shown that when antenna placements in a two-by-two MIMO
system are on the order of a symbol wavelength rather than
the carrier wavelength, significant improvements can be
made with respect to performance. This has given rise to the
term of Signaling Wavelength Antenna Placement (SWAP)
Gain to describe the advantages. The premise of this finding
is that when the antennas are spaced a symbol wavelength
apart, the likelihood that the channels are correlated is mini-
mal.

However, determining the optimum placement of the
antennas is seen as a highly non-linear problem that depends
on the number of antennas in the system, and distribution of
the users in the three-dimensional wireless communication
space.

MIMO Systems

A MIMO system makes use of multiple antennas to exploit
spatial diversity. By placing the antennas some distance apart,
the received signals from the same user will appear at each
antenna in the system. Since the radio channel in many sys-
tems is often impaired by effects such as random noise, mul-
tipath interference, co-channel interference (CCI), and adja-
cent channel interference, the resulting signals at each
antenna will be different in terms of the channel impulse
response [1], [2]. The noise and interference can be consid-
ered to be uncorrelated, while the message signal appearing at
each antenna will retain some correlation. However, in cases
where the antenna placements are similar, there exists the
probability that the noise and interference will be correlated
(31, [4], [5].

In general, any M-by-N MIMO system configuration can
be modeled as a matrix of channel impulse functions from the
M,, user to the N antenna. Typically, a wireless communi-
cations system will rely on a large base station that handles
the requests from the mobile users in the cell. An example of
a mobile user placement and antenna placement configura-
tion of a four-by-four system is shown in FIG. 1.

In the research area of wireless communications, current
generation systems are constantly being improved upon, with
the advances becoming part of the next generation of stan-
dards. MIMO systems make use of multiple antennas to
achieve spatial diversity and high performance [6], [7].
Recent work in the area of wireless communications has
shown that when antenna placements in a two-by-two MIMO
system are on the order of a symbol wavelength ([speed of
light]/[symbol rate]), rather than the carrier wavelength, sig-
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2

nificant improvements can be made with respect to multiuser
performance [8], [9], [10]. This has given rise to the term
Signaling Wavelength Antenna Placement (SWAP) Gain to
describe the advantages. The premise of this finding is that
when the antennas are spaced a symbol wavelength, or more,
the likelihood that the bits are correlated is minimal and the
array receives more information. When used in conjunction
with an ultra wideband (UWB) spectrum, the communication
system holds the potential of delivering high-speed data ser-
vices to many users [9], [11].

Much of the MIMO work to date relies heavily on assum-
ing a randomized multipath rich environment to realize the
maximum gains from spatial diversity [6], [12]. The fading
characteristics are often modelled as Rayleigh distributions.
However, in close range indoor situations, the Line of Signal
(LOS) can often dominate the multipath components (mod-
elled as Ricean distributions), minimizing the prospective
gains from MIMO techniques. It is therefore necessary to
examine MIMO performance in LOS situations.

Currently, the problem associated with effective MIMO
UWB base station antennas is that they are large. The opti-
mization of the MIMO UWRB base station antenna is seen as
a highly non-linear problem. Therefore, analytically a global
optimization is difficult to achieve through traditional meth-
ods. An exhaustive trial-and-error method would be able to
determine the optimal arrangement, but as the complexity of
the system increases, the computational requirements for this
method increase exponentially. Also, as wireless systems
become ubiquitous, there exists the need to accommodate
increasing data rates, but also increasing device numbers
[13], [14].

By strategically arranging the antennas in the system to
take advantage of the SWAP Gain, an optimal placement
exists that will maximize the performance of the MIMO
system in an LOS situation [15].

However, determining the optimum placement of antennas
and arrangement of reflectors is seen as a highly non-linear
computationally difficult problem that depends on the num-
ber of antennas in the system, placement and orientation of
reflectors, the radio channel bandwidth, the symbol rate, fad-
ing, and the distribution of the users in the wireless commu-
nication cell [16], [1]. GA optimization has seen success in
many non-linear applications, but often the results from these
optimizations need interpretation [17], [18], [19]. The algo-
rithm can converge to a local maxima/minima point rather
than reach a global solution. The presence of these vestigial
structures can prove to be a problem when attempting to gain
information from the results. In such cases, it is important to
evaluate the results in comparison to a known upper bound to
give an indication on how well the GA optimization is per-
forming.

Spread Spectrum Techniques

In code division multiple access (CDMA) systems, such as
the Evolution-Data Optimized (EVDO) standard and direct
sequence ultra wideband (DS-UWB), multiple users are mul-
tiplexed and transmitted over the same channel by using
K-length pseudo random noise maximum length binary
sequences, where K is the spreading factor [20], [21]. The
resulting signal from a single user is thus increased in band-
width by a factor of K. The summation of the signals from the
total users produces an orthogonal signal set such that the
original users signal can be de-multiplexed from the resultant
signal by using the same generating code on the receive end of
the channel [22], [23].

Some of the disadvantages of CDMA schemes are that they
are affected more by multiple access interference (MAI) and
intersymbol interference (ISI) [13]. To allow for this, a
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spreading factor greater than the expected capacity is used,
resulting in a greater grade of service (GOS) at the expense of
more bandwidth.
Symbol Wavelength

The symbol wavelength, AT, is defined as

c (Eq. 1)

where c is the speed of light and f;- is the symbol rate. It has
been shown by Yanikomeroglu et al. [8], [10] that by placing
antennas on the order of a chiplength that a greater diversity
gain is achieved as opposed to traditional carrier wavelength
spacing. For purposes of comparison, the antenna separations
in the GA optimization simulation have been normalized with
respect to the symbol wavelength.
Radio Channel

The mobile radio channel is inherently noisy and cluttered
with interference from other mobiles and multipath reflec-
tions. The overall performance of a wireless communication
system is concerned with the multiple ways to improve the
signal-to-interference-plus-noise Ratio (SINR). In 1948,
Shannon demonstrated that through proper encoding in cer-
tain conditions, errors can be reduced to any desired level
without sacrificing the rate of information transfer [24]. This
led to what is known as Shannon’s channel capacity formula
given by

N (Eq. 2)
C=Blog[1+=
ogz( N N),

where C is the channel capacity (bits per second), B is the
transmission bandwidth (Hz), S is the signal power (W), and
N is the noise power (W).

LMS Adaptive Filter

The least mean square (LMS) adaptive filter is another
proven concept that has shown great performance and wide-
spread use due to its robustness and ease of implementation
[16], [25], [26]. The basic setup of an LMS adaptive filter is
shown in FIG. 2.

In this arrangement, the data stream to be transmitted is
given by d,,, a denotes the spreading code applied to the data,
b represents the wireless channel response, m,, is the Additive
White Gaussian Noise (AWGN), r,, is the signal received at
the antenna, W,, is the adaptive filter coefficient, d',, is the
filtered received signal, e, is the error associated with the
filtered received signal, and n is the discrete-time index.

During training, the receiver knows d,, as the training
sequence would be programmed into the adaptive filter logic.
It will then update the filter coefficient W,, according to

W1 =W, tpe,r, (Eq. 3)

where W, , | is the updated filter coefficient, W,, is the current
filter coefficient, and p is the LMS adaptation constant, which
is chosen to be small enough such that the filter will converge.
If nis chosen to be too large, the adaptation will diverge and
the minimum mean square error (MMSE) will not be reached.

After the filter has finished processing the training
sequence, the filter then switches from operating on the train-
ing sequence and continues to adapt from the incoming sig-
nal. Ideally at this point the adaptive filter has converged and
has successtully performed the channel inversion to create a
matched filter and remains at the global minimum rather than
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diverging off to some other local minimum. Generalizing this
scalar example to vectors leads to the usual form

(Eq. 4)

where W, ; is vector of the updated filter coefficients, W, ,
is a vector of the current filter coefficients, p is the LMS
adaptation constant, e, is a vector of the error associated with
the filtered receive signal, and r,, is a vector of the signals
received at the antenna.

Genetic Algorithms

GA optimization borrows on the ideas of evolution found
in the everyday biology ofliving organisms. First discussed in
Charles Darwin’s Origin of Species, the concept is that every
living organism that exists today is a result of a process of
evolution over the many generations that the population has
existed for over great lengths of time. Within every cell of an
organism, a genetic blueprint is contained within a chemical
substance called deoxyribonucleic acid (DNA). This chemi-
cal substance is in a double-helical structure and contains
continuous base pairs ofthe nucleotides adenine (A), thymine
(T), guanine (G) and cytosine (C). The sequencing of these
nucleotides provides the basic genetic code that is capable of
completely reproducing the organism in which the DNA is
contained [17], [18]. Thus, the term DNA becomes synony-
mous with the minimum number of describing features that is
required to fully recreate an individual or organism.

Translating this to science and engineering problems, a set
of'possible solutions becomes the population of living organ-
isms. This population is then evaluated to determine their
fitness to performing the desired goal defined in the problem.
Such as in nature, the individuals are then subjected to a
survival of the fittest evaluation, where only a portion of the
top performing individuals are retained for the next genera-
tion. These top performing individuals are also chosen to be
the parents for the succeeding population. These parents then
generate offspring to fill the population. The offspring are
generated in primarily two mechanisms, through crossover
and mutation.

One of the advantages of GAs is that they are capable of
operating on a problem that has a very large set of possible
solutions [17], [19]. A problem with a large set of solutions
may not be computationally practical to investigate through
“brute force” methods. This leads to the advantage that
genetic algorithms will often lead to solutions that would
otherwise not have been reached through common numerical
techniques.

Wons1 =Wotiient',

SUMMARY OF THE INVENTION

This invention teaches a high-performing antenna that is
compact and easier to implement in a practical environment.
A joint communication and electromagnetic optimization of a
MIMO UWB base station antenna is achieved by implement-
ing a two-dimensional (2-D) design in an LOS situation to
optimize antenna placements, and designing in three-dimen-
sions (3-D) that will make use of reflectors to increase the
apparent electromagnetic and communication size of the
antenna, and exploiting the advantages gained by using sym-
bol-wavelength spacing.

According to one embodiment, the present invention
relates to a method for generating a configuration of elements
for a multi-input and multi-output multi-user antenna array
system comprising the steps of selecting elements from the
group consisting of at least two antennas and, at least one
antenna and at least one electromagnetic signal modifying
element; and applying a genetic algorithm to the antennas to
generate an antenna array configuration in which the antennas



US 9,031,613 B2

5

form an asymmetric array and where the array system is
optimized for multi-user performance.

According to another embodiment, the present invention
relates to a multi-input and multi-output multi-user antenna
array system comprising an asymmetric array of antennas
optimized for multi-user performance.

According to another embodiment, the present invention
relates to a method configuration or placement of antennas in
an array for a given placement of users in a space. Antennas
which can be placed include omni-directional, monopole,
dipole, and microstrip antennas.

According to another embodiment, the present invention
relates to a method for determining the optimum MIMO
performance using omni-directional antennas in an array over
LOS radio channels through genetic algorithm optimization.

In one embodiment, the MIMO system has been restricted
to 2-D space and only optimizes the placement of the anten-
nas through a genetic algorithm by evaluating the LOS signal.

In another embodiment, the design space for the antenna
placement and user placement is extended to 3-D space.

In yet another embodiment, reflector elements are incor-
porated as part of the design to purposely introduce random
reflections to create additional multipath components that
will be received by the antennas. By adding these reflectors to
the system, the MIMO system behaves as a multi-path rich
environment in what was previously dominated by the LOS
component. The number, placement, size, shape and orienta-
tion of these reflectors are determined using a genetic algo-
rithm.

In yet another embodiment, users are placed randomly in
the cell to determine the optimum MIMO performance for all
placements of users.

In yet another embodiment, radiation patterns are added to
the antenna model instead of using the simple omni-direc-
tional case.

Other aspects and features of the present invention will
become apparent to those ordinarily skilled in the art upon
review of the following description of specific embodiments
in conjunction with the accompanying drawing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be
described, by way of example only, with reference to the
accompanying drawings figures, wherein:

FIG. 1 is a depiction of a four-by-four arrangement for a
MIMO system with mobile users placed around the antenna
arrangement at the center of the cell;

FIG. 2 is a block diagram of the described simple LMS
adaptive filter;

FIG. 3 is a graph showing the LMS adaptive filter coeffi-
cients, Wn, in terms of tap energy, versus the coefficient
index, in a four-by-four MIMO system, for each user to
antenna channel;

FIG. 4 is a graph showing the learning curves for each user
in a four-by-four MIMO system, displayed as log squared
error versus time index;

FIG. 5 is a depiction of the crossover process in which a
new offspring is created by inheriting attributes from two
selected elite parents;

FIG. 6 is adepiction of the mutation process in which a new
offspring is created by adding perturbations to the attributes
of a randomly selected elite individual;

FIG. 7 is a generalized flow chart for the CA optimization
process;

FIG. 8 is a configuration used for the placement of the
mobile users in the cell;
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FIG. 9 is a graph showing the total variance of the antenna
placements versus the generation index, v, in a four-by-three
MIMO system using the mobile user placement in FIG. 8 and
a crossover ratio of 0;

FIG. 10 is a graph showing the total variance of the antenna
placements versus the generation index, v, in a four-by-three
MIMO system using the mobile user placement in FIG. 8 and
a crossover ratio of 0.5;

FIG. 11 is a graph showing the total variance of the antenna
placements versus the generation index, v, in a four-by-four
MIMO system using the mobile user placement in FIG. 8 and
a crossover ratio of 0;

FIG. 12 is a graph showing the total variance of the antenna
placements versus the generation index, v, in a four-by-four
MIMO system using the mobile user placement in FIG. 8 and
a crossover ratio of 0.5;

FIG. 13 is a graph showing the total variance of the antenna
placements versus the generation index, vy, in a four-by-five
MIMO system using the mobile user placement in FIG. 8 and
a crossover ratio of 0;

FIG. 14 is a graph showing the total variance of the antenna
placements versus the generation index, vy, in a four-by-five
MIMO system using the mobile user placement in FIG. 8 and
a crossover ratio of 0.5;

FIG. 15 is a graph showing the antenna placements in a
four-by-three system for the top 10% using the mobile user
placement in FIG. 8 and a crossover ratio of 0.5 after 100
generations;

FIG. 16 is a graph showing all antenna placements in a
four-by-four system using the mobile user placement in FIG.
8 and a crossover ratio of 0.5 after 1 generation;

FIG. 17 is a graph showing all antenna placements in a
four-by-four system using the mobile user placement in FIG.
8 and a crossover ratio of 0.5 after 5 generations;

FIG. 18 is a graph showing all antenna placements in a
four-by-four system using the mobile user placement, in FIG.
8 and a crossover ratio of 0.5 after 10 generations;

FIG. 19 is a graph showing all antenna placements in a
four-by-four system using the mobile user placement in FIG.
8 and a crossover ratio of 0.5 after 20 generations;

FIG. 20 is a graph showing all antenna placements in a
four-by-four system using the mobile user placement in FIG.
8 and a crossover ratio of 0.5 after 30 generations;

FIG. 21 is a graph showing all antenna placements in a
four-by-four system using the mobile user placement in FIG.
8 and a crossover ratio of 0.5 after 40 generations;

FIG. 22 is a graph showing all antenna placements in a
four-by-four system using the mobile user placement in FIG.
8 and a crossover ratio of 0.5 after 50 generations;

FIG. 23 is a graph showing all antenna placements in a
four-by-four system using the mobile user placement in FIG.
8 and a crossover ratio of 0.5 after 60 generations;

FIG. 24 is a graph showing all antenna placements in a
four-by-four system using the mobile user placement in FIG.
8 and a crossover ratio of 0.5 after 70 generations;

FIG. 25 is a graph showing all antenna placements in a
four-by-four system using the mobile user placement; in FIG.
8 and a crossover ratio of 0.5 after 80 generations;

FIG. 26 is a graph showing all antenna placements in a
four-by-four system using the mobile user placement in FIG.
8 and a crossover ratio of 0.5 after 90 generations;

FIG. 27 is a graph showing all antenna placements in a
four-by-four system using the mobile user placement in FIG.
8 and a crossover ratio of 0.5 after 100 generations;
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FIG. 28 is a graph showing antenna placements in a four-
by-four system for the top 10% using the mobile user place-
ment in FIG. 8 and a crossover ratio of 0.5 after 100 genera-
tions;

FIG. 29 is a graph showing antenna placements in a four-
by-five system for the top 10% using the mobile user place-
ment in FIG. 8 and a crossover ratio of 0.5 after 100 genera-
tions;

FIG. 30 is a graph showing antenna placements in a four-
by-three system for the top 10% using the mobile user place-
ment in FIG. 8 using a crossover ratio of 0 after 100 genera-
tions;

FIG. 31 is a graph showing antenna placements in a four-
by-four system for the top 10% using the mobile user place-
ment in FIG. 8 using a crossover ratio of 0 after 100 genera-
tions;

FIG. 32 is a graph showing antenna placements in a four-
by-five system for the top 10% using the mobile user place-
ment in FIG. 8 using a crossover ratio of 0 after 100 genera-
tions;

FIG. 33 is a schematic of ray-tracing to determine the
intersection point, Prp of a reflector plate and a ray simplified
to 2-D; and

FIG. 34 is a schematic of ray-tracing to determine the
intersection points, Ptintl and Ptint2, of a target spherical
antenna and a ray simplified to 2D.

FIG. 35 is a top view of an optimized 3-antenna configu-
ration.

FIG. 36 is a front view of an optimized 3-antenna configu-
ration.

FIG. 37 is a side view of an optimized 3-antenna configu-
ration.

FIG. 38 is a top view of an optimized 3-antenna and 5-re-
flector (small) configuration.

FIG. 39 is a front view of an optimized 3-antenna and
S-reflector (small) configuration.

FIG. 40 is a side view of an optimized 3-antenna and
S-reflector (small) configuration.

FIG. 41 is a top view of an optimized 3-antenna and 5-re-
flector (large) configuration.

FIG. 42 is a front view of an optimized 3-antenna and
S-reflector (large) configuration.

FIG. 43 is side view of an optimized 3-antenna and 5-re-
flector (large) configuration.

FIG. 44 is a top view of an optimized 3-antenna and 5-re-
flector (small) configuration with users.

FIG. 45 is a front view of an optimized 3-antenna and
S-reflector (small) configuration with users.

FIG. 46 is a side view of an optimized 3-antenna and
S-reflector (small) configuration with users.

FIG. 47 is a top view of an optimized 3-antenna and 5-re-
flector (large) configuration with users.

FIG. 48 is a front view of an optimized 3-antenna and
S-reflector (large) configuration with users.

FIG. 49 is a side view of an optimized 3-antenna and
S-reflector (large) configuration with users.

FIG. 50 is a top view of an optimized 3-antenna and 5-re-
flector (small) configuration with users in a black box repre-
sentation.

FIG. 51 is a front view of an optimized 3-antenna and
S-reflector (small) configuration with users in a black box
representation.

FIG. 52 is a side view of an optimized 3-antenna and
S-reflector (small) configuration with users in a black box
representation.
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FIG. 53 is a top view of an optimized 3-antenna and 5-re-
flector (large) configuration with users in a black box repre-
sentation.

FIG. 54 is a front view of an optimized 3-antenna and
S-reflector (large) configuration with users in a black box
representation.

FIG. 55 is a side view of an optimized 3-antenna and
S-reflector (large) configuration with users in a black box
representation.

DETAILED DESCRIPTION OF THE INVENTION

In this application, the following definitions are used:

“Optimized” or “optimization”—When antenna arrays
and antenna array systems and elements thereof according to
the present invention are referred to herein as having been
optimized or having had an optimization applied to it, it will
be understood by those skilled in the art that optimized or
optimization is not limited to a maximum optimization and
can include improvements of varying degrees over prior art
apparatus, systems and methods.

System Level Components

“Network transceiver unit”—A functional unit of the
MIMO multi-user network system, receiving radio signals
transmitted from the users (mobiles) in the service area, and
transmitting radio signals to these users (mobiles). It may
include an antenna array and a cluster of objects that can
randomize the radio channels from the users to the antenna
array. These objects can be refractors, reflectors, scatterers,
and diffractors.

“Data Processing unit(s)”—Flectronic device(s) extract
data sent by the users (mobiles) from the radio signals
received by the network transceiver, and encode data from the
network side, so that the transceiver unit can send them over
the radio channel to the users (mobiles).

“Users (mobiles)”—Terminal devices belong to the sub-
scribers of the network that transmit and receive radio signals
to and from the network transceiver unit.

Components of the Network Transceiver Unit

“Antenna”—A transducer receives and transmits electro-
magnetic waves.

“Antenna array”—A group of antennas positioned to form
a spatial pattern.

“Reflector”—A geometric object of a chosen material that
reflects the incident signal. The reflector can be of disks,
sphere, cylinder, parabolic, and any other geometric shapes.

“Refractor”—A geometric object of a chosen material that
allows a portion of the incident signal to be transmitted
through the object at a new direction that is dependent on the
geometry of the object, and the electromagnetic properties
(permittivity and permeability) of the medium of the incident
signal (usually free space) and the object.

“Scatterer”—A geometric object of a chosen size and sur-
face roughness that redirects (diffuses) the incident signal in
all directions.

“Diffractor”™—A geometric object of a chosen size and
shape that allows a redirection of the incident signal at the
edges to propagate towards a region that is normally blocked
(shadowing region).

Communication System Design
MIMO Setup

The performance of a certain antenna placement can be
evaluated and the genetic algorithm then has a fitness function
to base its evolutionary process on. It is possible that the
algorithm can converge to a local maxima/minima point
rather than reach a global solution. The presence of these
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vestigial structures can prove to be problematic when
attempting to gain information from the results.

For the genetic algorithm optimization simulation, three
MIMO systems were chosen as models. This included four-
by-three, four-by-four, and four-by-five arrangements. This
model configuration was chosen since it would be complex
enough to exhibit characteristics of the non-linearities of the
problem without being overly computationally complex. In
terms of the channel impulse functions, the channel impulse
response (CIR), between the users and the base stations, the
channel impulse function matrix for the four-by-four system
is given by

By (2) (Eq. 5)
a1 (1)
h31(2)

a1 (7)

hi2(2)
hap(2)
h32(2)
hap (1)

hy3(2)
ha3(2)
h33(2)
haz (D)

h1a(2)
haa(2)
hau@ |
haa (1)

h(D) =

which has the corresponding Fourier transform

Hy (f) (Eq. 6)

Hy ()
H =
o Hs ()

Ha (f)

Hp(f)
Hy(f)
Hz(f)
Ha(f)

Hy3(f)
Has(f)
Hs3(f)
Has3(f)

Hya(f)
Hau(f)
H(f) [
Haa(f)

Variations of these can be used to model the four-by-three
and four-by-five systems.
Signal Generation

For the purpose of the genetic algorithm optimization, a
bandwidth spreading factor of K=8 was chosen, where the
highest low-pass frequency is K/2T, where T is the symbol
period. This was chosen as a compromise between giving the
coded signals enough of a spread to be recovered after noise
was added to the channel, and the computational complexity
associated with increasing the bandwidth of the transmitted
signals. The spread spectrum spreading codes were generated
randomly with complex values and unit energy.
Radio Channel Modelling

In the described GA optimization, the radio channel was
modelled as being a pure LOS radio channel. In a pure LOS
radio channel, the aspects of multipath interference and
ground effects are ignored. The attenuation of the signal is
inversely proportional to the square of the distance. This gives
rise to a path loss exponent, n, of 2, and determines the
received power by

d, Y Eq. 7
PAd)zPr(do)(;), a7

where P, is the received power (W), d, is a reference distance
close to the base station (m), and d is the distance from the
base station (m). Also, for the purpose of this simulation, the
antennas were modelled as omni-directional, meaning the
isotropic gain was unity.

The next point to consider is the propagation of the signals
is considered to be in free space and is therefore taken as c, the
speed of light. This gives rise to a time delay for the propa-
gation from the mobile to the antennas. Using the two points
of path loss and time delay, the entries of Eq. 6 can now be
expressed as a function of the distance from mobile to the
antennas to give

Hy(f):Mje/ P, (Eq. 8)
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where M;; is the resulting attenuation of the signal from the i
mobile to the j” antenna, t,; is the time delay associated with
the signal from the i”” mobile to the j* antenna, and £, is the
symbol rate,

F=UT (Eq. 9)
The sources of interference that arise in this simulation are

MAI and AWGN. Complex random noise was generated and

added to the received signals at each antenna. The noise

variance, o, was chosen to give a signal-to-noise ratio (SNR)

0f 40 dB at each antenna.

Signal Extraction

The LMS adaptive filter was applied to each received sig-
nal at each antenna to extract the original data stream. The
LMS adaptation constant, |1, was set to 2-5. For the purpose of
this simulation, the entire length of the data stream was con-
sidered known, and the adaptive filter was allowed to train on
the whole data sequence. The LMS adaptive filter is thus able
to determine the filter coefficients, W,, necessary for the
multiuser detection (see FIG. 3) for each user to antenna
communication channel.

The length of the data sequence was set to be a total of 1024
bits. The adaptive filter was assumed to have converged to the
global minimum and the mean squared error (MSE) was then
calculated over the second half of the data stream (512 bits).
The value for the MSE over the second half of the data stream
was taken as the minimum mean squared error (MMSE) value
for that user. The ability to detect all users in the system is
imperative, thus it is necessary for all users to have converged
to a near optimal MMSE value (see FIG. 4). The total perfor-
mance of all the users is evaluated by averaging the MMSE
results. FIG. 4 shows that the filter has nearly converged
before 400 bits have been processed. From this observation,
the choice of 512 bits is a sound choice and gives reasonable
results for the MMSE calculation.

GA Optimization Design
Antenna DNA

In one embodiment of this invention, the simulation com-
prises choosing the placement of the four antennas as the
individual’s DNA structure. The antenna placement is evalu-
ated only in two dimensions, so antenna placement contains
an X and y co-ordinate describing its placement within the
cell. Since each individual is made up of four antenna place-
ments, the individuals of the population can be described by

Xy (Eq. 10)
X
oA =| 2 77,
X3 Y3
X4 Y4

This could be modified to account for N antennas by simply
extending Eq. 10 by adding x and y co-ordinates for each
additional antenna up to N. Each element is referred to as an
allele of the individual, which in traditional genetics is a
sequence of DNA code that is responsible for a particular
characteristic in an individual. A constraint was placed on the
DNA of the antennas to limit the total distance the antennas
were placed from the origin. Specifically, in this simulation,
an initial constraint was placed to limit the x and y placement
within the range of (—A 1, A;). This was imposed to simulate
some cost function associated with a given antenna placement
structure. The total distance also gives a method to quantify
an unstable mutation.
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Fitness

For each generation of individuals that was created, it was
necessary to evaluate the performance of the individuals
according to a fitness function, how well the individuals were
capable of achieving the specified goal. In a wireless commu-
nications system, the goal is ultimately to deliver the infor-
mation reliably and efficiently. The two most common met-
rics that measure a systems performance in a wireless
communications channel are bit error rate (BER) and the
MMSE described in the Signal Extraction section [27]. For
each individual of the antenna placement population, four
MMSE values were determined, one for each user in the
population. To obtain a single score for each individual in the
population, the fitness function, ¢, was given by

1 (Eq. 11)
b= —— ¢

T~
— Y MMSE;
NE‘O !

where N is the number of users.

Upon calculating ¢, the population can then be ranked
according to the resulting scores. Since a small MMSE is
desired, the best scoring individuals will have a large value for
$.

Generating Populations

In order to evolve, the next generation of individuals needs
to inherit the properties of the top performing individuals
from the previous generation and attempt to improve upon
them. The portion of top performers retained for the succeed-
ing generation was set at 10%. These top performers were
chosen as the parents to generate the next population through
the techniques of crossover and mutation.

Crossover

To generate a new individual based on the genetic tech-
nique of crossover, two parents are randomly chosen from the
top performing population. A binary crossover vector is ran-
domly generated having equal length of the DNA code. The
new individual is created by using a combination of the alleles
found on in the DNA codes of the two parents. In this case, on
the loci (location of allele, or DNA code index) where the
crossover vector is a 0, the offspring will inherit the attribute
found at the same site as parent 1 (see FIG. 5).

Mutation

The second method by which new individuals are created is
through the process of mutation. This method involves adding
random perturbations to the genetic code to create new indi-
viduals that result from a morphing of the parent. In nature,
this process is invoked to increase the available genetic con-
tent in a population. The mathematical equivalent to this is to
give the population the ability to evolve towards a global
optimization rather than remain at some local minima. Often,
it is quite possible as well for individuals to be created with
similar performance, but vastly different characteristics.

To generate a new individual via mutation, first, an indi-
vidual is randomly selected from the top performer popula-
tion to be mutated. A mutation vector of the same length as the
DNA code is then generated by randomly selecting a pertur-
bation from a zero-mean normal distribution. This perturba-
tion vector is then added to the selected parent to create a new
individual that is a resultant of the morphed values (see FIG.
6).

The standard deviation of the mutation vector, o,,, was
given a starting value, o,,,, and chosen as 0.1A,, where A, is
the symbol wavelength. Another characteristic of population
genetics is that often when a population is young, it is neces-
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sary for the mutations to be large and abundant. As the popu-
lation evolves, it becomes more specialized and large muta-
tions often appear to provide no further advantages. Also, the
value of o,, will determine the variance associated with a
population. In order to meet some predefined convergence
criteria, it is then necessary for the o,, to decrease as the
population becomes more specialized. This gives rise to a
degradation factor, o, to determine the value of 0,,, for the next
population. The calculation of the o,, is therefore given by

Cp(1) =007 (Eq. 12)

where v, is the generation index. A value for o was chosen as
0.97.
Methods

The joint optimization of the base station antenna is carried
out through a computer simulation in MATLAB® run on an
eight-core Mac Pro computing platform that makes use of the
MATLAB® distributed computing engine (MDCE) toolbox
to maximize computational throughput for the eight process-
ing cores. Since much of the simulation involves coarse-
grained parallel computations, the processor core utilization
is very efficient.

Results

The simulation was coded as a MATLAB® script file.
Several different user orientations were considered and the
output of the optimizations was retained for each generation.
For each user orientation, the population size was set to 100
individuals. The number of generations that were simulated
was also 100. The selection criterion was retained as the top
10% performing individuals. A crossover ratio of 0.5 was
chosen. This meant that 50% of the new individuals that were
created were done so by using the crossover technique, while
the remaining 50% were generated through mutation. The
same parameters were used to evaluate the four-by-three,
four-by-four, and four-by-five MIMO configurations. FIG. 7
shows a generalized flow chart for the GA optimization pro-
cess.

A second run of the simulation was repeated for the same
user configurations, but this time choosing a crossover ratio of
0. This meant that the generation of new individuals was done
through pure mutation. Similarly, this was also done for the
four-by-three, four-by-four, and four-by-five configurations.

FIG. 8 shows an example of one of the mobile user place-
ments for which the simulation was run. This particular con-
figuration shows the mobile users equally separated around
the origin of the cell, each at a radial distance of fifty A,

To quantify the effectiveness of the GA optimization, the
total variance of the antenna placements was evaluated using

n (Eq. 13)
Vary = )" VarlAc (7).
k=1

where Var, is the total variance of the generation, y is the
generation index, n is the number of unique components in
the DNA, and A,(y) is a vector containing all the of the k”
components the DNA in the generation y (see FIG. 9 through
FIG. 14) Once this value reached steady-state, it is assumed
that the optimization has converged. The number of genera-
tions was fixed at 100 for this simulation. This allowed for fine
tuning of the final solution in many of the cases, since several
of the cases showed a vast improvement in as little as 10
generations.

Using a crossover ratio of 0.5, the results from the four-by-
three system using the user arrangement in FIG. 8, the
antenna placement moved towards an isosceles right-angled
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triangle (FIG. 15). The lengths of the equal sides of the
triangle are on the order of the symbol wavelength.

FIG. 16 through FIG. 27 show how the GA progresses
during the optimization through successive generations. For
the purpose of illustration, these figures show the placement
of all the antennas rather than the top 10% performing indi-
viduals. Many regions for antenna placement are eliminated
within the first five to ten generations. This shows the rapid
beginning of the optimization within the first few generations,
but also illustrates the need for further successive generations
for fine tuning.

For the initial simulation run of the four-by-four system,
using a crossover ratio of 0.5, the GA tended towards an
arrangement in which at least two antennas are separated by
A as seen by the mobile users and asymmetry (FIG. 28).

The results from the simulation for the four-by-five system
using a crossover ratio of 0.5 tended towards two distinct
configurations (FIG. 29) rather than the single configurations
seen in the four-by-three and four-by-four simulations. While
distinct, the two configurations are closely related. The four-
by-five configurations show similar characteristics to those
found in the four-by-four configurations. In this case, the
minimum antenna separation is close to a symbol wave-
length, while the maximum antenna separation is close to two
symbol wavelengths.

The simulations were then repeated for each of the three
systems using pure mutation as the method of generating new
individuals in the population. FIG. 30 shows that the GA
optimization has converged to essentially a single unique
antenna arrangement. The triangular configuration has spread
further than the minimum of a symbol wavelength, but the
maximum antenna separation is still smaller than two symbol
wavelengths.

For the next simulation run of the four-by-four system,
using a crossover ratio of 0, e.g. pure mutation, the genetic
algorithm tended towards a different arrangement (FIG. 31).
This arrangement also shows asymmetric qualities as well as
having at least two antennas separated by A, as seen by the
mobile users. In fact, this arrangement is a 180-degree rota-
tion of the same antenna placement achieved through cross-
over, which can be considered the same result given the
symmetry in the original mobile user placement. This shows
that either through pure mutation, or including some degree
of crossover, the same results can be achieved.

Finally, the results of the simulation for the four-by-five
system using pure mutation also converge to a single unique
solution (FIG. 32). This configuration is close to the two
solutions that were found using crossover, however, it is
mostly similar to the four-by-four configurations, but with a
greater separation of the antennas.

In this arrangement, there exists antenna separations that
are closer to two symbol wavelengths in magnitude. The
minimum antenna separation seen here is one instance of two
antennas being closer than a symbol wavelength.

3-D Expansion
Motivation

The natural progression of the 2-D simulation work is to
expand the model to 3-D space. While L.OS signals alone can
be simplified in the 2-D plane, optimal gains will be made
with the addition of reflector elements to increase the multi-
path present in what was previously a close range LOS situ-
ation.

Setup

An M-by-N MIMO system is considered in 3-D space,
with the M users placed around the receiver structure in a
known configuration. The placement and orientation of
reflector and antenna elements is determined by a GA to
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jointly optimize the received signals based upon the electro-
magnetic properties of the induced communication channel
and the coding scheme used in the transmitted signal.
Reflectors

The reflector elements are modelled as perfect reflectors
having a reflection coefficient of unity. More realistic reflec-
tion coefficients could be incorporated in the calculations, but
to simplify the simulation, a reflection coefficient of unity is
used and assumed to have little effect on the overall outcome.
This will maximize the gains possible from a multipath envi-
ronment as well as exploit the SWAP gain.

Initial Placement

The placement of the reflector elements is randomly deter-
mined by the GA. They are constrained to a maximum dis-
tance from the centre point of the base station to limit the
overall size of the receiver structure. Each reflector element
will have a 3-D point in space corresponding to the centre
point of the reflector itself. Each initial point is determined
from a uniform distribution from -1 to 1 and then normalized
to the maximum distance from the centre point of the base
station that is chosen to constrain the GA.

The orientation of each reflector element is also randomly
determined by the GA. Again, choosing from a uniform dis-
tribution from -1 to 1, three lengths are chosen for the direc-
tions along the X, y, and z axes to create a directional vector.
These lengths are then normalized to create a unit directional
vector that describes the plane on which the reflector will sit,
centred around the origin of the reflector.

Size and Shape

In order to accurately simulate pure planar reflection from
the reflectors, the size of the reflector elements must meet a
minimum. By making the reflector elements large in com-
parison relative to the size of the transmitted signal’s wave-
lengths, the effect of diffraction can be minimized. This
avoids the more time consuming and intensive process of
accurately modelling diffraction. The shape of the reflector
elements are chosen as circular discs with a fixed radius. The
choice of circular discs makes the most efficient use of reflec-
tor material, since this shape provides the most useable sur-
face area with the least amount of area lost to spreading at the
edges.

To simplify the calculations and simulation, all reflectors
are uniform in size and shape. From a manufacturing stand-
point, identical discs would be more easily machined and
produced. It would be possible to allow the radius of the
reflector surfaces to also be a changeable parameter in the
GA. However, having the number of reflector elements as a
changeable parameter, the effect of larger reflector sizes can
be achieved by combining multiple smaller reflectors to cre-
ate larger, more complex surfaces.

Growth

To facilitate the growth of the reflector elements, some
consideration must be made for the addition (or subtraction)
of new reflector elements. An individual in the population
would begin with a certain number of reflector elements
randomly placed. Through the generation of new individuals,
a new parameter would be chosen for the total number of
reflector elements present in a single individual.

In order to limit complexity, a maximum would be placed
on the total number of reflector elements that a single indi-
vidual would have. Additionally, pruning would occur that
would eliminate reflector elements that did not contribute to
the performance gain. This pruning would happen during the
ray-tracing stage such that if it is determined that a reflector
element receives no signal and does not produce a reflecting
signal that is seen by the antennas, it would be eliminated
from the population.
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Ray-Tracing

For each individual created composed of a random
arrangement of reflectors and antennas, the received signals
atthe antenna due to the induced multipath from the reflectors
must be determined. A basic ray-tracing algorithm is imple-
mented. Computationally, this process could be simplified by
the use of a vector graphics processor. However, for simplic-
ity, this calculation is processed generically using a general
purpose central processing unit.

The CIR is determined in a similar way as in the 2-D case,
consisting of the vector sum of received signals at each
antenna due to propagation delay and free space path loss.
However, the addition of reflectors has the added element of
multipath arrivals which must be determined. The entries of
the complex passband channel impulse function matrix in Eq.
5 become

N ) (Eq. 14)
(o) = Z a &7 S~ T |« win),
k=1

where k is the multipath component index, a, is the amplitude
of the k multipath component, f.. is the carrier frequency, T,
is the k™ associated propagation delay, % is the convolution
operator, and w(t) is an ideal low pass filter.

The total sum of multipath arrivals that are seen at the
antennas is determined by ray-tracing. For each user present
in an individual arrangement, directional rays are created
from the users’ position. Using straight lines, some granular-
ity exists, but by setting a small enough step for degree incre-
ments, the total coverage of the ray-tracing is considered
sufficient for this simulation.

From each user, based on the degree increment step speci-
fied, vectors are created over the range of a=(-m, ), y=(-,
m), and f=(-m/2, 7/2). Each vector is then used to determine
the intersection point with the plane of each reflector or the
region around a target antenna.

To determine whether or not the ray has intersected with a
reflector plate, the intersection point with the plane of the
reflector is found. To do so, the planar equation in the form of

ax+bx+cz+d=0 (Eq. 15)

is determined, where a, b, ¢ are the X, y, Z components of the
plane’s normal vector,

(Eq. 16)

=<
n,=<ab,cs,

Eq. 15 can be solved for d using the values of the origin of
the reflector for x, y, and z. The point of intersection lies along
the ray (line) and can be found by solving for the scalar factor,
s,in

P, =P, +sd (Bq.17)

rorg 23

where P, , is the point of intersection of the ray and the reflec-
tor plate, P, _1is the point of origin of the ray, s is the scaling
factor, and d, is the directional vector of the ray. The scaling
factor, s, can is found by combining the line equation and the
planar equation yielding

—d = Prorg ' 11p (Eq. 18)

5§ =
d, n,

Substituting s back into Eq. 17, P,,, can be solved for.
P,,, is then compared to the origin of the reflector. Based on
the shape and size of the reflector, it is then determined
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whether or not the point of intersection from the plane and
vector is within the region of the reflector. In the simple case
where the reflector is a circular disc with a fixed radius, an
intersection of the ray and the reflector is made if the distance
from the point of intersection to the origin of the reflector is
smaller than the radius. That is

15V Py Prorg) Pro~Prorg)-
is the

where 1, is the radius of the reflector plate, and P,
origin of the reflector plate, provided that the point of inter-
section is in the outward positive direction of the ray. This is
because the general solution will provide a point of intersec-
tion along the infinite line of the ray, and the ray begins at a
finite point (reflector is behind the ray). Given the assumption
that the reflector surface is large compared to the incident
wave, the effect of fringing and spreading is ignored and any
intersection will be considered a pure reflection (see F1G. 33).

To determine whether or not the ray has intersected the
region around the target antennas, the line-sphere intersection
method is used. Combining the line equation,

(Eq. 19)

Pni=P,

i), (Ea. 20)

and the sphere equation,

(=20)+(r=yo ) Hz—z0) =12, (Eq. 21)

yields a quadratic equation of the form

AP +Bu+c=0, (Eq. 22)

where

A=d.d,,

r Y

B=2d,(Pyoy=Pror)s (Eq. 23 & Eq. 24)

and

CProrgProrg) Prorg=Prorg) =15

P, 1s the point of intersection of the ray and the target
sphere, u is a scalar, X, Vo, and z,, are the respective points of
origin of the sphere, P and r, is the radius of the target
sphere.

Solving the quadratic equation yields two solutions, u, and
u, since the line will intersect the sphere at two points, unless
it is tangent to the sphere or makes no intersection at all.
Substituting these values into Eq. 20 gives the two points of
intersection. The distances, d, and d, from the origin of the
ray to the points of intersection are

(Eq. 25)

torg?

VPt Prore (Eq. 26)
& VP i Prorg (Eq.27)

These solutions are considered valid if, like the reflector
intersection, the signs of the vector from the ray origin to the
point of intersection, that is P, ~P, ., are the same as the
directional vector, d, (see FIG. 34).

If an intersection is made with a target antenna, the ray is
terminated if it is determined to be the first intersection that
the ray has made with either a target or other reflector. This
means that the ray is terminated in this case if it has directly
made contact with a target antenna before meeting a reflector.

If a ray is determined to not make contact with either a
reflector or an antenna, then it is considered to have not
contributed to the received signal at the antenna, and its
effects are ignored. Standard GA techniques to sample the
surviving individuals were used to maintain genetic diversity
by including survivors with a wide range of fitness functions.

Ifaray is found to have made an intersection with multiple
reflectors, the distance between the reflector and the origin of
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the incident ray is determined, and the reflector that is the
nearer is kept. Any intersection made with reflectors that are
further away are ignored, as this would assume that the ray
has been transmitted through the reflector, when in actual fact
it would be in a shadowing region in which the ray would not
be transmitted.

Once an intersection is made with a reflector, the point of
intersection becomes the new point of origin for the reflected
ray. The reflected ray is then created based upon the incident
ray to the reflector. This reflected ray now becomes the new
incident ray and is recursively tested for the same intersec-
tions of reflectors and antennas.

For all rays that reach the target antenna, the total path
traveled becomes the summation of the vectors from the
starting position of the user to each intersection points on the
reflectors and end antenna. Using this total path, a multipath
arrival consisting of a propagation delay and signal level
based on free space path loss can be determined.

Channel Impulse Response (CIR)

Once the ray-tracing has been completed, the CIR can be
constructed. A single CIR for one user to one antenna will
consist of the LOS path (if present) and the total summation of
the multipath arrivals that have been induced by the reflectors.
For the purpose of simulation, the CIR is most easily com-
puted when described in discrete time. To limit the complex-
ity of the calculations, the maximum bound is placed the
length of the CIR both in terms of number of samples, as well
as in terms of time.

The number of samples as well as the total delay allowable
for the CIR must be chosen in tandem to give an accurate
representation of the effects of the multipath without sacri-
ficing computational time. The number of samples must be
large enough such that the identification of discrete paths is on
the same order as path length differences based on the move-
ment of the reflectors. The length in time of the CIR must be
long enough to capture the majority of the energy from the
multipath arrivals. This length can be chosen as a multiple of
the symbol period to best illustrate the desired effects from
symbol wavelength spacing.

GA Optimization Design

The GA optimization design is built upon the 2-D design
outlined in the GA Optimization section. The design is
expanded to account for propagation in 3-D space, as well as
the addition of multipath inducing reflectors.

Flow

Similar to the 2-D design, the basic flow of the GA opti-
mization is as follows. The population is first seeded with
individuals that are characterized by their individual DNA.
The fitness function is calculated for each of these individuals
to determine how well the individual is suited to meeting the
specified task. In this case, the optimization is towards mul-
tiuser performance, using MMSE as the metric. Once the
individuals have been scored, they are ranked and ordered.
The top performing individuals are chosen to survive to the
next generation, as well as serve as the parents (donors of
characteristic DNA) of the next generation.

Next, the new population is generated first with the surviv-
ing elite individuals from the previous generation. The
remaining individuals are generated using the crossover and
mutation methods. As each new individual is created, those
who have components that are outside the bounds (antenna or
reflector too far from the origin) have those offending com-
ponents removed and replaced with a newly randomly gen-
erated component. This new population then evaluates the
fitness scores to once again determine the top performers.
This process continues until the end criteria is met. The end
criteria can be set as either a number of generations to process,
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or with a specific performance goal. With the latter case
however, it is possible that if the specific performance goal
can not be met, the simulation will loop endlessly.
Individual DNA

The characteristics of a single individual configuration is
described by the DNA. A single individual in this population
is described by the DNA for the antennas and the reflectors.
The DNA parameters for the antennas is similar to that of the
2-D situation shown in Eq. 10, except that in this case a
z-component is added to the position of the antennas to fully
describe it in 3-D space. The number of antennas is fixed in
this case at N=4, but similarly could be modified for any N.
Therefore, the antenna portion of the DNA becomes

Xy oa (Eq. 28)
Y2 22
Y3 23 '

Ya

X2
antennas; =
X3

X4

A single individual in the population also described by the
reflectors surrounding the antennas. The DNA parameters
that describe the reflectors are an x-y-z position in 3-D space,
as well as a unit directional vector x'-y'-z' describing the
orientation of the reflector plate. The shape of the reflector
plate is fixed in this case to be a circular disc of a fixed radius,
which is constant for all of the reflectors. However, the total
number of reflectors, N, present in one individual configura-
tion is variable, meaning that there is a variation in the size of
the reflector portion of the DNA from thus, the reflector
portion of the DNA can be represented by

, ’
XYt 4 X Y1 4

, ’ ,

X2 Y2 2 X Y2 %

reflectors; = i i i
, ’ ,

ANp YNy TN AN YN, BN,

In addition to the antenna and reflector DNA portions
described in Eq. 28 and Eq. 29, the parameter describing the
total number of reflectors, N, would also be contained in the
DNA of the individual. Although this can easily be derived
independently from the information in the reflector DNA,, itis
included as it is a parameter that is modified when creating
new individuals using individual i as a parent.

Generating Populations

For the 3-D simulation, the population is initialized and
generated in a similar fashion to the 2-D case as well. The
position co-ordinates of the antennas are randomly generated
and chosen from a uniform distribution bounded by the dis-
tance limits set from the origin of the individual structure.

For the reflectors, the number of reflectors in a given indi-
vidual are randomly generated from a uniform distribution
with a limit on the maximum number of reflectors allowed.
The position co-ordinates for each reflector are then chosen
from a uniform distribution, as well as the lengths for the
directional vector of the reflector surface. The directional
vector is then normalized to unit length.

The process of creating a single individual in a population
is then repeated until the population limit is reached.
Crossover

Once the initial population has been created and evaluated,
the individuals in the successive generation must be created.
Mirroring the 2-D case, a new individual is created via cross-
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over by selecting two top performing individuals from the
previous generation. The new individual is generated by
either inheriting information from one parent or the other
from each allele, or loci of information. Since the number of
reflectors is also a variable, in the case of the higher number
of reflectors being chosen, the new individual will automati-
cally inherit the reflectors from the parent to meet the desired
number of reflectors.
Mutation

The second mechanism by which new individuals are cre-
ated is through mutation. This mirrors the 2-D case as well, by
taking a single individual and mutating it by perturbing each
parameter by a set standard deviation. Since the number of
reflectors is also being perturbed in this case, the elimination
of extraneous reflectors is determined randomly using a uni-
form distribution. In the case in which the number of reflec-
tors needs to be increased, additional reflectors are created
and added in the same way as when the population is initial-
ized.
Distributed Processing

Given the high amount of coarse-grained parallelism in the
computational requirements of implementing a GA to solve a
many configurations of MIMO communication problems,
great advantages can be made by incorporating distributed
processing to handle these tasks. The calculations required
for individuals of a population are not dependent on each
other, therefore these lengthy linear computations can be
conducted in parallel across multiple processors or nodes.
MDCE

One method of incorporating distributed processing tech-
niques that was explored was through the use of the MDCE
toolbox available for MATLAB®. This toolbox includes an
array of utilities to implement a distributed processing solu-
tion to a set of computational tasks exhibiting parallelism.
The MDCE implementation consists of the toolbox set to
develop and program the work set, and the engine to run and
manage the tasks. This toolbox allows not just for parallel
processing across multiple workstations, but exploiting mul-
tiple processing units on a single workstation, since MAT-
LAB® itself is currently single-threaded.
Agents

An agent in the MDCE is essentially a full instance of the
MATLAB® program capable of interpreting the programs
that it is assigned and carrying out the calculations. Each
agent must be initialized and named such that it can be prop-
erly addressed. A single agent is the processing entity that is
capable handling a task. To maximize the utilization of mul-
tiple core processors, the ideal number of agents is equal to
the number of available processing cores. In a typical distrib-
uted computing hierarchy consisting of nodes in a cluster,
each node (addressable physical entity) would be assigned a
number of agents equal to the number of processing cores
available at that node.
Job Manager

The job manager is the program responsible for assigning
tasks to the agents and monitoring the exchange of informa-
tion. A single job manager is required for a single distributed
problem, as it oversees the operation of all the agents in a
cluster. To maximize the processor core utilization, the best
performance will be achieved when a processing core is
reserved for the job manager. This eliminates the downtime
and queuing delays that would occur if the job manager was
forced to share a processing core with an agent.
Jobs

Ajobinthe MDCE is a task that can be assigned to an agent
by the job manager. This, in its basic form, is the coarse-
grained independent problem that needs to be solved. The job
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is created by calling the desired method with the appropriate
input parameters. It is then assigned an identifier and passed
along to the job manager.

At this point, the job manager will take the task and assign
itto the first available agent. If an agent is unavailable, the task
will be queued and held onto by the job manager. Once the job
has been assigned to an agent by the job manager, the job
manager will wait on the completion of the operation by the
agent. The agent will report back to the job manager with the
results, which are then handled by the job manager.

In the implementation of the 3-D GA simulation, the cal-
culation of the fitness function for a single individual exhibits
a high amount of coarse-grained parallelism. This means that
the calculation of an individuals result has no interdepen-
dence on the outcome of another individual when evaluated
for the same generation. At the sub-individual level, there is
also a choice within the evaluation of a single individual,
ray-tracing, that may benefit from distributed process, but the
overhead of the distributed setup should be evaluated as it
may outweigh the gains at this level.

Ray-Tracing

One ofthe processes that benefits from distributed process-
ing on the sub-individual level is the ray-tracing portion. Each
ray that is generated is exhaustively tracked through either
multiple reflections until an intersection with a target is met,
or a miss is recorded. This part of the calculation can be done
in parallel by making each ray a single job.

Since the calculation of each ray is independent of the other
rays from the same source, the evaluation can be carried outin
parallel. However, in the simplest case in which no intersec-
tions are made, the overhead for parallel job management
may be large compared to the evaluation of the ray’s inter-
section with reflectors and targets. At low levels of complex-
ity, i.e. a small number of reflectors and antennas, there may
be no benefit seen. At higher levels of complexity, i.e. where
the number of reflectors and antennas in the configuration are
large, the overhead from the parallel job management
becomes proportionately less.

The two main constraints to consider when deciding on the
computational complexity that is tolerable is by implement-
ing a maximum number of reflections, N, to calculate as
well as a ceiling on the total number of elements (reflectors
and antennas), N,,..- Since each ray is compared to each
element, this represents a total number of N, .. evaluations
for every reflection up to N, .-

MMSE

Inthe 3-D simulation expansion, the MMSE is evaluated in
the same way as in the 2-D case, but with the exception that
the input CIR is now more complex, having the addition of
reflected multipath components. In relation to the distributed
processing, the calculation of the MMSEs for an individual
configuration is at the top level of process separation. The
next generation is dependent on the information gained from
the MMSE calculations, and therefore the simulation cannot
advance at this point.

Therefore, as the jobs are completed (MMSE or fitness
evaluated) for each individual configuration in the present
population, no further calculations are able to proceed at this
point.

Since the MMSE calculation is identical to the 2-D case
once the CIR has been determined, there should be no
increase in the computational requirements for this section,
provided the length of the CIR is the same. The approximate
computational time by a single processor, discounting paral-
lel overhead, for a generation of 100 individuals in the 2-D
case was on the order of a minute, putting a complete simu-
lation of 100 generations close to two hours. By implement-
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ing parallel processing to this portion of the GA, the potential
benefit is a reduction by a factor of the number of parallel
processing units, putting this computation closer to 15 min for
a simulation of 100 individuals. However, the increase in
number of components in the DNA may require an increase
by an order of magnitude in the population size to sufficiently
provide the information pool with enough unique information
to reach an optimal solution.

Rendez-Vous

A rendez-vous point occurs at the point in which any part of
the process is unable to continue without the aid of further
information. As jobs are completed and the queue is emptied,
there will exist some time in which there is process under-
utilization as the jobs meet up at the rendez-vous point. This
collective point would be seen in this situation at the points
where a distributed task is being completed. If parallel tasking
is used for ray-tracing, the program must wait until all rays
have been traced before the CIR can be fully constructed. In
the case of the MMSE fitness evaluation, all individuals in a
population must complete their evaluation before they can be
ranked as a group.

In general, at a rendez-vous point, the information from the
parallel tasks can be collected and used to proceed with the
next portion of the evaluation. Due to the nature of some
problems, they are required, but proper problem separation
must be used to limit the performance lost during the under-
utilization stage.

The findings conducted by implementation in hardware of
the antenna/reflector configurations that are determined from
the GA optimization can then be verified. Measurements
would then be carried out to determine if the simulation was
able to accurately predict the multipath arrivals, and therefore
if the calculated radio channels were reasonable to use in the
simulation to determine the optimal antenna/reflector
arrangement.

Designs created traditionally based solely on the predicted
contributing elements can also be evaluated in addition to
designs created by the GA itself.

EXAMPLE

One example of the MIMO system has three antennas,
seven users, and a spread spectrum factor of 3.

First, the antennas of each individual are constrained
within a sphere of 2 symbol wavelength (WL ), centered at the
origin of the coordinate system. Prior to GA adaptation, 100
individuals are randomly generated, i.e. the locations of the
antennas randomly generated, subjected to the constraint.
Fifty random 7-user locations were also simulated. All the
users are located on a circle with 40 WL radius, and 25 WL
below the origin (Z coordinates of the users are all -25 WL).

The SINRs obtained by LMS algorithm were used as the
fitness function for the GA algorithm. Each generation of GA
adaptation, 10 survivors are selected based on a stochastic
universal sampling scheme, so as to ensuring the diversity of
survived genes and to achieve fast convergence.

The new population was generated from the 10 survivors
with a crossover probability of 25% and an exponentially
decaying mutation coefficient. The GA algorithm ran 20 gen-
erations, and the best survivor of each generation were tested
using a 50 7-user locations, which are different from those
used in GA adaptation and called the testing sets. The result-
ing SINR are plotted in the left plot, with minimum, mean and
maximum SINR over the 50 7-user locations. The best survi-
vor of this GA adaptation after 20 generations is presented in
FIGS. 35 to 37.
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Next, the survivors of the first GA adaptation were used as
the starting point for the subsequent work. A new population
was generated based on these survivors, by adding 5 reflectors
to each individual. The location, size and orientation of each
reflector are randomly generated, subject to certain con-
straints.

Two scenarios are simulated. The first one constraints the
range of the reflector within a sphere of 4 WL, and the radius
of the reflector within 2 WL; the second one constraints the
range of the reflector within a sphere of 2 WL, and the radius
of the reflector within 1 WL. The GA adaptation processes
were the same as the previous (no reflector) one. The best
survivor at each generation was testing by the testing set, and
the resulting SINR are presented in the middle plot (first
scenario) and the right plot (second scenario), with the same
convention as the left plot.

The best survivors of the two scenarios after 20 generations
are presented in FIGS. 38 to 40 (first scenario) and FIGS. 41
to 43 (second scenario). Note that the LMS learning are all
based on 4096 training bits.

TABLE 1

Optimized 3-antenna configuration-coordinates of the anntenas

X Y Z

Antenna 1 1.68 -0.11 0.70

Antenna 2 -0.61 1.55 0.59

Antenna 3 -1.10 -1.15 0.40
TABLE 2

Optimized 3-antenna and 5-reflector (small)
configuration - coordinates of the antennas

X Y Z

Antenna 1 2.96 0.14 0.84

Antenna 2 -0.78 2.01 0.77

Antenna 3 -1.19 -0.99 0.47
TABLE 3

Optimized 3-antenna and 5-reflector (small) configuration - parameters of
the reflectors (C,, C,, and C, are the coordinates of the center of the

o Gy
reflector; N,, N, and N, are the normal or direction of the reflector;
R is the radius of the reflector).
Cx Cy Cz Nx Ny Nz R
Reflector 1 0.39 0.38 048 -042 -0.17 -099 0.89
Reflector 2 0.19 0.08 004 -044 068 -050 0.61
Reflector 3 023 -0.15 055 -070 -1.09 -030 0.21
Reflector 4 0.06 0.18 034 -035 -049 088 0.50
Reflector 5 0.16 0.08  0.65 0.19  0.64 -0.13 047
TABLE 4

Optimized 3-antenna and 5-reflector (large)
configuration - coordinates of the antennas

X Y zZ
Antenna 1 1.80 -0.02 0.29
Antenna 2 -0.97 2.03 0.68
Antenna 3 -0.83 -1.85 0.09
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We claim:

1. A method for generating a configuration of elements for

a multi-input and multi-output multi-user antenna array sys-
tem comprising the steps of:

selecting at least two antennas and at least one electromag-
netic signal modifying element, the electromagnetic sig-
nal modifying element comprising a geometric object;
applying a genetic algorithm to the system to generate an

antenna array system having a configuration optimized

for multi-user performance in which

the at least two antennas and the at least one electromag-
netic signal modifying element form an asymmetric
array,

the at least one electromagnetic signal modifying ele-
ment is a stand-alone element non-integral with the
antennas,

the placement of the at least one electromagnetic signal
modifying element promotes randomization of sig-
nals from one or more users to one or more of the
antennas and allows for blocking of direct path signals
from one or more users to one or more ofthe antennas,
thereby increasing multi-path signals within the
antenna array system, and

the spacing of the antennas and the at least one electro-
magnetic signal modifying element relative to each
another is constrained on the order of symbol wave-
lengths.
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2. The method according to claim 1 wherein the array
system is optimized for a property selected from the group
consisting of the inverse of the minimum mean square error,
of bit error rate, signal to interference plus noise ratio, user
capacity, speech quality and sound quality.

3. The method according to claim 1, further including
applying the genetic algorithm to the signal modifying ele-
ment to generate a property of the modifying element by
which multi-path signals within the antenna array are
increased.

4. The method according to claim 3 wherein the property of
the modifying element is selected from the group consisting
of position of the modifying element relative to the antenna
array, size of the modifying element, orientation of the modi-
fying element relative to the antenna array, and material com-
position of the modifying element.

5. The method according to claim 1 wherein the step of
applying the genetic algorithm includes constraining the
spacing of the antennas relative to each another in the range of
about 0.1 to about 10 symbol wavelengths.

6. The method according to claim 1 wherein the step of
applying the genetic algorithm includes constraining the
spacing of the antennas relative to each another in the range of
about 1 to about 4 symbol wavelengths.

7. The method according to claim 1 wherein the step of
applying the genetic algorithm includes constraining the
spacing of the antennas relative to each another in the range of
about 0.5 to about 2 symbol wavelengths.

8. The method according to claim 1 wherein the step of
applying the genetic algorithm to the antennas includes con-
straining the volume occupied by the array.

9. An antenna array system designed according to the
method of claim 1.

10. The method according to claim 1 wherein the geomet-
ric object is selected from the group consisting of a reflector,
a refractor, a scatterer and a diffractor.

11. A multi-input and multi-output multi-user antenna
array system comprising:

an asymmetric array comprising at least two antennas and

at least one electromagnetic signal modifying element,
the electromagnetic signal modifying element compris-
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ing a geometric object which is a stand-alone element
non-integral with the antennas,

where the array system is configured such that the antenna

array configuration system is optimized for multi-user
performance including by promoting randomization of
signals from one or more users to one or more of the
antennas and allows for blocking of direct path signals
from one or more users to one or more of the antennas,
thereby increasing multi-path signals within the antenna
array system, and

wherein the antennas and at least one electromagnetic sig-

nal modifying element, are spaced on the order of sym-
bol wavelengths apart.

12. An antenna array system according to claim 11 wherein
at least one antenna is optimized for a property selected from
the group consisting of geometric position within the system,
orientation in the system, size and type of antenna.

13. antenna array system according to claim 11 wherein the
signal modifying element is selected from the group consist-
ing of discs, spheres, and cylinders and combinations thereof.

14. The antenna array system according to claim 11
wherein the modifying element has a signal modifying prop-
erty selected from the group consisting of reflection, refrac-
tion, diffraction, scattering and combinations thereof.

15. The antenna array system according to claim 11
wherein the antennas are spaced between about 0.1 and about
10 symbol wavelengths apart.

16. The antenna array system according to claim 11
wherein the antennas are spaced between about 1 and 4 sym-
bol wavelengths apart.

17. The antenna array system according to claim 11
wherein the antennas are spaced between about 0.5 and 2
symbol wavelengths apart.

18. The antenna array system according to claim 11 further
including a point-to-point transmitter and wherein the anten-
nas are mounted on cellular network towers.

19. The antenna array system according to claim 11
wherein the geometric object is selected from the group con-
sisting of a reflector, a refractor, a scatterer and a diffractor.
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