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Abstract

A novel, computationally efficient and very accurate
method for the calculation of error probabilities in systems
with interference and Gaussian noise is presented. The
main idea is to approximate the natural logarithm of the
Q-function by a truncated version of its Taylor series. As
a result, Q(x) can be expressed as a finite product of expo-
nential functions. This enables us to find true and approxi-
mate upper bounds for the probability of error by evaluating
exponential moments of the interference provided that the
individual interference components are mutually indepen-
dent. The described method is very accurate. In numerous
examples, the relative errors between the true probability of
error and the approximations did not exceed 1% for systems
with an “open eye” and 100% when the eye was closed.
Additionally, the method is very effective and easy to use,
outperforming most published methods in both the number
of computations required and simplicity.

1. Introduction

It is important in the analysis and design of digital com-
munication systems to determine the system performance.
The most intuitive and important performance criterion is
the probability of error. A nonzero error probability is, due
to system imperfections, caused by a noise component in
the receiver output signal. The probability distribution of
the noise signal is not Gaussian for most receivers, includ-
ing the MMSE equalizer. Even for zero-forcing equalizers
with an ideally normal distributed noise component, system
imperfections such as erroneous channel estimation, finite-
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length filters or a non-ideal sampling time may cause an
interference component in the output signal, which is not
Gaussian. In addition, a Gaussian approximation for the
interference has been shown in many cases to lead to signif-
icantly inaccurate results for the error probability. Thus, it
is desirable to describe the statistical properties of the inter-
ference accurately.

The most straightforward approach to calculate the error
probability is the truncated pulse train approximation [1].
While small interference pulses are neglected, all possi-
ble combinations of the dominant interference samples are
evaluated in order to calculate the probability density of the
interference. This method is, however, not efficient as the
required amount of operations grows exponentially with the
number of interference samples considered.

Bounding the error probability is more efficient. The
worst case bound [1] always assumes the largest possible
amount of interference. Although leading to a very sim-
ple expression, this bound is in most cases rather loose.
The Chernoff bounds by Saltzberg [2] and Lugannani [3]
are easy to compute and yield much better results, but they
are still very often loose by more than one order of mag-
nitude. Other bounds like the worst possible distribution
bounds [4] and the moment space bounds [5] give better but
still not very accurate results. Very tight are the multidimen-
sional moment bounds [6]. Their computation is, however,
extremely complicated [7].

Approximating the error probability is another approach.
Series expansions [8, 9] yield very good results, but in
some cases, the terms in the expansion tend to oscillate.
By numerical calculation of an inverse Laplace integral [7],
the error probability can be calculated as accurately as de-
sired. Other work which is based on a Fourier series expan-
sion [10] yields almost the same accuracies with a compara-
ble computational effort. A very efficient method leading to
an accurate approximation has been developed by Yue [11].

A class of error probability bounds based on an approxi-
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mation of the Gaussian probability distribution is presented
in this paper. Given is a real signal consisting of a signal
component, interference and noise. The objective is to find
the probability that the signal exceeds the optimal decision
threshold. Three crucial assumptions are made: Firstly, the
noise is a random variable with Gaussian (normal) prob-
ability distribution and zero mean; secondly, the noise is
uncorrelated with both signal component and interference;
and finally, the data symbols of the signal and interference
are mutually independent and zero mean.

Section 2 introduces the problem and the basic approach.
In Section 3, the Taylor series of lnQ(x) is truncated after
the linear term. This results in a true upper bound on the
error probability and corresponds to a method briefly out-
lined by McGee [12]. The general first-order approxima-
tion requires full knowledge of the interference weights h i

and leads to a tight upper bound. In certain situations, only
the energy of the total interference may be known, while the
values of the hi are not available. For this case, a simpler
albeit looser upper bound is described in Section 3.1.

A very good approximation to the error probability is
obtained by taking the quadratic term of the Taylor series
expansion into account (Section 4). This second-order ap-
proximation is almost exclusively larger than the true er-
ror probability and will be referred to as “approximate up-
per bound”. Numerical results for our approximations are
shown in Section 5 and Section 6 provides a brief conclu-
sion.

Define for later use: Z � {0,±1,±2, . . .} the set of all
integer numbers; N � {1, 2, 3, . . .} the set of all positive
integers; IM � {1, 2, 3, . . . ,M} the set of integer numbers
between 1 and M ; R the set of real numbers.

2. Problem Formulation and Approach

Any sample of the baseband signal provided to the deci-
sion element of a communications receiver can typically be
expressed in the form

α̃0 =
∞∑

i=−∞
αihi + ζ0 (1)

where α0h0 is the signal component, the terms αihi ∀i �=
0 (i ∈ Z) are interference and ζ0 is zero mean Gaussian
distributed noise with variance Eζ . The transmitted data
symbols αi are assumed to be produced by pulse ampli-
tude modulation (PAM) with an even number of Li levels.
Without loss of generality, we choose the random variables
αi from the finite set of odd integer numbers

Ai � {±1,±3, . . . ,±(Li − 1)}. (2)

Furthermore, it is assumed that the αi take on these values
with equal probability, that the data symbols are mutually

independent and that they are uncorrelated with the Gaus-
sian noise.

This model applies to a single user system which trans-
mits data symbols αi at a period of T seconds through a
system with overall impulse response h(t). Normally, the
number of modulation levels is the same for all symbols, i.e.
for this case we get Li = L, ∀i ∈ Z. At the detector, the
received signal is sampled at the time instants t = t0 + nT
(n ∈ Z). Under the assumption of a stationary channel, the
error probability may be calculated from any signal sam-
ple. For simplicity, we consider the time n = 0 and define
hi � h(t0 − iT ), which results in the above model (1).

In addition, Equation (1) describes more complicated
systems. For example, the output signal of a multiple-
input multiple-output linear equalizer employed in a mul-
tiuser system may also be expressed in form (1). For that,
it is assumed that the symbol rates of all users are identical
and that the modulation scheme of the m-th user is quadra-
ture amplitude modulation (QAM) consisting of two inde-
pendent, in phase quadrature modulated PAM signals with
Lm,1 and Lm,2 levels, respectively.

Let us, for reasons explained later, normalize the inter-
ference samples hi (i ∈ Z \ 0) by the standard deviation√
Eζ of the Gaussian noise component ζ0 and map them bi-

jectively into a new sequence fk (k ∈ N) such that the mag-
nitudes of fk are nonincreasing. The corresponding data
symbols αi are mapped into the sequence dk, so that

{hi|i ∈ Z \ 0} �→
{
fk =

hi√
Eζ

∣∣∣∣∣ f2
k ≥ f2

k+1, ∀k ∈ N

}
(3)

{αi|i ∈ Z \ 0} �→ {dk = αi|k ∈ N} (4)

f0 =
h0√
Eζ

(5)

d0 = α0. (6)

The normalized decision variable is then

α̃0√
Eζ

= d0f0 + z + ζ̄0 (7)

where ζ̄0 � ζ0/
√

Eζ is the normalized Gaussian noise ran-
dom variable with zero mean and unit variance and the in-
terference random variable is defined as

z �
∞∑

k=1

dkfk =
1√
Eζ

∞∑
i=−∞

i �=0

αihi. (8)

The individual data symbols dk are zero mean, mutually
independent random variables with variance

Ed,k =
1
Lk

Lk∑
i=1

(2i− Lk − 1)2 =
1
3
(L2

k − 1). (9)
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Note that the data symbols originate in a multiuser system
from several transmitters, which may employ QAM/PAM
schemes with a different number of levels. Thus, the Lk

may not be the same for different k.
If α̃0/

√
Eζ is the input to the decision device, the opti-

mal slicing levels are even multiples of the zeroth channel
sample [13]: {0,±2f0,±4f0,±(Lk − 2)f0}. The prob-
ability of exceeding the decision threshold in the positive
direction is then given by

Pex = Prob

{
α̃0√
Eζ

> (d0 + 1)f0

}

= Prob
{
ζ̄0 > f0 − z

}
=

∫ ∞

−∞
Q(f0 − z) pz(z) dz (10)

where Q(x) � 1/
√
2π

∫ ∞
x

exp(−u2/2) du is the comple-
mentary cumulative distribution function of the Gaussian
noise ζ̄0 and pz(x) is the probability density function of
the interference z. Due to the symmetry of both Gaussian
noise and interference, the probability of error is very well
approximated by 2Pex. Denoting the expectation operator
by ‘E’, Equation (10) can equivalently be expressed in the
form [14]

Pex = E [Q (f0 − z)] . (11)

The problem is that Equation (11) cannot be solved in this
form. In general, it is not possible or extremely difficult to
determine the expectation taken over a nonlinear function
of the interference random variable. There are, however,
some special nonlinear functions for which this is feasible
or for which a closed form expression exists. For example,
it is possible to determine the the moments E[zn] (n ∈ N)
with moderate computational effort. An even simpler so-
lution can be obtained for the exponential moment E[ez].
The problem might therefore be solved by replacing the Q-
function in Equation (11) with another nonlinear function
for which the expectation can be determined. The method
described here approximates the Q-function by a product of
exponentials in z.

It follows from Equation (10) that Q(f0 − z) has to
be approximated accurately only in the interval in which
pz(z) is supported, i.e. only for −D ≤ z ≤ D, where
D �

∑∞
k=1(Lk − 1)|fk| denotes the peak distortion of the

interference. One may, for example, approximateQ(f0−z)
reasonably well within the whole interval |z| ≤ D (Cheby-
shev polynomial, Fourier series). Another possibility is to
use a locally optimal approximation around a point z0 such
that the approximation error vanishes for z = z0 and grows
with increasing distance from z (Taylor series). Note in this
context that pz(z) is even symmetrical around z = 0 and de-
creases, on average, strongly with increasing distance from

the origin. On the other hand, Q(f0 − z) increases strongly
between z = 0 and z � f0. Assume that the eye is open
(D < f0) and that the productQ(f0−z) pz(z) is maximal at
or close to z = z0. It can then be shown that, with growing
distance from z = z0 into either direction, the decreasing
function will dominate over the increasing one such that the
product Q(f0 − z) pz(z) vanishes eventually. This behav-
ior suggests to perform a locally optimal approximation of
Q(f0−z) around z0 since these values contribute by far the
most towards the integral (10). Conversely, less accuracy is
necessary with growing distance from z0, where the product
Q(f0−z) pz(z) becomes increasingly negligible. Thus, we
will consider a locally optimal approximation of Q(f 0 − z)
using a Taylor series approach.

Exponential Product Form of Q(x). The natural loga-
rithm of the Q-function may be expanded into a Taylor se-
ries: lnQ(x) =

∑∞
n=0 cn (x− x0)n where x0 ∈ R is arbi-

trary. Taking the exponent of the Taylor series yields

Q(x) = Q(x0)
∞∏

n=1

ecn(x−x0)
n

. (12)

The coefficients cn are given by

cn =
1
n!

dn

dxn
lnQ(x)

∣∣∣∣
x=x0

(13)

where ‘n!’ is the factorial of n. The product form of Q(x)
serves as the starting point for the first- and second-order
approximations treated in Sections 3 and 4.

Exponential Moment of the Interference. The exponen-
tial moment E[eΛz] of the interference random variable
needs to be determined for later use. The parameter Λ is
in general a complex number, which can be expressed in
terms of its real and imaginary components: Λ = λ + jµ.
Substituting Definition (8) into the exponential moment and
using the fact that the symbols dk are mutually independent
random variables for all k ∈ N, we get [15]

E
[
eΛz

]
=

∞∏
k=1

E
[
eΛdkfk

]
. (14)

The symbols dk assume each element in the set (2) with
equal probability. After some calculations, the individual
exponential moments can be expressed by a ratio of hyper-
bolic sines:

E
[
eΛdkfk

]
=

1
Lk

sinh (LkΛfk)
sinh (Λfk)

. (15)

Alternatively, the individual exponential moments can
be bounded from above. Saltzberg [2] has found an upper
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bound on the sum of hyperbolic cosines:

2
Lk

Lk/2∑
i=1

cosh[(2i− 1)λfk] < exp
(
1
2
Ed,kλ

2f2
k

)
(16)

where λ ∈ R and Ed,k is the variance of dk (Equation (9)).
Using Saltzberg’s approximation, an upper bound for the
individual exponential moment is given by

E
[
eΛdkfk

]
< exp

(
1
2
Ed,kλ

2f2
k

)
(17)

where λ is the real part of Λ.

3. First-Order Approximation

For the remainder of this section, only the term n = 1
in the product of Equation (12) is kept while all other terms
are neglected. It can be shown, [12], that this first-order
approximation is a strict upper bound for the Q-function:

Q(x) ≤ Q(x0) ec1(x−x0). (18)

Setting x = f0 − z, x0 = f0 − z0, c1 = −λ and sub-
stituting the above expression into Equation (11) yields the
probability

Pex < Q(f0 − z0) e−λz0 E
[
eλz

]
(19)

where λ = −c1 is obtained from Equation (13):

λ = −Q′(f0 − z0)
Q(f0 − z0)

. (20)

Q′(x) is the first derivative of Q(x) and z0 is a parameter
that can be chosen arbitrarily. It will be determined later
such that the tightest bound is obtained.

Equation (19) contains the exponential moment of the in-
terference. As shown in Equation (14), it can be expressed
as a product of the individual exponential moments. An
exact expression for the individual moments has been de-
rived in Equation (15). Generally, this relationship may be
used for all interference components. In some cases, how-
ever, the number of interference components is large, and
the computational effort required when considering all of
them may be rather high. In order to reduce the computa-
tional load, the contribution from small interference sam-
ples may be upper bounded. A good choice is Saltzberg’s
approximation (17), which is rather loose if the exponent
λdkfk is large. However, the smaller the magnitude of the
exponent, the tighter the bound. For the task of bounding
small components fk , it turns out to be an excellent approx-
imation. Therefore, the set of interference samples will be
divided into two groups: One with relatively large magni-
tudes and the other with small ones.

The reason for reorganizing the interference sequence in
nonincreasing order (Transformation (3)) becomes now ob-
vious. Consider that there are M large interference terms
fk (k ∈ IM ). For these terms, the exact expression for the
individual exponential moment (15) will be used. The re-
maining interference contributions are assumed to be suf-
ficiently small such that their individual exponential mo-
ments are very well approximated by the bound in Equa-
tion (17). Following Equation (14), the exponential moment
of the interference may be upper bounded by

E
[
eλz

]
< exp

(
1
2
Ez,Mλ2

) M∏
k=1

sinh (Lkλfk)
Lk sinh (λfk)

(21)

where Ez,M is the combined energy of the small interfer-
ence components:

Ez,M �
∞∑

k=M+1

Ed,kf
2
k . (22)

SubstitutingEquation (21) into (19) results in the general
first-order upper bound F1(z0) > Pex, where

F1(z0) � Q(f0 − z0) exp
(
1
2
Ez,Mλ2 − λz0

)
×

M∏
k=1

sinh (Lkλfk)
Lk sinh (λfk)

. (23)

Note that this bound is valid for all values z 0 ∈ R.

Tightest Upper Bound With some effort, it can be shown
that the first derivative of F1(z0) is

dF1(z0)
dz0

= F1(z0)
dλ

dz0
g(z0) (24)

where g(z0) is defined as

g(z0) � Ez,Mλ− z0

+
M∑

k=1

fk [Lk coth(Lkλfk)− coth(λfk)]. (25)

Lemma 3.1 (a) F1(z0) > 0, ∀z0 ∈ R;
(b) λ > 0, ∀z0 ∈ R;
(c) dλ/dz0 < 0, ∀z0 ∈ R;
(d) g(z0 + δz0) < g(z0), ∀δz0 > 0, z0 ∈ R;
(e) g(z0) = 0, for one and only one z0 ∈ R.

A proof for this lemma is provided in the dissertation of
Schlagenhaufer [16].

By applying the results of Lemma 3.1 to Equation (24), it
can easily be shown that the global minimum of the function
F1(z0) is located at the point z0 = z̄0. z̄0 is the solution of
the transcendental equation g(z0) = 0. The final result is
stated in the following theorem.
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Theorem 3.1 The tightest first-order upper bound for the
threshold probability is

Pex < F1(z̄0) (26)

where the optimal parameter z̄0 satisfies the condition

g(z̄0) = 0. (26 b)

After numerically solving the transcendental Equation (25)
for the root z̄0, the optimal parameter λ is determined with
Equation (20) and both values are substituted into the upper
bound (23) for the best approximation. In order to guaran-
tee convergence for the iterative solution of g(z̄0) = 0, the
bisection, “Pegasus” or a similar method should be applied
which encloses the desired root between two values [17].

3.1. Energy Upper Bound

The general first-order bound of Theorem 3.1 becomes
tighter the more individual exponential moments are cal-
culated by the exact expression in Equation (15), i.e. the
larger the value of M is chosen. This requires, on the other
hand, explicit knowledge of the interference weights fk for
all k ∈ IM , which may not be available in some situations.
If only the respective energies of interference and Gaussian
noise are known, the special case M = 0 could be consid-
ered. Under this condition, the upper bound of Theorem 3.1
reduces to

Pex < Q(f0 − z̄0) exp
(
− z̄2

0

2Ez,0

)
(27)

where the optimal parameter z̄0 is the solution of the tran-
scendental equation

z̄0 = Ez,0
Q′(f0 − z̄0)
Q(f0 − z̄0)

. (27 b)

Note that Ez,0 is the variance of the normalized interference,
i.e.

Ez,0 =
∞∑

k=1

Ed,kf
2
k =

1
Eζ

∞∑
i=−∞

i �=0

Eα,ih
2
i . (28)

The last expression shows that Ez,0 is equal to the inter-
ference to noise ratio (INR), i.e. the ratio of interference
energy to Gaussian noise energy.

The numerical algorithms which solve Equation (27 b)
require an initial value for the iteration. It can be shown,
[16], that the root z̄0 is lower bounded by the following ex-
pression:

z̄0 � Ez,0

Ez,0 + 1
f0. (29)

This approximation turns out to be a good choice for the
iteration initial value z0,0 provided that the signal to inter-
ference and noise ratio (SINR) is high.

4. Second-Order Approximation

The product form of Q(x) in Equation (12) is now trun-
cated after the second term. This yields the approximation

Q(x) ≈ Q(x0) ec1(x−x0) ec2(x−x0)
2

(30)

where the parameters c1 and c2 are determined by Equa-
tion (13). The major problem with this expression is that a
simple closed-form solution of the exponential interference
moment E[ez+z2

] has not been found yet. This difficulty
may be resolved by approximating the exponential e−x2

with a more convenient expression. For example, the gen-
eral shape of e−x2

is similar to the cosine function around
x = 0. In particular, the exponential may be upper bounded
by

e−x2
≤ 2

3
+

1
6
exp(j

√
6x) +

1
6
exp(−j

√
6x). (31)

The parameters of the cosine function have been chosen
such that the best approximation around x = 0 is obtained.
Expanding both e−x2

and the cosine function into a Taylor
series, it appears that the first three non-zero terms are iden-
tical. The series become different only for sixth and higher
orders in x.

The second-order approximation (30) and bound (31) are
now used to determine the threshold probability P ex. Using
Equation (13) and the substitutionx 0 = f0 − z0, the coeffi-
cients c1 and c2 are given by:

c1 = −λ (32)

c2 =
1
2
λ(f0 − z0 − λ). (33)

It can be shown, [16], that c2 < 0. This guarantees that the
second-order exponential is of the form e−x2

with a nega-
tive exponent. Substituting Equations (30) and (31) as well
as the relationships x = f0−z, x0 = f0 −z0, λ = −c1 and
µ =

√
−6c2 into (11) results in

Pex ≈Q(f0 − z0)
{
2
3
e−λz0 E

[
eλz

]
+

1
6
e−Λz0 E

[
eΛz

]
+

1
6
e−Λ∗z0 E

[
eΛ

∗z
]}

(34)

where ‘*’ denotes complex conjugation and Λ � λ + jµ.
The variable λ is defined by Equation (20), while µ is given
by

µ �
√
−6c2 =

√
3λ(λ − f0 + z0). (35)

The exponential moments of the interference may be
expressed as a product of individual exponential expo-
nents (14). Analogous to Section 3, the exact expression for
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the individual exponential moment (15) is used for the inter-
ference samples fk, ∀k ∈ IM , with large magnitudes, while
the small interference samples (fk, ∀k > M ) are bounded
by Expression (17). This results in the second-order ap-
proximation of the threshold probability:

Pex ≈
2
3
Q(f0 − z̄0) exp

(
1
2
Ez,M λ̄2 − λ̄z̄0

)
×{

M∏
k=1

sinh
(
Lkλ̄fk

)
Lk sinh

(
λ̄fk

) +
1
4
e−jµ̄z̄0

M∏
k=1

sinh
(
LkΛ̄fk

)
Lk sinh

(
Λ̄fk

)
+

1
4
ejµ̄z̄0

M∏
k=1

sinh
(
LkΛ̄∗fk

)
Lk sinh

(
Λ̄∗fk

)
}
. (36)

In order to obtain a good approximation, the value z0 = z̄0
has to be chosen carefully. It is known from the pre-
vious section that the best first-order bound is obtained
when the parameter z̄0 satisfies condition (26 b). Since the
second-order product representation is a better approxima-
tion of Q(x) than the first-order expansion (18), the expres-
sion (36) provides a better estimation of P ex than the re-
spective first-order formula (26). Therefore, the same opti-
mization criterion is used as in the first-order case, and the
parameter z̄0 is chosen such that it satisfies conditions (26 b)
and (25). λ̄ is obtained by substituting z̄0 for z0 into Equa-
tion (20). The parameter Λ̄ is then obtained through

Λ̄ = λ̄+ jµ̄ (37)

µ̄ =
√
3λ̄(λ̄ − f0 + z̄0). (38)

4.1. Special Case: Binary Modulation

In the case of binary modulation there are only two mod-
ulation levels, i.e. Lk = 2 and dk ∈ {−1, 1}, ∀k ∈ N0. The
derived bounds on the error probability can be simplified by
using the hyperbolic trigonometric relationships

1
2
sinh(2x)
sinh(x)

= cosh(x) (39)

2 coth(2x)− coth(x) = tanh(x). (40)

5. Numerical Results and Comparison

For the presentation of our results, we consider a single
user communications system using binary modulation, i.e.
Li = 2,Ai = {−1; 1}, ∀i ∈ Z. The impulse response of
the overall channel is modeled by the well known Cheby-
shev pulse [3]

h(t) =
2∑

i=1

Ai cos (ωi|t|/T − φi) exp (−βi|t|/T ) (41)

A1 = 0.4032 ω1 = 2.839 φ1 = 0.7553 β1 = 0.4587
A2 = 0.7163 ω2 = 1.176 φ2 = 0.1602 β2 = 1.107.

Sampling the received signal at a period T yields the chan-
nel samples hi = h(t0 + iT ), where t0/T is the relative
sampling instant. For practical purposes, we restrict the
number of nonzero interference samples to 1000, which
means that hi = 0, ∀|i| > 500. Note that the signal to
noise ratio (SNR) of this model is SNR = h2(0)/Eζ .

Instead of the exact exhaustive method, the very accurate
and much more efficient algorithm of Helstrom [7] is used
as a reference algorithm for comparison with our approxi-
mations. For the following results, the relative error of P ex

obtained with Helstrom’s method was forced to be below
10−10. Obviously, the feature of preselecting an arbitrary
accuracy is highly desirable. It comes, however, at the price
of significantly increased computational effort when com-
pared to the approximations described in Sections 3 and 4.

The performance of our approximations is evaluated us-
ing the relative error between the value P̃ex obtained from
the approximation and the “exact” threshold probabilityP ex

provided by Helstrom’s algorithm:

ε � P̃ex − Pex

min
{
P̃ex;Pex

} . (42)

The “minimum” normalization in this definition ensures
that too large and too small approximations are weighted
equally.

Contour plots will be used for the presentation of our
results. The regions of constant magnitudes |ε|, represented
by contour lines, are plotted over the surface spanned by
the SNR (abscissa) and the relative sampling instant t0/T
(ordinate). The ratio between two adjacent contour lines
is always a factor of ten. The values printed on the lines
represent the logarithm of the respective value to the base
10, i.e. a contour line with the value ‘−2’ shows the region
of constant values Pex = 10−2 or |ε| = 10−2, respectively.

Figure 1 shows four contour plots. The first plot (a) rep-
resents the values of the “exact” threshold probabilityPex as
calculated with Helstrom’s algorithm. The other three plots
display the magnitude of the relative errors (log10 |ε|) for
(b) the energy bound (27), (c) the first-order bound (26) and
(d) the second-order approximation (36).

Figure 1(a) shows that the threshold probability starts to
decrease sharply when the SNR exceeds 10 dB provided
that the relative sampling instant t0/T is below 0.2. For
larger t0/T , low error rates may not be achieved, even if
the SNR becomes very large, because the interference dom-
inates the behavior.

The energy upper bound in Figure 1(b) performs unsat-
isfactorily when the exact threshold probability P ex is very
low, i.e. for high SNR’s greater than 20 dB and t0/T < 0.2.
In this region, the estimate of the bound is too large by sev-
eral orders of magnitude, and the results are overly pes-
simistic. The same qualitative behavior is found for other
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Figure 1. Contour plots for the Chebyshev pulse showing the exact threshold probability log10 Pex (a),
and the relative errors log10 |ε| for several bounds and approximations (b) – (d).

channel waveforms as well and is, in fact, a characteris-
tic of all “energy” approximations such as the Saltzberg
bound [2, 13] or the Gaussian approximation, which take
into account only the variance of the interference [16].

The more accurate algorithms (Figures 1(c) and (d)) per-
form good to excellent for all values of the SNR and sam-
pling instant considered here. In general, the second-order
approximation yields more accurate results than the first-
order bound. Even in the most extreme situations of high
SNR’s and large relative sampling instants, the relative error
never exceeded 100 % for the second-order approximation.

6. Conclusion

We have introduced new strict and approximate upper
bounds on the error probability which are computationally
efficient. Our approximations include an arbitrary parame-
ter that is optimized in order to achieve the tightest bound.
The resulting exponential moments of the interference can

be computed easily [15]. For the calculation of the approxi-
mations, it is simply required to find numerically the root of
a transcendental equation and to evaluate exponential mo-
ments. An additional feature is that small interference com-
ponents can be tightly upper bounded by an expression in-
volving only their combined variance.

Terminating the Taylor series of lnQ(x) after the linear
term results in the first-order upper bound. A special case of
it, the energy upper bound, requires knowledge about only
the variance (energy) of the interference and the variance
of the Gaussian noise. This bound provides reasonable ac-
curacy for low to moderate SNR’s. However, its results are
extremely pessimistic when the true error probability is very
small (< 10−3).

The general first-order upper bound requires explicit
knowledge about the strong interference samples. As a con-
sequence, it provides significantly better results especially
in situations where the energy bound fails. For the Cheby-
shev pulse and an open eye, the relative errors between the
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first-order bound and the exact error probability did not ex-
ceed 20 %. This number increased to a maximum of 171 %
when the eye was closed.

The second-order approximation considers in addition
the quadratic term of the Taylor series and replaces the re-
sulting factor e−x2

with a cosine function. It is the most
accurate albeit most complex of the derived algorithms. For
the Chebyshev pulse, the relative errors were always below
1 % (open eye) and 82 % (closed eye). Similar results have
been obtained for the Gaussian pulse and the ideal band-
width limited (sinc) pulse [16]. The price to be paid is an
increased amount of necessary operations. Instead of none
(energy bound) or one real exponential moment (first-order
bound), it requires the evaluation of one real and one com-
plex exponential moment. This is comparable to the com-
plexity of Yue’s approximation [11]. In addition, the pro-
posed and Yue’s method yield comparable accuracies. The
difference is that Yue’s results turn out to be below the true
error probability in most cases while we derived strict and
approximate upper bounds.

The presented bounds are significantly more efficient
than the more accurate approximations of Helstrom [7] and
Beaulieu [10]. Helstrom’s algorithm, for example, performs
the calculation of an inverse Laplace transformation by nu-
merical quadrature and requires the evaluation of one com-
plex exponential moment at each integration point. Depend-
ing on the system parameters and the desired accuracy, the
number of necessary integration points can vary between
ten and several hundred. Beaulieu’s approximation has a
similar degree of computational complexity.
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