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ABSTRACT
The Spectral Airglow Structure Imager (SASI) is a mission on Cube-
Sat NB’s VIOLET satellite, and it is imaging the 630 nm redline
atomic oxygen airglow in the ionosphere at altitudes of 300-400 km.
The image acquisition conditions of VIOLET make it susceptible
to significant degradation primarily due to rotational blurring. A
method of deconvolution by ring extraction and linearization using
Richardson-Lucy methods for rotational blurring is presented to
minimize the rotational blurring in the system. Interpolation by
means of splicing and specific pixel deconvolutions are discussed
to increase image quality after deconvolution. Boundary conditions
for pre-processing to handle corner degradation due to the nature
of rotational blurring are also discussed. Preliminary results show
effective deconvolution of rotationally blurred images, currently
resulting in SSIM indexes approaching 0.50.
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1 INTRODUCTION
The Spectral Airglow Structure Imager (SASI) is one of two primary
missions aboard CubeSat NB’s VIOLET CubeSat imaging the red-
line atomic-oxygen-airglow layer of the ionosphere at the 630 nm
wavelength. Due to numerous heavy constraints of the system and
the low light conditions of the imaging target, SASI is required to
have significant exposure times of up to 7 seconds. Traditionally,
long exposure times are compensated for by using very sophisti-
cated attitude control and pointing instrumentation to ensure the
imaging target is always in the field [3]. VIOLET does not have any
active attitude control due to its power limitations, using only pas-
sive magnetic attitude control (PMAC) with a permanent magnet,
and will instead be relying on post-processing of the images for
increased accuracy.
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There have been several CubeSat missions that include an imager,
however they typically image the Earth, which gives off signifi-
cantly more light than airglow, causing exposure times to decrease.
The closest CubeSat resembling VIOLET is the Swiss Cube, a Cube-
Sat imaging airglow with exposure times below a second. They
are able to achieve such small exposure times because they were
testing an in house sensor technology and telescope design [9].
Due to the uniqueness of the imaging environment and subject,
there is insignificant research in the deconvolution of long expo-
sure CubeSat imagery. Motion blur removal is a heavily studied
field, and leveraging work in this field is useful in the application.
Research done by others in rotational and translational motion blur
is discussed in Section 3.

This paper will investigate the rotational motion blur case of
atomic-oxygen-airglow imagery as expected from the VIOLET
CubeSat. The deconvolution of which leverages the spatially in-
variant and linear properties of the rotational motion blur kernels
along a circular arc. Pre-processing of boundary conditions will
also be considered. Finally, the necessity for interpolation in post-
processing due to the nature of the deconvolution will be consid-
ered.

The rest of the paper is divided into 5 sections. Section 2 describes
the background information of the VIOLET project and the orbital
dynamics of the system being considered. Section 3 describes the
degradation models used for approximation of rotational and trans-
lationally blurred images. Section 4 describes the pre-processing
and deconvolution methods. Section 5 describes the interpolation
used in the research. Section 6 describes the conclusions of the
research to this point and the future direction the researchers plan
to take.

2 BACKGROUND
Satellite imagery has been a staple of digital image processing
research since the early 1960s and the fast evolving space program
during that time is often credited with jump starting the field of
digital image processing [4]. A CubeSat is a small satellite measured
in terms of 10 cm x 10 cm x 10 cm blocks called Units or U for short.
CubeSats allow academic institutions to support and grow their
space research areas whileminimizing the large buy in cost typically
associated with breaking into the space sector.

CubeSat NB was selected as one of the groups to partake in the
Canadian CubeSat Project, creating a joint project between the
University of New Brunswick, l’Université de Moncton, and the
New Brunswick Community College in building New Brunswick’s
first CubeSat, VIOLET. VIOLET is a 2U (10 cm x 10 cm x 20 cm)
research satellite for investigating the ionosphere through the use
of its two scientific payloads, the GNSS Receiver for Ionospheric
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and Position Studies (GRIPS) and the Spectral Airglow Structure
Imager (SASI).

Of relevance to the research is the SASI subsystem, a CMOS
image sensor imaging the redline airglow layer of the ionosphere
at the 630 nm wavelength to investigate the density and location of
atomic-oxygen-airglow. The difficulties of imaging this faint oxygen
layer with an inexpensive sensor on board a CubeSat are apparent.
The main challenge being the requirement for a significantly longer
exposure time due to the use of a narrow band redline filter and an
inexpensive sensor paired with the low light conditions of space.
The requirement of longer exposure times of approximately 3 to 7
seconds has the potential to introduce significant blurring in the
resulting images due to the motion of VIOLET during the exposure.
The approximation and estimation of the atomic-oxygen-airglow
layer relies heavily on the accuracy of the images returned from
SASI. The motion blurring introduced into the images creates the
additional challenge of determining the true location of the airglow
from the blurry images. The key is to properly remove significant
amounts of the motion blur, providing an accurate estimation of
location, while simultaneously retaining the information present
in the image so as not to skew the density of the airglow in the
images.

While larger satellites are able to use attitude control systems
with very high levels of sophistication and energy usage, CubeSats
are extremely limited in their choices for attitude control. This is
primarily because as the size of a satellite decreases, so does the
available power from the solar panels and the size of the batteries.
VIOLET has decided to exclusively use PMAC by including a strong
magnet in the center module that will align with Earth’s magnetic
field. This type of attitude control makes it more difficult to include
active control or damping to reduce the blurring of the images. The
rotation of VIOLET in various axes will cause different varieties
of blurring in the resulting images. Of these blurs, the two most
significant types are the linear motion blur caused by the transla-
tional motion of VIOLET, and the rotational blur about the +Z axis,
the axis in the 20 cm direction, due to the inability for VIOLET to
actively dampen its rotation during an exposure period.

3 DEGRADATION MODELS
According to Gonzalez and Woods [4], given that ℎ is a linear,
position-invariant process, then the degraded image is given in the
spatial domain by

𝑌 = ℎ ∗ 𝑋 + 𝑁 (1)

where𝑌 is the observed image matrix,ℎ is the point spread function
(PSF) of the system, ∗ is the two-dimensional convolution operator,
𝑋 is the true image matrix, and 𝑁 is the noise matrix present in the
system. The goal of a standard deconvolution is to recover𝑋 using a
combination of the observed image and the PSF, while approximat-
ing the noise. This process is known as non-blind deconvolution.
The images to be taken by VIOLET will not have an associated PSF
with them, and estimating the PSF to recover the true image is a
process known as blind deconvolution.

Blind deconvolution is generally an ill-posed problem given the
multiple unknown parameters, and accurate image priors should
be leveraged if the option exists. For the case of VIOLET, the in-
formation about the attitude of the satellite during an exposure

is being used to assist in the deconvolution of the images. Of the
various types of blur affecting images from VIOLET, the two most
significant are the translational and rotational blur about the center
+Z axis.

3.1 Translational Blurring
Translational blur has been a heavily studied area of image process-
ing since the early 1960s and is generally not difficult to reverse
if the length of the blur can be properly estimated [11]. This is
because translational motion blur is spatially invariant and linear,
meaning that typical deconvolution methods will work given a
proper estimation of the blur kernel. Because of this, research on
translational blurring has moved largely towards estimation of the
blur lengths [14] [2]. A technique that is heavily leveraged for this
task is the Radon Transform, noting its reliability in detecting par-
allel lines in a Fourier Transform arising from translational motion
blur [12]. A linear motion blur can be simulated by a sum of slightly
translated images as seen in the top image in Figure 1.

3.2 Rotational Blurring
Rotational blur is significantly more difficult to deal with since it is
a non-linear spatially variant blur. This is because the length of the
blur is dependant on the distance from the blurring center, in most
cases this will be the center of the image. Instances of rotational
blurring do not appear as frequently as translational blurring, as
such, there is significantly less research in the field. Even less so
is the case of a rotating imaging device, as usually rotational blur-
ring research is more in the segmentation of objects rotating in
an imaging field [10]. Several research groups opt to use hardware
solutions to avoid rotational blurring such as opto-mechanical dero-
tators [1, 13]. Recently, Qiu et al. have applied machine learning to
rotational image blur using Conditional Generative Adversarial Net-
works (CGAN) with good results while also noting that there were
no publicly available rotational blurring image repositories and
made theirs available [6]. Rotational blurring can be approximated
similarly to translational blur except with slight rotations instead
of slight translations as seen in the bottom image in Figure 1.

Figure 1: Motion blur approximations: top image is transla-
tional blur, bottom image is rotational blur

4 METHODS
The image used for testing and verification is an image of the
redline oxygen-airglow layer taken by the Imager of Sprites and
Upper Atmospheric Lightnings instrument on-board FORMOSAT-2
operated by the National Space Organization of Taiwan [7]. This
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image is a close approximation of what SASI can be expected to
take, minus the blurring. The image can be seen in Figure 2

Figure 2: Image used for testing and verification, redline
oxygen-airglow image taken by FORMOSAT-2 [7], used with
permission from the Wiley Library

4.1 Boundary Conditions
As VIOLET rotates through an exposure period, the corners of the
scene are gradually rotated out and the light from those corners
is only incident on the sensor for a portion of the exposure. This
lack of information causes heavy degradation of the corners of
the image in the recovery in the form of ringing artifacts unless
proper pre-processing is done. As the rotation angle increases, the
amount of data loss in the images also increases. An example of
data loss from rotational motion with zero padding as a boundary
condition can be seen in Figure 3. In this example, the image is
padded with zeros and then rotationally blurred by 10◦, then it is
padded a second time and then recovered. The degradation of the
corners is a direct result of the zero padding, an accurate estimate
of outside the scene is necessary for a proper recovery.

Figure 3: An example of the effects of poor boundary condi-
tions

The image and methods are the same as those in Figure 4, only
the boundary condition is changed. The severe ringing artifacts
are not seen in Figure 4 due to the nature of pre-processing of
boundary conditions of the image. In the case of Figure 4, the input
image was padded with reflections of the image during the blurring

process and recovery process in order to accurately simulate the
blurring conditions and recovery conditions that would be available
during a standard image from VIOLET. There are several methods
to properly account for this boundary condition and the four that
are classically used and have been investigated with this algorithm
are padding the image appropriately with either zeros, replicating
of the border pixels infinitely, periodically replicating of the image,
and reflecting of the image on all sides. Hansen et al. found that
replication worked best for the rotational deblurring problem [5].

4.2 Deconvolution
Rotational motion blur can be considered as radially linear, that is
to say the rate of change of the length of the blur along a radial
path is linear and representable by an arc related to the angular
velocity about the +Z axis of the satellite and the exposure time of
the image. The relationship between the blurring angle, exposure
time and rotational velocity can be seen in Equation 2 and the arc
length in Equation 3

𝜃 = 𝑇𝜔 (2)

𝑠 =
2𝜋𝑟𝜃
360◦

(3)

where 𝜃 is the blurring angle in degrees, 𝑇 is the exposure time in
seconds, 𝜔 is the rotational velocity in the +Z-axis of VIOLET in
degrees per second, 𝑟 is the radius from the center of the image,
and 𝑠 is the arc length in pixels.

The arc length will be equal to the length of the blur in pixels
on any given ring radially outward from the center of the image.
Each ring can then be treated as a linear motion blur around the
ring itself of blur length equal to the arc length. The image can
be broken down into individual rings which can then be placed
into a vector and treated as a spatially-invariant linear motion
blur and solved using conventional deconvolution methods. The
rings are pulled out of the image starting at the smallest radius
for blurring that corresponds to an arc length of greater than one.
The rings are approximated by starting at the input radius and
travelling counterclockwise around the image selecting pixels that
minimize the difference between the input radius and the pixel
radius. The pixels for one ring are then linearized into a vector
and a unique linear blur kernel is created with blur length equal to
the arc length. The vector is deconvolved using Richardson-Lucy
deconvolution [8]. The resulting vector is then remapped to a new
image for reconstruction and the algorithm restarts on the next ring.
An example of a image that was blurred with 10 degrees rotational
blur and reconstructed using this method can be seen in Figure 4.

Figure 4: From left to right: Original image, image degraded
with 10 degrees rotational motion blur, recovered image.

Closer inspection of a more detailed area of the airglow can be
seen in Figure 5. This shows that the deblurring algorithm appears
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to correctly restore the shape of specific edges in the image as well
as the general intensity of the image, both of which are important
to the application.

Figure 5: Zoomed subsection of Figure 4

5 INTERPOLATION
The main drawback that arises in this algorithm is the interpolation
of missed points. The need for interpolation is a direct result of the
ring algorithm skipping certain pixels between rings, thus never
deblurring them. Due to the nature of the ring extraction, cones of
lost pixels propagate radially from the center of the images, as seen
in Figure 6.

Figure 6: Radial interpolation cones

Specific pixel deconvolution is a method of interpolation that
involves identifying specific pixels that require interpolation and
determining their specific radius from the center of the image. This
radius is then used to extract a corresponding ring from the blurred
image which includes the specific pixel. The ring is then decon-
volved as normal and inserted into the recovered image, ensuring
the pixel that required interpolation is included. This method of
interpolation was used in the recovery of Figure 4.

5.1 Image Splicing
Splicing images to minimize interpolation has been researched to
greatly reduce the number of pixels requiring interpolation by in-
stead applying the algorithm on a copy of the blurred image rotated
45 degrees counterclockwise and then splicing the resultant image
with the recovered image. The resulting spliced image has signifi-
cantly fewer pixels to interpolate while maintaining the original
structure of the image. Results of splicing can be seen in Figure 7.

Figure 7: Results of splicing two images together to minimize
interpolation

Figure 8 shows a comparison between two different interpola-
tion methods, specific pixel deconvolution and preliminary results
from splicing. The specific pixel deconvolution showed a Structural
Similarity Index (SSIM) of 0.41 while the results from splicing were
0.476, a significant improvement. Looking at Figure 8, a zoomed
in section shows a structure that looks similar to the letter 𝐾 from
the original image and the two results, showing a slight change in
shape between the two results and a slight increase in accuracy in
the spliced image.

Figure 8: From left to right: original image, specific pixel
deconvolution (SSIM 0.41), spliced image (SSIM 0.476)

6 CONCLUSION
Through simulation, the effects of rotational blurring on redline
atomic-oxygen-airglow images was investigated and an algorithm
was developed to deconvolve the blurring experienced by VIOLET.
Several methods of interpolation and specific boundary conditions
were investigated as well. The effectiveness of the algorithm com-
bined with effective boundary conditions and interpolation was
shown to have a noticeable increase in the quality of the image and
further refinement will be done in the future.
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Future work will also attempt to incorporate translational blur-
ring into the simulations to include imaging instances where the
CubeSat is not imaging parallel to its velocity vector. The computa-
tional complexity of the algorithm will be investigated in the future
as well as a broader investigation of comparison metrics for images.
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