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Abstract

We describe in this paper how multiuser decision-
feedback equalizers (DFE) can be generalized in order
to allow a flexible temporal detection order for the re-
ceived signals. The system consists of N users and
one central base station. It is described by an equiva-
lent N -input N -output discrete-time model. Only the
reverse link is considered. The stationary channels be-
tween the users and the base station are assumed to
be known. Additive Gaussian noise distorts the sig-
nals at the input of the receiver. The receiver is based
on the noise-predictive decision-feedback equalizer for
multiuser systems. This structure is generalized by in-
dividually delaying each output of the linear forward
filter before a decision on the symbols is made.

1 Introduction

In wireless multiuser systems, several individual,
spatially separated portables communicate simultane-
ously with a base station. An important and largely
celebrated result for multiuser systems is that simulta-
neous detection of all users promises large performance
gains compared to detecting each user separately while
treating the other portables as unwanted interferers or
noise. These gains are particularly significant for sys-
tems that are exposed to large amounts of multiple
access interference (CDMA, SDMA and generalized
diversity systems [1]).

The optimum multiuser detector is well known,
however, it is too complex to implement in most prac-
tical systems. Less complex suboptimal approaches
include the decorrelating and minimum mean-squared
error (MMSE) detectors with or without decision feed-

back and multistage successive or parallel interference
cancellation (MSIC, MPIC). A crucial idea in some
feedback and interference cancellation methods is that
the users with better performance are detected first.
These decisions are then fed back in order to reduce
the interference in the signals of the weaker users.
The receiver proposed in this paper generalizes the
multivariate noise-predictive decision-feedback equal-
izer (MNP-DFE) [2] by allowing an earlier detection of
the strong users. This time-delayed decision method
proves to be efficient especially if high symbol rates
lead to frequency selective radio channels and if the
received signal-to-noise ratios (SNR) of the users dif-
fer significantly. Such an environment is extremely
challenging because future, present and past symbols
from all active portables distort a specific symbol of
the user of interest. Additionally, largely different user
powers at the receiver are not only common in practice
but also may reduce the performance of some detectors
drastically (near-far effect). Furthermore, we consider
the asynchronous case in which the signals from differ-
ent users may arrive with arbitrary individual delays.

This paper analyzes the proposed multivariate
noise-predictive delayed-decision-feedback equalizer
(MNP-DDFE). The system model is described in Sec-
tion 2. Expressions for the optimum infinite-length
MMSE structure are derived in Section 3. Their eval-
uation involves the spectral factorization of a matrix,
which is computationally very complex. In Section 4
we present an alternative method for finite-length fil-
ters that only requires the inversion of a matrix. Fi-
nally, we compare the performance of the proposed
receiver to that of the same structure without de-
lays (MNP-DFE) and the conventional linear MMSE
equalizer/combiner (E/C) in Section 5.
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Figure 1: System model (a), and equivalent model (b)

2 System Model

The system is analyzed using the D-transform
which is defined by V (D) =

∑∞
n=−∞ V [n]Dn, where

V may be an arbitrary dimensional matrix. Consider
the row vector v = [v1, v2, . . . ]. Let us define the trun-
cated sequence

vM [n] =

{
v[n] , for |n| ≤M
0 , for |n| > M .

(1)

Let u be another row vector whose truncated sequence
is defined according to Equation (1). The cross-power
spectrum Suv(D) of u[n] and v[n] is then equal to

EM [uH(D−∗)v(D)]
def
= lim

M→∞

E[uHM (D−∗)vM (D)]

2M + 1
(2)

where ’E’ is the expectation operator, the superscripts
’H’, ’∗’, ’−1’ denote the conjugate transpose, complex
conjugate and inverse, respectively. The superscript
’−∗’ shall be interpreted in the sense D−∗ = (D−1)∗.

Our model for the reverse link of a multiuser system
consists of N users transmitting the data sequences
ai (i = 1, . . . , N), a N × N channel response matrix
Sx and an N -input N -output receiver. One Gaus-
sian noise signal zi is added at each receiver input.
The complex baseband notation is used to describe
the system. All signals and system responses are in
general complex discrete-time functions.

The data sequences consist of symbols drawn from
a finite alphabet of complex numbers (ai[n] ∈ A). Let
us combine all sequences in the 1×N data vector

a = [a1, a2, . . . , aN ]. (3)

Generally, we use boldtype lowercase letters (e.g. u)
for signal vectors. Each signal vector component is
denoted by the respective letter in normal type in-
cluding a subscript that indicates the number of the

component (e.g. ui). Let the noise signal vector be
z = [z1, z2, . . . , zN ]. A model of the system is shown
in Figure 1(a).

It is assumed that the input and noise are uncor-
related signals with zero mean. The auto- and cross-
spectra of input and noise signals are then given by

Sa(D) = EM [aH(D−∗)a(D)] (4)

Sz(D) = EM [zH(D−∗)z(D)] = Sx(D) (5)

Saz(D) = EM [aH(D−∗)z(D)] = ON (6)

whereOn is the n×n zero matrix. The noise spectrum
is equal to the channel response [1, 3]. It can be shown
that this model describes a discrete-time communica-
tions system with continuous-time channel when the
front end of the receiver consists of a matrix filter that
whitens the continuous-time noise signals followed by
a matched filter matrix matched to the channel re-
sponses [1]. This structure is motivated by the follow-
ing two reasons. Firstly, the signal y at the output
of the matched filter matrix forms a set of sufficient
statistics about the input a [4, pp. 584–86]. Secondly,
the optimum linear MMSE equalizer/combiner can be
realized with this structure [1, 5].

The receiver consists of four parts. The first is a
linear N×N forward filter matrix L(D). It is followed
by the delay matrix ∆:

∆(D) = Diag〈D∆k〉, k = 1, 2, . . . , N (7)

where Diag〈ui〉 is a diagonal matrix with diagonal el-
ements ui (i = 1, 2, . . . ) and ∆k is an integer greater
than or equal to zero. ∆ delays the k-th input signal
by ∆k symbols. The third receiver part is a decision
element that maps the continuous-valued input ā[n]
into symbols from the finite alphabet AN . The de-
cisions are fed back in order to calculate the linear
estimation error which serves as input to the N × N
noise prediction filter matrix P .

According to Figure 1(a), the output of the delay
matrix α̃ and the input to the decision element ᾱ can
be written as

α̃(D) = [a(D)Sx(D) + z(D)]L(D)∆(D) (8)

ᾱ = α̃− ε̃ (9)

where ε̃ is the predicted estimation error in α̃. Let α
and α̂ denote the delayed input signal and the delayed
estimate, respectively:

α(D) = a(D)∆(D) (10)

α̂(D) = â(D)∆(D) (11)



where â is the estimate of the input signal a. For
analytical purposes we assume from now on that all
decisions are correct, i.e. α̂(D) = α(D). The input
to the prediction filter matrix P is then given by

ε = α̃−α. (12)

The output of P is the predicted error

ε̃(D) = ε(D)P (D). (13)

Note that the prediction filter P has to be purely
causal [3], i.e. P (D) = P [0]+P [1]D1 +P [2]D2 + · · · ,
and P [0] is restricted to be an upper triangular matrix
with zeros along the diagonal.

An indicator for the system performance is the error
ε = ᾱ−α of the input signal to the decision element.
Using Equations (9) and (12), it can easily be shown
that ε is equal to the prediction error:

ε = ε− ε̃. (14)

3 The Optimum Delayed-
Decision-Feedback Equalizer

It is easy to show that the systems in Figure 1(a)
and Figure 1(b) are equivalent if

ζ(D) = z(D)∆(D) (15)

Σx(D) = ∆−1(D)Sx(D)∆(D) (16)

Λ(D) = ∆−1(D)L(D)∆(D) (17)

where ∆−1(D) = ∆(D−1) is the inverse of the delay
matrix. Let us decompose the inverse of the forward
filter matrix via matrix spectral factorization:

Λ−1(D) = ΨH(D−∗)Ψ(D) (18)

where Ψ(D) = Ψ[0] + Ψ[1]D1 + Ψ[2]D2 + · · · , and
Ψ[0] is an upper triangular nonsingular matrix. Let
us further define the notation for a diagonal matrix

V d def
= Diag〈Vi,i〉, i = 1, 2, . . . (19)

where Vi,i is the i-th diagonal element of the matrix V .
Except for the delay matrix at the front, the structure
in Figure 1(b) is equal to the MNP-DFE. It is shown
in [2] that the forward and feedback filters of the op-
timum MNP-DFE (in the MMSE sense) are given by

Λ(D) = [Sα(D)Σx(D) + IN ]
−1
Sα(D) (20)

P (D) = IN −Ψ(D)
[
Ψd[0]

]−1

(21)

where IN is the N ×N identity matrix and Sα(D) =
EM [αH(D−∗)α(D)] is the spectrum of the delayed
data signal.

The optimum MNP-DDFE shown in Figure 1(a)
can now be determined. The prediction filter matrix
P is the same for both the MNP-DFE and the MNP-
DDFE. Using Equations (16), (17) and (20), it can be
verified that the optimum forward filter matrix L is
identical to the linear MMSE E/C [1, 2, 5, 3]:

L(D) = [Sa(D)Sx(D) + IN ]
−1
Sa(D). (22)

4 Finite-Length Predictor

Assume that the input signals ai of different users
are mutually independent and that samples of the
same sequence are uncorrelated with zero mean and
variance Ea:

E [ai[n]ak[m]] = Eaδ[i− k]δ[n−m] (23)

where δ[k] is the Kronecker delta sequence. In this
case, the spectrum of the input signal reduces to
Sa(D) = Ea IN .

According to Equation (22), the forward filter L
can be calculated by matrix inversion. However, in
order to obtain the optimum predictor P , the compu-
tationally intensive spectral factorization (18) has to
be performed. Alternatively, P may be approximated
with a finite impulse response (FIR) filter. The coeffi-
cients of the FIR filter can be determined by standard
techniques which minimize the squared prediction er-
ror (14). Those methods only require the inversion of
a matrix, and are, therefore, much less computation-
ally complex.

We determine now an FIR approximation of P .
Suppose the length of the FIR predictor is Lp, i.e.
P (D) = P [0] + P [1]D1 + · · ·+ P [Lp − 1]DLp−1. Let
us define the 1 × (NLp) input vector ε#[n] and the
extended predictor matrix P#:

ε#[n] = [ε[n− Lp + 1], ε[n− Lp + 2], . . . , ε[n]] (24)

P# =


P [Lp − 1]
P [Lp − 2]
...
P [0]

 =
[
pT#1,p

T
#2, . . . ,p

T
#N

]
(25)

where the superscript ’T ’ denotes the transpose and
pT#k is an (NLp) × 1 column vector. The predicted
error vector is then given by

ε̃[n] = ε#[n]P#. (26)



Since P has to be purely causal, the last (N − k + 1)
components of p#k are constrained to be zero, i.e.

p#k = [pk,oN−k+1] (27)

where pk is an 1× (NLp−N + k− 1) row vector and
om = [0, 0, . . . , 0] is the 1×m zero vector. Note that
for the k-th error ε̃k[n], the predictor uses as input
information the errors εq[n] for q < k but not those
for q ≥ k. Let us order the users according to their
mean-squared error (MSE) after the delay matrix:

e2
1 ≤ e

2
2 ≤ . . . ≤ e

2
N (28)

where e2
k = E[|εk[n]|2] is the MSE of user k.

We need for the following calculations the spectrum
and autocorrelation of the error ε:

Sε(D) = EM
[
εH(D−∗)ε(D)

]
(29)

Rε[m] = E
[
εH [n]ε[n+m]

]
. (30)

Spectrum and autocorrelation are connected through
the D-transform, i.e. Sε(D) =

∑∞
m=−∞Rε[m]Dm.

After substituting Eqns. (8), (10), (12) into (29), con-
sidering (4), (5), (6) and using (22), the error spectrum
can be expressed as

Sε(D) = Λ(D) = ∆−1(D)L(D)∆(D). (31)

The autocorrelation matrix may be determined by
evaluating the inverse D-transform on the unit cir-
cle, i.e. for D = e−j2πf̌ where f̌ is the normalized
frequency:

Rε[m] =

∫ 1

0

Λ(e−j2πf̌ )ej2πf̌m df̌ . (32)

Let us partition the vector ε#[n] from Eqn. (24)
into the following components:

ε#[n] = [ε#k[n], εk[n], εk+1[n], . . . , εN [n]] (33)

where ε#k[n] is a row vector and εk[n] is the k-th
component of ε[n]. Furthermore, we define

R# = E
[
εH# [n]ε#[n]

]
(34)

R#k = E
[
εH#k[n]ε#k[n]

]
(35)

%#k = E [ε∗k[n]ε#k[n]] . (36)

Combining Equations (24), (30) and (34) we obtain

R# =


Rε[0] Rε[1] . . . Rε[Lp − 1]
Rε[−1] Rε[0] . . . Rε[Lp − 2]
...

...
. . .

...
Rε[1− Lp] Rε[2− Lp] . . . Rε[0]

 .
(37)

According to Eqn. (33) we may write the vector ε#k[n]
recursively as ε#(k+1)[n] = [ε#k[n], εk[n]]. Thus, the
matrices in (34) and (35) can be written as

R# =

[
R#N %H#N
%#N e2

N

]
(38)

R#(k+1) =

[
R#k %H#k
%#k e2

k

]
. (39)

Substituting Equations (25), (27) and (33) into (26),
the k-th component of the predicted error may be ex-
pressed as

ε̃k[n] = ε#k[n]pTk . (40)

We obtain the optimum predictor by applying the
orthogonality principle:

E
[
εH#k[n] (ε̃k[n]− εk[n])

]
= oTNLp−N+k−1. (41)

Substituting (40) into (41), using the Definitions (35),
(36), and solving for pTk yields

pTk = R−1
#k%

H
#k. (42)

Note that only one matrix inversion is required for
the calculation of the predictor matrix P#. To see
that, let us decompose R−1

#(k+1) into

R−1
#(k+1) =

[
Γk γHk
γk gk

]
(43)

where Γk is a square matrix whose dimension is one
less than that of R−1

#(k+1), γk is a row vector and gk is
a scalar. Since R#k is a submatrix of R#(k+1) accord-

ing to Eqn. (39), the matrix R−1
#k can be computed

efficiently with [6, pp. 445–46]

R−1
#k = Γk − g

−1
k γHk γk. (44)

Thus, only R#N needs to be inverted. The remaining
matrices R#q (q = 1, 2, . . . , N − 1) may be obtained
recursively using Equation (44).

Let us define the normalized MSE after the delay
matrix σlin,k = 1/EaE

[
|α̃k[n]− αk[n]|2

]
and the nor-

malized MMSE of the MNP-DDFE before the decision
element σddfe,k = 1/EaE

[
|ᾱk[n]− αk[n]|2

]
. Alterna-

tively, these quantities may be expressed in terms of
the error signals:

σlin,k = E−1
a E

[
|εk[n]|2

]
(45)

σddfe,k = E−1
a E

[
|εk[n]|2

]
. (46)

Since σlin,k is the MMSE of the linear MMSE E/C, we
obtain [1, 3]

σlin,k =
1

Ea

∫ 1

0

Lk,k(e−j2πf̌ ) df̌ (47)



where Lk,k(D) is the k-th diagonal element of the
matrix L(D) from Eqn. (22). Expanding Eqn. (46)
and using (14), (35), (36), (40), (42), the normalized
MMSE of the MNP-DDFE can be written as

σddfe,k = σlin,k − E
−1
a %#kR

−1
#k%

H
#k. (48)

As a result of the typical indoor channel behavior
and the receiver front end including a matched filter
matrix, the main cochannel interference of a partic-
ular symbol comes from those symbols of the other
data streams which are sent at the same time or im-
mediately before and after it. Assume for example
individual delays of ∆1 = 0 and ∆k = ∆k−1 + δ0
(k = 2, 3, . . . , N), where δ0 is an integer greater than
zero. In this case, the signal of the N -th user is de-
layed by δ0(N − 1) symbols relative to that of user 1.
Since the significant interference stems mainly from
symbols sent at about the same time, the predictor
length Lp should be on the order of δ0(N−1) symbols.
This may result in matrices R#k with large dimen-
sions and a high computationally load to invert them,
especially if there are many users in the system. One
solution to this problem is to insert for every user a dif-
ferent delay matrix ∆P,k = Diag〈Dmax{δ0(k−i−1),0}〉
(i = 1, . . . , N) in front of the predictor pk. This en-
sures that all error signals εq for q < k are delayed
by only δ0 symbols relative to εk when they enter the
predictor. Lp may then be chosen to a value on the
order of δ0, which can reduce the dimension of R#N

significantly.
The receiver complexity might be additionally re-

duced by feeding into the predictor only the error sig-
nals εq with q ≤ k. This reduces the performance in
many cases only slightly because the contribution of
the εv with v > k to ε̃k is usually small, especially if
the delays in ∆ are large.

These reduced complexity versions of the MNP-
DDFE are not analyzed in this paper because they
require a somewhat lengthy notation. However, the
analysis of these structures is straightforward if the
methods in this section are applied analogously.

5 Numerical Results

We compare in this section the performance of the
MNP-DDFE, the MNP-DFE and the linear E/C. The
channel matrix Sx has been calculated based on the
general multiuser system in [1] by following the proce-
dure described therein. For the individual channels,
we have used the same indoor channel impulse re-
sponse (CIR) measurements as in [1].

The results have been obtained for a system with a
symbol period of T = 50 ns, A = 4 receive antennas at
the base station and a double-sided system bandwidth
of K = 4 times the Nyquist bandwidth 1/T . There-
fore, the total degree of diversity is AK = 16, allowing
no more than 16 users in the system if a zero-forcing
equalizer/combiner is used [7]. For our computations,
the number of system users has been varied between 1
and 30. The reverse link of the system has been sim-
ulated by randomly selecting 30 out of 2044 CIR sets
and assigning each to one of the 30 users. The users
have been divided into several groups of N portables
for which the theoretical MMSE’s (47) and (48) have
been calculated. This procedure has been repeated
100 times for each value of N with different CIR sets.

The linear MMSE E/C consists of the forward ma-
trix filter L, Eqn. (22), only. The MNP-DFE is a spe-
cial case of the structure described in Section 3 with
no delay matrix, or, equivalently, with ∆(D) = IN .
The numerical results have been obtained for the re-
duced complexity version of the MNP-DDFE with ad-
ditional delay matrices in front of the predictor and no
feedback of error signals with a larger σlin,k. The indi-
vidual delays of the MNP-DDFE have been chosen to
∆1 = 0 and ∆k = ∆k−1 + 3 for k = 2, 3, . . . , N . The
length of the feedback filters has been set to Lp = 7
for both the MNP-DFE and the MNP-DDFE.

Figure 2 shows the normalized MMSE for the best
and worst of the 30 users, averaged over all 100 trials.
The received SNR of the individual users varies by up
to ±5 dB around a mean of 20 dB. This situation de-
scribes thus a system with no or less stringent power
control. The graph shows that the DFE structures
perform significantly better than the linear MMSE
E/C in both the worst and best user case. While the
MNP-DDFE yields the lowest average MMSE for the
worst system user, the MNP-DFE performs superior
if the best user is chosen as the criterion. Note that
the worst user curve of the MNP-DDFE stays almost
constant at approximately −15 dB until it approaches
the best user curve of the linear MMSE E/C. For large
N , these two curves are very close. While strongly im-
proving on the performance of initially bad users, the
MNP-DDFE reduces the MMSE of good users only
marginally. For N ≥ 16 the most users which per-
form worse after L benefit from the predictor such
that their final MMSE σddfe,k is smaller than that of
the initially best user 1. The MMSE difference be-
tween the best and worst user is approximately 10 dB
in the single user case. This difference remains almost
constant for the linear MMSE E/C when the num-
ber of users increases. The MMSE gap between the
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Figure 2: MMSE for linear E/C, MNP-DFE and
MNP-DDFE (SNR’s per user varying by up to 10 dB)

best and worst user widens slightly for the MNP-DFE.
The MNP-DDFE, however, reduces this difference to
about 4 dB at N = 16. This shows again that bad
users benefit more from the feedback error reduction
than good users. In contrast, since there are no de-
lays in the MNP-DFE structure, all users improve on
average equally.

Figure 3 shows results for the case that the indi-
vidual SNR’s of the users vary by at most ±0.5 dB
around a mean of 20 dB. Except for this, all system
parameters and CIR sets have been the same as be-
fore. Again, we can see that the DFE receivers per-
forms better than the linear E/C. While the relative
improvement of the MNP-DFE compared to the linear
equalizer in the worst user case is almost identical to
that shown in Figure 2, the MNP-DDFE’s worst user
does not nearly perform as well as before. It has only
a marginally lower MMSE than the MNP-DFE for a
small number of users. For large N , its performance is
even worse. The best user curves for the MNP-DDFE
and MNP-DFE are almost identical. This suggests
that there is no benefit from introducing large individ-
ual delays after the forward filter matrix L if all users
are received with approximately the same power.
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