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Abstract – This paper quantifies how diversity and the
number of users affect the performance of a wireless
multiuser system. The system accommodates N users
and one central base station. Only the reverse link is
considered. The base station receives the signal at A
different antennas. In addition to antenna diversity,
bandwidth diversity is used by transmitting signals
with larger than Nyquist bandwidth. The receiver con-
sists of an optimum linear MMSE equalizer/combiner.
The stationary, frequency selective radio channels be-
tween all users and the base station are assumed to be
known at the receiver. MMSE expressions are given
and numerically evaluated. A tight lower bound is de-
rived for the case when the number of users is larger
than the total degree of diversity, referred to as over-
populated. Otherwise, the system is well populated. It
is shown that overpopulated systems are interference
limited while well populated systems are noise limited.

I. INTRODUCTION

THE connection of several individual stations to a
central unit is a characteristic of many modern

communication systems. The rise of multimedia ap-
plications requires in addition high data rates, which
causes the radio channel to behave frequency selec-
tively. While the latter introduces intersymbol inter-
ference (ISI) in the received signals, multiple, simulta-
neously transmitting stations are the cause of cochan-
nel interference (CCI). It is known that this combined
interference is the major limiting factor of both sys-
tem performance and capacity. Several access schemes
– among them TDMA, FDMA and CDMA – can be
employed to avoid or mitigate CCI. These schemes
are based on bandwidth expansion. More recently,
it has been shown that multiple receiver inputs (an-
tenna/spatial diversity, SDMA) have a similar ability
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to suppress CCI [1]. ISI is very effectively mitigated
by equalizers at the receiver.

This paper combines all three methods – a linear
MMSE equalizer/combiner, bandwidth and antenna
diversity – in an effort to increase the performance and
capacity of a bandwidth efficient wireless multiuser
system. All transmitted signals are allowed to overlap
spectrally and temporally, causing severe interference
at the receiver. CDMA, for example, is a special case
of this method. Qualitative results, [2], [3], indicate
that the combination of spatial and temporal diversity
improves the system performance and capacity. For a
zero-forcing equalizer/combiner, it was shown that the
number of suppressible interferers increases linearly by
the product of the number of receive antennas and the
system bandwidth relative to the symbol rate [4], [5],
[6]. The objective of this paper is to analyze the rela-
tionship among diversity, number of system users and
performance when a linear discrete-time MMSE equal-
izer/combiner (E/C) is used.

II. SYSTEM MODEL

Consider the reverse link of the multiuser system
shown in Figure 1. The complex baseband notation
is used to describe the system. All signals and im-
pulse responses are in general complex functions. The
system consists of N users transmitting data sequences
ai (i = 1, . . . , N). The data sequences consist of sym-
bols drawn from a finite alphabet of complex numbers.
After K times upsampling, the individual sequences
are filtered by discrete-time filters qi. Their outputs
are fed into linear impulse generators which modulate
the discrete-time sequences with the waveform pC(t)
to produce the transmit signals. Let the clock rate of
the impulse generators be 1/Ts. The symbol period is
then given by T = KTs.

The signal of user i travels through the radio chan-
nel with impulse response hCil(t) and is received at
antenna l of the base station. Mutually independent,
complex AWGN signals νCGl (l = 1, . . . , A) with two-
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Fig. 1. Block diagram of the multiuser system

sided power spectral density N0 are added at each of
the A base station antennas. The received signals are
lowpass filtered (bC(t)), sampled at a rate 1/Ts, equal-
ized, combined and finally K times downsampled to
produce the linear estimate ãk of user k’s input se-
quence ak. Consider the net channel between user i
and the l-th receive antenna which is given by the con-
volution of pC(t), hCil(t) and bC(t):

ψCil(t) =

∫∫
pC(u)hCil(v − u)bC(t− v) du dv. (1)

For generality, limits are from minus to plus infin-
ity. After sampling, the noise signal components
are colored: νl[n] =

∫
bC(τ)νCGl(nTs − τ) dτ . The

continuous-time net channel is embedded into the
overall discrete-time system. It can be described by
equivalent discrete-time impulse responses ψil[n] =
ψCil(nTs). Let us define the combined channel

xil[n] =
∞∑

v=−∞

qi[v]ψil[n− v]. (2)

The analysis is done using the D-transform which is
defined by u(D) =

∑∞
n=−∞ u[n]Dn, where u may be

an arbitrary dimensional row vector u = [u1, u2, . . . ].
Let us define the truncated sequence

uM [n] =

{
u[n] , for |n| ≤M
0 , for |n| > M .

(3)

Let v be another row vector whose truncated sequence
is defined according to Equation (3). The cross-power
spectrum Suv(D) of u[n] and v[n] is then equal to

EM [uH(D−∗)v(D)]
def
= lim

M→∞

E[uHM (D−∗)vM (D)]

2M + 1
(4)

where ’E’ is the expectation operator, the superscripts
’H’, ’∗’, ’−1’ denote the conjugate transpose, complex
conjugate and inverse, respectively. The superscript
’−∗’ shall be interpreted in the sense D−∗ = (D−1)∗.

According to Figure 1 the signals of the system can be
expressed as

si(D) = ai(D
K) (5)

yl(D) =
N∑
i=1

si(D)xil(D) + νl(D) (6)

s̃k(D) =
A∑
l=1

yl(D)clk(D) (7)

ãk(D) =
1

K

K−1∑
m=0

s̃k(D
1
KwmK ) (8)

where wK = e−j2π/K . Let us define the following row
vectors and matrices:

a(D) = [a1(D), a2(D), . . . , aN (D)] (9)

ã(D) = [ã1(D), ã2(D), . . . , ãN (D)] (10)

y(D) = [y1(D), y2(D), . . . , yA(D)] (11)

ν(D) = [ν1(D), ν2(D), . . . , νA(D)] (12)

yt(D) = [y(γ0),y(γ1), . . . ,y(γK−1)] (13)

νt(D) = [ν(γ0),ν(γ1), . . . ,ν(γK−1)] (14)

X(D) = [xil(D)] (15)

C(D) = [clk(D)] (16)

Xt(D) = [X(γ0),X(γ1), . . . ,X(γK−1)] (17)

Ct(D) = [CH(γ0),CH(γ1), . . . ,CH(γK−1)]H (18)

where γm = D
1
KwmK ; i, k = 1, . . . , N ; l = 1, . . . , A and

[xil] defines per convention a matrix whose (i, l)-th
component is xil. Using the above definitions, Equa-
tions (5) to (8) can be expressed in vector form as

yt(D) = a(D)Xt(D) + νt(D) (19)

ã(D) =
1

K
yt(D)Ct(D) (20)

where we used the fact that wKmK = 1 if m is an in-
teger. Note that Equations (19) and (20) describe the
multiuser system completely. Furthermore we notice
that the channel matrix Xt consists of N rows (one
for each user) with AK components each. The linear
equalizer/combiner (E/C) Ct has AK degrees of free-
dom (or diversity) to estimate each of the transmitter
sequences ai. Thus, the degree of diversity is given
by the product of the oversampling factor K and the
number of receive antennas A.

Spectral Correlation of the Noise

Let Sn denote the spectrum of the colored Gaussian
noise signal ν: Sn(D) = EM [νH(D−∗)ν(D)]. Accord-
ingly, the spectrum of the extended noise signal νt is
defined as Sν(D) = EM [νHt (D−∗)νt(D)]. If spectral
components of the mutually independent signals νCGl
separated by at least ∆f = 1/Ts are uncorrelated, it
can be shown that

Sn(D) =
N0

Ts

(
∞∑

v=−∞

|B(f − v/Ts)|
2

)
IA (21)



Sν(D) = KDiag〈Sn(D
1
KwmK )〉, m = 0, . . ,K−1 (22)

with B(f) =
∫∞
−∞ bC(t)e−j2πft dt, D = e−j2πf̌ and

f̌ = fTs. IA is the A×A identity matrix and Diag〈Gi〉
is a diagonal hypermatrix with diagonal elements Gi

(i = 1, 2, . . . ), which may be matrices of arbitrary size.
Since Sn(D) is a A×A diagonal matrix with nonneg-
ative elements, (21), Sν(D) is a AK × AK diagonal
matrix with nonnegative elements. It is reasonable to
assume that all diagonal elements are nonzero. In this
case, Sν(D) is positive definite.

III. THE OPTIMUM MMSE
EQUALIZER/COMBINER

The optimum continuous-time E/C for a multiple in-
put multiuser receiver is derived in [7]. It is shown for
colored noise signals that the optimum linear MMSE
structure can be achieved with four components. The
first is a matrix whitening filter for the noise signals.
Second is a matrix filter matched to the transfer func-
tions of the combined channels. This is followed by
symbol rate (1/T) samplers at all outputs of the ma-
trix matched filter. The last component is a N × N
discrete-time matrix filter. It is possible to extend the
results in [7] to the system described in Section II.
The first part of our discrete-time MMSE E/C is the
matrix whitening filter S−1

ν (D) which is the inverse of
the noise spectrum matrix in Eqn. (22). The second is
the matched filter matrix XH

t (D−∗) which is matched
to the combined discrete-time channels (2). Follow-
ing are compressors which downsample all N signals
by a factor of K. This is equivalent to the symbol-
rate sampling step performed for the system in [7].
The next component is an N×N discrete-time matrix
filter L(D). Finally, each of the N symbol-rate se-
quences are amplified K times to compensate for the
factor 1/K in Equation (20). This can be done by an
amplifier with transfer matrix KIN . Up to this point
the receiver Ct(D) can be expressed in the form

Ct(D) = K S−1
ν (D)XH

t (D−∗)L(D) (23)

where L(D) is a symbol spaced N × N matrix filter.
Let us define the effective channel as

Sx(D) = Xt(D)S−1
ν (D)XH

t (D−∗). (24)

The system Equations (19) and (20) can then equiva-
lently be written in the form

ã(D) = a(D)Sx(D)L(D) + z(D)L(D) (25)

where z(D) = νt(D)S−1
ν (D)XH

t (D−∗) is the symbol
rate discrete-time noise sequence at the input of the
E/C L(D). It is easy to show that the spectrum of this

noise signal is Sz(D) = EM [zH(D−∗)z(D)] = Sx(D).
Interestingly, the spectrum of the noise signal is equal
to the transfer matrix of the effective channel. Let
Sa(D) = EM [aH(D−∗)a(D)] be the spectrum of the
input signal. We can now apply the results in [7] and
[8] to find an expression for L(D):

L(D) = [Sa(D)Sx(D) + IN ]−1Sa(D). (26)

MMSE Expression and Bound

Let us from now on assume that the input signals ai
of different users are mutually independent. Addition-
ally, samples of the same sequence are assumed to be
uncorrelated with zero mean and variance Ea:

E [ai[n]ak[m]] = Eaδ[i− k]δ[n−m] (27)

where δ[k] is the Kronecker delta sequence. In this
case, the spectrum of the input signal reduces to
Sa(D) = Ea IN . An expression for the normalized
minimum mean-squared error (NMMSE) of user k can
be found in [8]:

σk =
1

Ea
E[|ãk[n]− ak[n]|2] =

∫ 1

0

Uk(e−j2πf̌ ) df̌ (28)

where Uk(D) is the k-th diagonal element of the matrix
U(D) which is given by

U(D) = [EaSx(D) + IN ]−1. (29)

The average MMSE can then be determined to be

σ =
1

N

N∑
k=1

σk =
1

N
tr

{∫ 1

0

U(e−j2πf̌ ) df̌

}
(30)

where tr{A} is the trace of the matrix A.

We consider now explicitly the case D = D−∗ =
e−j2πf̌ . For the sake of brevity, we drop the argu-
ment in the following but keep in mind that the func-
tions and matrices depend on D. It is assumed that
the noise spectrum Sν is a positive definite diagonal
matrix. Hence, the matrix Sx, which is defined in
Eqn (24), is Hermitian. Therefore, we can decompose
Sx as Sx = QΛQH , where Q is a unitary matrix and
Λ = Diag〈λi〉 is a N ×N diagonal matrix whose diag-
onal elements λi (i = 1, 2, . . . , N) are the eigenvalues
of Sx [9, p.165]. The matrix U in (29) can then be
written as

U = Q[EaΛ + IN ]−1QH . (31)

Taking the trace of U [9, p.167], we obtain the average
MMSE in terms of the eigenvalues of Sx:

σ =
1

N

∫ 1

0

N∑
i=1

[Eaλi(f̌) + 1]−1df̌. (32)



The matrix Sx defined in (24) can only be regular
if Xt is a full row rank matrix [10, p.164–67]. This is
possible only if the number of system usersN is smaller
or equal to the product of oversampling factor K and
the number of receive antennas A. On the other hand,
ifN > AK, the rank ofXt is at mostAK. In this case,
the N × N matrix Sx is singular. Its rank is smaller
than or equal to AK [10] and its rank deficiency is
greater than or equal to the overpopulation number
ξ = N − AK. This means that Sx has at least ξ
eigenvalues equal to zero.

A zero-forcing (ZF) E/C will not exist if the system is
overpopulated, i.e. N > AK [4]. However, a unique
MMSE E/C filter L (26) always exists. This can eas-
ily be verified by recognizing that Sx (24) is positive
semidefinite and hence U−1 (29) is positive definite
and thus regular. It is now easy to find a lower bound
for the average MMSE of overpopulated systems. For
this we consider only the ξ eigenvalues of Sx which are
zero and neglect all other eigenvalues. We obtain then
from Equation (32)

σ >
1

N

∫ 1

0

(
ξ∑
i=1

1

)
df̌ = 1−

AK

N
, N > AK. (33)

IV. NUMERICAL RESULTS

The results described in this section have been ob-
tained for a system with the following parameters:
Symbol period T = 200 ns, A = 4 receive antennas
at the base station, oversampling factor K = 4. The
number of system users N has been varied between
1 and 30. The filters pC(t) and bC(t) are identical
fifth-order butterworth lowpass filters with cut-off fre-
quency fc = K/(2T ). The discrete-time transmit fil-
ters of all users have been set to qi[n] = δ[n].

We have used indoor channel impulse response (CIR)
measurements obtained at TRLabs [11]. The CIR’s
were measured in an indoor office environment. The
measurement system included four stationary trans-
mit antennas and a mobile with four receive anten-
nas. The distance between two adjacent receive an-
tennas was one wavelength of the carrier frequency
fcar = 1.8 GHz. The stationary antennas were placed
in different corners of the office environment. Differ-
ent impulse responses were obtained by changing the
location of the mobile. Each measurement at a cer-
tain mobile location yielded four sets of four CIR’s
between the adjacent mobile antennas and one of the
stationary antennas. The four CIR’s belonging to one
set had the same large scale propagation characteris-
tics because the distances between a certain station-
ary antenna and each of the four mobile antennas were
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practically the same. The measurements resulted in a
total of 2044 sets or 8176 CIR’s. The bandwidth of
the measured CIR’s was approximately 120 MHz.

The reverse link of the system has been simulated by
randomly selecting N of the 2044 CIR sets and cal-
culating the theoretical NMMSE’s (28). This proce-
dure has been repeated 100 times for each value of
N with different CIR sets. Figure 2 shows the aver-
age MMSE, averaged over all system users (Eqn. (30))
and all 100 trials for different noise levels. The three
curves have been obtained for identical environments
but received SNR’s that differ by 10 dB between two
adjacent curves. The lower bound for overpopulated
systems (Eqn. (33)) is also included. It can be seen
that this bound is very tight. The average MMSE ra-
tio in dB for identical systems with different received
SNR’s is shown in Figure 3. The solid curve corre-
sponds to the MMSE ratio between curves one (dia-
monds) and three (crosses) of Figure 2. Analogously,
the dashed line represents the ratio between curves
one and two in Figure 2. The difference in received
SNR between the two systems is 20 dB and 10 dB,
respectively. It can clearly be seen that there are large
MMSE advantages for systems with higher SNR lev-
els if the number of users is smaller or equal to the
degree of diversity (AK = 16). For overpopulated
systems (N > 16), larger SNR’s have practically no
effect on the MMSE performance. This is in agree-
ment with the lower bound for overpopulated systems,
Eqn. (33), which depends only on the number of users
and degree of diversity but not on the received SNR.
Note that the ratio of the average MMSE for N ≤ 14
is practically identical to the SNR difference between
the two systems. The transition of the MMSE ratio
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from N ≤ 16 to overpopulated systems is steep but
continuous. The transition is influenced by the SNR
level. If high SNR systems are compared, the transi-
tion will become more abrupt, changing almost step
like from the SNR difference (N ≤ AK) to zero (over-
populated systems). On the other hand, the transition
around N = AK becomes the more continuous the
lower the SNR of the compared systems is. Figure 4
shows the relative MMSE σk,rel = σk/σk,id which is
the ratio between the absolute MMSE (Eqn. (28)) and
the matched filter bound [12] σk,id = 1/(1+Φk), where

Φk =
∑A
l=1 Φk,l is the total received SNR from user k

and Φk,l is the received SNR at base antenna l from
user k. The matched filter bound establishes the ulti-
mate performance bound. It can only be reached in op-
timal systems with neither cochannel nor intersymbol
interference. The crosses in Fig. 4 are the average rel-
ative MMSE averaged over all system users and trials.
The diamond symbols represent the largest individual
MMSE σk,rel that has been found in all trials. Ac-
cordingly, the circle symbols mark the smallest relative
MMSE that has been determined. There are strong
differences between the smallest and largest MMSE.
For a moderate number of 4 users, the difference is al-
ready 7 dB and increases to 28 dB for N = 16. This
shows that even if the average MMSE is low, the re-
ceived signals of certain users may be poor. It can also
be seen that the average MMSE is for N = 1 user very
close to the matched filter bound (horizontal 0 dB line)
and increases almost linearly with N for a small num-
ber of system users. The increase becomes stronger
the more N approaches the system limit of 16 users. A
steep MMSE increase appears around N = 16. Over-
populated systems show a large difference between the
MMSE and the matched filter bound.
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