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ABSTRACT

An algorithm capable of finding the input and output states of polarization for maximum pulse narrowing at the output of an
optical  fiber with polarization mode dispersion (PMD) is analytically presented  and numerically solved.  It is always possible
to obtain output pulses which are narrower than the input pulses when PMD is compensated by controlling  both the input
polarization as well as the receiver polarization states.  This anomalous effect was shown to be exclusively due to PMD as no
chromatic dispersion or polarization dependent losses were assumed.  We report the detailed study for the cases in which the fiber
consists of two,  three and five hundred segments of highly-birefringent (Hi-Bi) fiber. The solution shows the existence of two
orthogonal input and output states of polarization (different from those introduced by Poole et. al.) under which the integrity of
the pulse is preserved and the pulsewidth at the output is the narrowest possible. The cost to be paid for this improvement is a
reduction of the optical power in the output pulse.
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1. INTRODUCTION
Polarization mode dispersion (PMD) may introduce unacceptable levels of signal degradation in high speed (10 Gbps)

optical communication systems.  The signal degradation takes the form of pulse broadening due to the differential transmission
time of two pulses polarized along orthogonal states of polarization (SOP).  This kind of PMD is commonly known as first order
PMD1.  A series of PMD compensation methods2-6 have been proposed in order to overcome the problem.  Under first order
PMD, a pulse at the input of a fiber can be decomposed into two pulses with orthogonal SOP.  Both pulses will arrive at the
output of the fiber undistorted and polarized along different SOP, the output SOP being orthogonal.  The differential transmission
time between those pulses is referred to as Differential Group Delay, DGD, and the input (output) SOP which allow the
transmission (reception) of undistorted pulses are known as the Principal input (output) States of Polarization (PSPs)1.  Both,
the PSPs and the DGD are assumed to be frequency independent when only first order PMD is being considered.

Second order PMD effects account for the frequency dependence of the DGD and the PSPs.  The frequency dependence
of the DGD introduces an effective chromatic dispersion of opposite sign on the signals polarized along the output PSPs.  It is
possible to obtain output pulses which are narrower than the input pulses when the DGD depends on frequency and when the
transmitted pulse is chirped7.  Until recently,8 this was the only way of obtaining a beneficial pulse narrowing effect in optical
fibers suffering from PMD. 

One simple method of doing first order PMD compensation consists of either transmitting the signal on one of the input
PSPs9 or receiving the signal on one of the output PSPs2,8,9.  The underlying idea being the introduction of a change in the
frequency response of the fiber in a way such that only one pulse propagates through the fiber (PSP transmission) or is detected
at the receiver (PSP reception).  The dependence of the frequency response of the fiber on the input and output SOP has led to
the conclusion that it is possible to obtain output pulses which are narrower than the input pulses (without the introduction of
a chirp in the transmitted pulse) by properly adjusting the input and output SOP8.

Here, we leverage the use of that dependence in order to minimize the rms-pulsewidth of a signal at the fiber output.
In section two, we outline the mathematical analysis required in that direction.  In section  three an algorithm capable of searching



for the input and output SOP in which the smallest rms-pulsewidth can be generated is described.  In section four, through
computer simulation we present the existence of two mutually orthogonal input and output SOP, under which the absolute
minimum rms-pulsewidth can be obtained.  Section five gives a brief summary and conclusions.

2. PULSEWIDTH ANALYSIS
A time varying electric field at the input of an optical fiber can be represented10 in the frequency domain as

             (1)

where ω is the optical frequency and we have neglected the initial phase; ϕϕ is a 2 by 1 Jones vector representing the input state
of polarization.  Ein(ω) is the Fourier transform of Ein(t) given by

.                          (2)

If we treat an optical fiber with PMD as a linear medium without polarization dependent losses, we can represent it by
a 2 by 2 complex matrix given by1

                         (3)

where β(ω) accounts for the chromatic dispersion and U(ω ) is a unitary matrix.  The complex lowpass16 transfer matrix can
simply be obtained as 

                        (4)

where ωo is the optical carrier frequency.  Thus, the signal at the fiber output is obtained by multiplying equations 1 and 4,

       .                         (5)

In general, different  frequency components of Eout will have different polarization states at the output of the fiber.  By
using a Polarization Analyzer (PA) it is possible to project all the frequency components of Eout onto a particular state of
polarization.  This is referred to as receiving the signal on a particular state of polarization.  Therefore, the result of receiving
Eout on a state of polarization χχ will be

                        (6)

where the  output state of polarization, χχ is another 2 by 1 Jones vector and “+” represents the transpose complex conjugate
(Hermitian) of a matrix or a vector. 

We define the rms-pulsewidth10 of Eχ(ω),  σχ as

                        (7)

where the n-th moment of t in the time domain is given by11

                        (8)
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where Eχ(t) is the inverse Fourier transform of Eχ(ω) defined as

                        (9)

and the superscript * denotes complex conjugate.

By using Fourier transform and Parseval’s theorem it is easy to prove that the first two moments of t can be expressed
in the frequency10 domain as

                    (10.1)

and                    

.                     (10.2)

Substituting eqs. 6 and 10 into eq. 7 we obtain a final expression for σχ
2 as a function of  ϕ ϕ and χχ,

           .                       (11)

Instead of trying to find the values of  ϕϕ and χχ which minimize eq. 11, we will break up the minimization problem into
two separate minimization sub-problems.  This is done for the sake of simplifying the calculations.  First, we assume that the input
state of polarization, ϕϕ, is fixed and search for the optimum output state of polarization, χχopt, which minimizes the rms-pulsewidth
for a given output state of polarization, σχ

2(χχ).  Then, the problem is reversed and we search for the optimum input state of
polarization, ϕϕopt, which minimizes the rms-pulsewidth for a given input state of polarization,  σχ

2(ϕϕ), while assuming χχ is fixed.
In both cases, the constraint imposed on the minimization process is that the 2 by 1 complex vector representing the input or
output state of polarization corresponds to a Jones vector, i.e., ϕϕ++ϕϕ = 1 and χχ++χχ = 1 respectively. 

After simplifying the notation and by using  Lagrange multipliers to enforce the minimization constraint, we get12

                    (12.1)

            .                     (12.2)
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†The choice of solving eq. 14.1 first as opposed to eq. 14.2 is somewhat arbitrary. The final result for ϕϕopt and χχopt

should not be affected by solving eq. 14.2 first. 

The terms within brackets in eq. 12 represent a 2 by 2 complex matrix.  Equation 12.1 represents the case in which ϕϕ
is fixed and χχ is varied, whilst eq. 12.2 represents the opposite case.  In eq. 12, η  and λ are the Lagrange multipliers.  The newly
introduced terms are defined as12

            .                                      (13)

3. SEARCHING ALGORITHM
In order to find the optimum values of  ϕϕ and χχ we need to solve eq. 12.1 and 12.2 jointly.  Equation 12 consists of a

set of eigenvalue equations and can be rewritten as

                    (14.1)

                   (14.2)

where M1 and M2 are complex 2 by 2 matrices which correspond to the terms within the brackets in equations 12.1 and 12.2
respectively.  At the beginning of the search, an arbitrary set of input and output SOP, ϕϕοο  and χχοο, is chosen.  The initial set of
SOP is used to solve† eq. 14.1.  The solution of equation 14.1gives two new output SOP, χχ1 and χχ2.  The objective function that
we are trying to minimize, σχ

2, is then calculated for the two new output SOP along with ϕϕοο, σχ
2(ϕϕοο,χχ1) and σχ

2(ϕϕοο,,χχ2).  The output
state of polarization rendering the smallest value of σχ

2 will become the new initial output state of polarization, χχοο.  Next, eq. 14.2
is solved by using ϕϕοο  and χχοο.  Two new input SOP, ϕϕ11 and ϕϕ22 will be obtained.  The objective function is calculated for
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2(ϕϕ22,,χχοο).  The input state of polarization yielding the smallest value of σχ

2, becomes the new initial value of ϕϕ,

ϕϕοο..  At this point one full iteration has finished and the process is repeated, i.e., we repeatedly solve eq. 14.1 followed by eq. 14.2.
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The searching  process will stop when the input and output SOP obtained in the current iteration are almost the same
as those obtained in the previous iteration.  The input and output SOP obtained during the last iteration are assumed to be ϕϕopt

and χχopt respectively.  Thus, the rms-pulsewidth of the output pulse, σχ, will be the smallest for a given TL(ω) when the pulse is
transmitted on a state of polarization ϕϕopt at the input of the fiber and received on a state of polarization χχopt at the output of the
fiber.

4. COMPUTER SIMULATION
In this section we use the searching algorithm introduced in section three to minimize the rms-pulsewidth of a Gaussian

pulse transmitted through an optical fiber with PMD.  It is noteworthy to mention that the mathematical analysis presented in
section two did not make simplifying assumptions about the shape of the input signal or the orders of PMD involved.  The input
normalized electric field in the frequency domain is given by12

                      (15)

where we choose,  σ in = 25 picoseconds, ps, as the rms-pulsewidth of the input pulse.  As we want to focus on the impact of the
input and output SOP on the pulsewidth of a signal at the output of an optical fiber with PMD only, we neglect the influence of
chromatic dispersion, β(ω), in eq. 4.  In all the simulations performed, the optical carrier frequency used was ωo = 1216.1 rad/ps,
which corresponds to a carrier wavelength of 1.55 µm.  

We begin by considering a fiber made up of three sections of  Hi-Bi fiber with different fusion angles between them
and each one introducing a DGD of  τ0 = τ1 = τ2 = 15ps, as shown in Figure 1.

where θ2 is measured with respect to θ1. The effective pulsewidth is defined as the difference between the output and input rms-
pulsewidths,

                      (16)

and the power of the output signal polarized along χχ is given by

 .                        (17)

Initially the third segment was rotated 45o while the other two remained fixed (θ1 = 0o and θ2 = 45o), the search algorithm
was then used to find ϕϕopt and χχopt.  A minimum value of  σχ = 19.147 ps was obtained, which accounts for a net reduction of
5.853 ps with respect to σin.  Figure 2 shows the normalized input and output pulses.  The narrowing in the pulsewidth of the
output signal is achieved at the expense of a sensible decrease in its power.

Figures 3 and 4 show the final values for ϕϕopt and χχopt on the surface of the Poincaré sphere after starting the search from
several different input and output SOP.

Figure 1  Three Segment System.
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In figures 3 and 4 we can appreciate the existence of two different values of  ϕϕϕϕopt and χχχχopt respectively.  These values
lie on diametrically opposite sides of the Poincaré sphere and are therefore orthogonal.
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The change introduced in TL(ω) by varying   θ2 tends to be compensated by adequately adjusting   ϕϕϕϕ and χχχχ so that similar
value of  σχ is obtained.  Figures 6 and 7 also show the existence of two mutually orthogonal values of  ϕϕϕϕopt and χχχχopt for each
increment of θ2.  Although there seems to be some influence of the fusion angle on the power of the output signal, Pχ , it remains

at a very low level, ≤ 3%.

Next, θ1 and θ2 were rotated by 45o and the minimum σχ calculated.  Figure 8 shows the normalized input and output
pulses.  As in the previous case, the narrowed output pulse carries only a small fraction of the power in the input pulse.

Finally, we simulated14 an optical fiber made up of 500 sections of Hi-Bi fiber, each with different, uniformly distributed,
values of DGD and fusion angles. 

10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

P
χ

θ
2
 (degrees)

10 20 30 40 50 60 70 80
-6.1

-6.05

-6

-5.95

-5.9

-5.85

-5.8

σ
ef f

θ
2
 (degrees)

p
s

Figure 5  Dependence of σeff   and Pχ  on the fusion angle θ2.

Figure 7 Optimum output state of polarization evolution with
the fusion angle.

Figure 6 Optimum input state of polarization evolution
with the fusion angle.



Figure 9 shows the narrowed pulse obtained for such a fiber when its  mean15  DGD equals  35 ps.  In this case it was
possible to obtain a sharp reduction of the pulsewidth, of 9.018 ps, at the expense of high power loss.

For the comparison, Figure 10 shows the input pulse, the narrowed output pulse obtained through our algorithm and
the pulse that is obtained when transmitting and receiving the signal in one of the input and output PSPs1 at the carrier frequency.
The fiber simulated had a high mean DGD of  90 ps and consisted of 500 segments of Hi-Bi fiber.
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In this case the rms-pulsewidth of the signal obtained by using the PSPs was 30.377 ps, which means a pulse broadening
of 5.37 ps, whilst the pulse obtained through the optimization of the launching, ϕϕϕϕ , and reception, χχχχ,  SOP (by using our searching
algorithm) did not experience any broadening, and was able to achieve a modest pulse narrowing of 0.497 ps.  The power level
of our narrowed pulse, 31.09%,  was however significatively smaller than the power level of the broadened pulse transmitted
and received on the PSPs, 90.88%.

5. SUMMARY AND CONCLUSIONS
In this paper we have presented the mathematical analysis required to minimize the rms-pulsewidth of a signal

transmitted through an optical fiber with PMD by varying the input and output SOP.  The analysis is quite general,  is valid for
any orders of PMD and does not make any assumptions about the shape of the transmitted signal.  We have also described a
searching algorithm capable of finding  the optimum input and output SOP which  minimize the rms-pulsewidth of the output
signal for any given fiber.  Through computer simulation we established the existence of two mutually orthogonal input and
output SOP under which the rms-pulsewidth is minimized.  In all our simulations the beneficial pulse narrowing effect was
achieved at the expense of a sensitive reduction in the optical power of the received signal.  We finally presented an example in
which the use of input and output SOP different from the input and output PSPs1 can produce a better signal at the receiving end
when proper amplification is available. 
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