CMOS Design of ADM-PCM Codec Chip
using Silicon Compiler

with Performance Evaluation

by

Brent Robert Petersen

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of A pplied Science
in
Electrical Engineering

Waterloo, Ontario, 1987

© Brent Robert Petersen 1987
ISBN 0-315-38754-8
email: b.petersen@ieee.org

| hereby declare that | am the sole author of this thess.

| authorize the University of Waterloo to lend this thesis to other institutions or
individuals for the purpose of scholarly research.

B. R. Petersen

| further authorize the University of Waterloo to reproduce this thesis by photo-
copying or by other means, in total or in part, at the request of other institutions
or individuals for the purpose of scholarly research.

B. R. Petersen

(if)

The University of Waterloo requires the signatures of all persons using or photo-
copying thisthesis. Please sign below, and give address and date.

(iif)

Abstract

A silicon compiler is a computer program that generates IC layouts from a
high-level specification. In the SPIL silicon compiler a digital signal processing
algorithm is specified in a language similar to Pascal, and IC layouts are gen-
erated using a simple register-transfer architecture with a data path controlled by
a finite state machine. For a silicon compiler to be an effective design automa-
tion tool it is essential to include some type of performance evaluation to esti-
mate power dissipation, layout area and propagation delays of the generated chip
layout.

A design aid called EPAD is used for performance estimation of propaga-
tion delays, power dissipation and silicon areas of CMOS VLSl circuits. The
objective is to provide the designer with an analysis of the IC layout. The
designer can use this analysis to change the algorithm or intermediate levels of
silicon compilation.

SPIL and EPAD are used in the design of a chip which compresses and
decompresses speech by performing conversions between pulse code modulation
and adaptive delta modulation. The algorithms for these conversions were writ-
ten in the SPIL language, and layouts were generated and combined into one
coder-decoder (codec) chip. An EPAD analysis was performed on this chip.
Simulation files obtained from EPA D made it possible to identify possible design
errors and to predict the maximum operating frequency. This was followed by
fabrication and testing of the chip. Test results on fabricated chips compare
favourably with EPAD predictions. The results made it possible to evaluate the
effectiveness of the silicon compiler and to calibrate the performance evaluator.

The goal of this research is to show that the state of the art is advanced
enough that a chip can be efficiently designed using SPIL with a EPAD and that
the chip can satisfy the requirements of specific applications.

(iv)

Acknowledgements

Few students work solely by themselves; they work with the assistance of
professors and colleagues. This thesis would not be complete without ack-
nowledging the contributions of those who have assised me.

Professor Mohamed |. Elmasry was a superb supervisor. Without his pati-
ence my work would never have been successful.

| would never have been able to meet the chip fabrication deadlines without
the help of Dan Salomon, one of the original authors of the SPIL silicon com-
piler.

Brian White, the author of EPAD and of the program to partition finite
state machines, set the perfect example for me by being so methodical.

The Canadian Microelectronics Corporation (CMC) assised by providing
the VLS implementation services. CMC'’s pride in its work is exemplified by
Peter Ellis who continued the design rule checking of my chip even up to a few
days before Christmas. He did this by logging on to the CMC computer from
his home terminal.

Finally, I am grateful to the Natural Sciences and Engineering Research
Council (NSERC) and Control Data Canada (CDC) for providing me with
direct and indirect funding.

(V)

Table of Contents

CHAPTER 11IntroduCtionccoiiiiiiiiiiiiiee e 1
CHAPTER 2 Design Automation and Silicon Compilation 6
2.1. Introduction to Silicon Compilationcooiiiiiiiiiiiiiie, 6
2.2. Silicon Compilation using SPILccoooiiiiiii e 9
2.2, SPIL USAQE .eiiiiiiiiie e 10

2.2.2. INPUL LANQUAGE ...viiiiiiie ittt e e e e 12

2.2.3. Compilation StEPS ..oviiriiii i 16

2.2.4. The Circuit Architectureof SPILccoooiiiiiiiiiiin, 19

2.2.5. Timing ConSderationsScceiieiiiiiieiie i 24
2.2.5.1. External SIgnalscooiiiiiiii 24

2.2.5.2. Critical Path Analysisccooiiiiiiiii 27

2.2.6. Design Trade Off Techniquesccovviiiiiiiii i, 39

(vi)

2.3. Performance Evaluation with Silicon Compilation 41

CHAPTER 3 SPIL Enhancement for DSP Chip Design 44
. L. EPADD 45
3.1.1. Incorporating EPAD into SPILcccooiiiiiiiiiiiiee 45

1.2, OVEINVIBIW ottt et 45

3.1.3. Performance MEaSUIESccovvivieiiiiiiiiiieei e 47

314 Delay MOAEIS ...ovviii i 48

3.1.5. EPAD EXampPle ...coiiriiiii e 50

e, SIS e 52
3.3, FSM Partitioningcouviieiiiii i e e 53
B4, TARCON 57
CHAPTER 4 ADM-PCM Codec Chip Using SPILcccecevvee. 58
4.1. Chip Specificationsc.coviiiiiii i 58
4.2, AlQOrithm DeESION ..ot 60

(vii)

4.3, EPAD ANAlYSIS .ottt 75

4.3.1. SILOSLogic Verificationcccooviiiiiiiiiiiiiiii e, 76

4.3.2. SILOSCritical Path Analysiscooviiiiiiiii e, 78

A4, TSt Plan oo 80
4.5. Submission for Fabricationcoooiiiiiiiiiiiiiae 82
CHAPTER 5 Ted Results and Suggested Enhancements 85
5.1, Logic Verificationc.ciiiiiiiiii e 85
5.2. Maximum Clock Frequency Determinationcooevieennnns 95
5.3, Power DisSipationcccoiriiieiii i e 98
5.4. ADM-PCM Codec Chip SUMMarycccocviviiiiiiiiiiiiiiiieenanns. 103
5.5. Suggested Enhancements and Future Workcoel. 107
CHAPTER 6 CONCIUSIONS ... oot 112
Appendix A SPIL CodeC FIlesSooooviiiiiiiiii i 114

(viii)

Recaver Source File (FX.SD) woviiriiiiie i e 114

Recaver Source File Listing (rx.spil_list)ccoooiiiiiiiiiiiins 115
Recaver Busgen File (rx.bm) 120
Recever Busgen File (rx_no_right_shifter.om)l. 121
Recaver FSM File (rX.fSm) ..o e 122
Recever Busgen Listing File (rx.om_list) ..., 126
Recaver FSM Listing File (rx.fsm_list)ccoooiiiiiiiiii 126
Transmitter Source File (IX.SP) cvvveeiiii i e 131
Transmitter Source File Listing (tx.spil_list) ..o, 132
Transmitter Busgen File (tx.bm) ... 136
Transmitter Busgen File (tx_no_right_shifter.om) 136
Transmitter FSM File (tX.fsm) ..o 137
Transmitter Busgen Listing (tx.bm_list) ..o, 141
Transmitter FSM Listing (txX.fsm_list) ..., 141
Appendix BEPAD Fil€S ... 145
EPAD CMOS Technology File (epad.analysis)ccccvvvviiiiiiinannnn. 145

(ix)

Layout Input File (COdeC.Cif)ovrieiii e 147

EPAD Output Log File (codeC.1og)coeviriiiiiiiiiii i 147
EPAD SILOS Input File (codec.dat)ccooviviiiiiiiiiiiiiiii e 149
EPAD Output File (codec.epad)ccooeiiiiiiiiiiiiii e 150
Appendix C SILOS Logic Simulationc.cocoviiiiiiiiiinii, 154
Batch Command File (batchfile) ... 154
SILOS Commands File (commands)ccccveeiiiiiiiiiiiiii e 154
Circuit Description Part 1 of 3 (top.dat)coooviiiiiiiiiie 155
Circuit Description Part 2 of 3 (codec.dat)coovvvvviiiiiiiiieinnn.. 155
Circuit Description Part 3 of 3 (bot.dat)coooviiiiiiiii, 156
Circuit Description of the Transmitter (bot_tx.dat) 159
SILOS Output File (OUtPUL) ..o e 162
Appendix D SILOS Critical Path Smulation 164
Circuit Description File Part 3 of 3 (bot.dat)ccccvvviiiiininnn.. 164
Circuit Description File Part 3 of 3 (bot_tx.dat)ccceevvviiinnnn.. 167
SILOS Output File (OUtPUL) ..o 169

(x)

Appendix E SILOS Fault Simulationccooiiiiii, 171

Batch Command File (batchfile) ... 171
SILOS Commands File (commands)ccccvoeiiiiiiiiiiiiiiieeieee 171
Circuit Description Part 1 of 3 (top.dat)ccoovviiiiiiiiiiie 172
Circuit Description Part 2 of 3 (receiver.dat)cccoovviiiiiiiiiinnnn.. 173
Circuit Description Part 3 of 3 (bot.dat)coooviiiiiiiii, 173
Fault Simulation Method File (inst.dat)ccooiiiiiiiiiiis 174
SILOS Output File (OUtPUL) ..o 175
REFERENCES ..., 178

(xi)

3.1.

3.2.

4.1.

4.2.

4.3.

4.4,

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

Lis of Tables

Comparison of EPAD tO SPICEcciiiiiiiiii e 52
FSM Partitioning ReSUILScoiiiiiii e 56
The Song Predictor (Equation 22) (X>0) (Spin=1) «cvvvvvvivininnnnn. 64
Receiver Logic Verification Exampleocoooiiiiii i, 77
Detailed Codec Propagation Delays (NS)ccovvvviviiiciiiiiennnnn. 79
Design Summary for PCM-ADM Coder-Decodercceveenee. 79
Maximum Clock Frequency of the Receivercooooeniis 96
Maximum Clock Frequency of the Transmitter 97
Static Drain Current of the COdeccovviiiiiiiiiiiiiiieees 99
Receiver Power Disspation (mW) (Clocked at 1 MHZ) 102
Transmitter Power Dissipation (mW) (Clocked at 1 MHZz) 102
Codec Power Disspation (mW) (Clocked 1 MHZ)co. el 102
Design Summary for PCM-ADM Coder-Decodercceouneene. 103

(xii)

2.1.

2.2.

2.3.

2.4

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

3.1.

3.2.

3.3.

3.4.

4.1.

4.2.

4.3.

List of Illustrations

Demonstration SPIL Programcccceoeiiiiiiiiie i iieeiaannsn 16
Compiling a SPIL Programcooiiiiiiii i 18
SPIL Circuit ATChiteCtureoooiiiiii e 20
PLAmMate Static CMOS FSM ..o e 23
Sample Program FSM Controllercooiiiiiiiiiiiie, 26
Timing Elements of SPIL Circuit Architecture 29
Phase 1 Timing, Prechargecccoiiiii i 30
Phase 2 Timing, Source Dischargeccooviiiii i 31
Phase 3 Timing, Destination Loadcoooviiiiiie i 32
Phase 4 Timing, No Calculationscooiiiiiiii i 33
Critical Path Timing Diagramccoooiiiiiiiiiiii i e 36
Design Aid ReqUIremMENtSoiviiiiii i 42
Overview of EPAD ..o 46
Propagation Delay Time Definitions ..o, 48
An EPAD Evaluation CirCuitccooiiiiiiiiii e, 51
Exclusive OR Gate CirCUitcoeeriiiiiii i e 53
Receiver : ADM-to-PCM Converterccoooviiieiiiiiiiie i, 62
Situation in Table 2, linethree. ... 65
Receiver : Signal-Flow Graph ... 66

(xiii)

4.4,

4.5.

4.6.

4.7.

4.8.

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

The ReCalVEr Programccoieiiiiiiiiie i e 70

Transmitter : PCM-to-ADM CONVerterccoveviiiiiiiienneinnnns 71
The Transmitter Programcccviiiiii i 74
The Test INSErt ..v e 81
ADM-PCM Coder-Decoder Photomicrographcccccovennnnne. 84
TS APPAratUS ..ttt e e e e e 86
Data Generator - ClOCKSoviniiii i 87
Data Generator - Data 1ocoviiiiiiiiiii i 88
Data Generator - Data 2c.coviiiiiiiiii i 89
Data A nalyser Observations 1c.ccoiiiiiiii i 90
Data A nalyser ObservationS 2c.ccoviiiiiii i 91
Data A nalyser Observations 3ccoiiiiiii i 92
Transmitter Verificationooiiiiiiiiiiii e 94

(xiv)

CHAPTER 1

I ntroduction

Improvements in VLS fabrication technology have increased the number of
transistors that can be put on a silicon chip. The major improvements have been
due to a reduction in the size of features used in photolithographic fabrication
processes. With these reductions have come improvements in circuit perfor-
mance. The three major performance criteria used to evaluate a chip are the
area, delay and power. Area refersto the silicon area consumed by the circuitry
of the chip. Delay refers to the time required for signals to propagate through

the chip. Power refersto the power dissipated by the chip during its operation.

Improvements in technology allow more circuit functions to be placed within
a given area. Alternatively, the same circuit function can be performed using
less dense circuitry. Therefore, a given design does not have to be as elaborately
constructed as a design in an earlier technology, to achieve a similar perfor-

mance.

Increases in circuit density imply that signals have shorter distances to pro-
pagate and that capacitive and resigive loadings on transistors are reduced.
However, a trade off exists: reducing the size of transistors also reduces the abil-
ity of transistors to drive their capacitive or resistive loads. Recent advances in

1

technologies, such as Bipolar and CMOS, have kept a reasonable balance
between these two trade offs in order that propagation delays decrease in an
improved technology. Since propagation delays decrease, a calculation, required
to be performed within a fixed time, can be implemented with less elaborate
approaches and less fine tuning, compared to the same circuit implementation in

an earlier technology.

Increases in circuit density tend to increase the power dissipation for a fixed
chip area with a fixed chip power supply voltage. This problem has been over-
come in the past by reducing the supply voltage, from a standard value of 12
volts to 5 volts (and may soon drop to 3.3 volts). Power dissipation problems
have also been solved by improved chip packaging. As technology improves,

power dissipation problems must be overcome.

The complexity of designing chips increases with the number of transistors.
In order to manage this complexity, design methods have become hierarchical,
as have the representations of designs. The lowest level of representing a design
is a description of the masks used in the fabrication process; an example of this
representation isthe CIF format [1]. A higher level of design description can be
achieved using procedural layout languages such as ICEWATER [2] and
IGLOO [3] which describe transistors, their relative placements and their inter-

connections in a layout. A higher level of description is a netlist, a description

of transistors or logic gates and their interconnections without any reference to
their positions in a layout. Sometimes the components of a netlist can be associ-
ated with a standard set of cells which contain mask or procedural language
descriptions of each netlist function. An intermediate-level of description is
about the Boolean functions that the circuit is to perform. These functions can
further be grouped into blocks which describe the structure and the architecture
of a chip. The highest level is a behavioral or functional description which speci-

fies the function of the chip without implying how that function is implemented.

To accommodate the wide range of descriptions, numerous CAD programs,
called tools, exist to generate design descriptions or make conversions between
the different levels of design descriptions. The most simple designs can be gen-
erated by manipulating representations of the masks used in fabrication. This is
facilitated by a CAD tool called a layout editor, such as Caesar [4] or Magic [5].
A higher-level structural description can be generated using a schematic editor

from graphical input.

CAD tools perform conversions between many levels of representation. A
layout extractor analyses a mask representation and generates a netlist. A per-
formance evaluator analyses a mask representation and estimates propagation
delays, power disspation and silicon area. The objective of a performance

evaluator is to provide the designer with performance data to be used in

evaluating or improving design. Above the level of an extractor are procedural
layout language compilers, such as ICEWA TER and IGLOO, which convert a
procedural layout description into a mask description. Another tool called a
module generator performs a conversion from an intermediate-level description,
such as Boolean equations, into a lower-level description, such as a netlist or
mask layout. Module generators can be used to efficiently generate parts of a
chip such as Programmable-Logic Arrays (PLA), Random-Access Memories
(RAM) or Read-Only Memories (ROM). At the highest level of design auto-
mation is a silicon compiler. It performs a conversion from a designer’s high-
level structural or functional description into a chip layout. The silicon compiler
may transform the high-level description into many intermediate-level descrip-

tions before finally generating the layout description [6].

An important point to consider when using CA D tools to generate a chip is
that the lower the level of design detail, the greater the amount of design effort.
If designs are performed using higher levels of design description, less effort is
required by the designer because the CAD tools manage more of the details.
The trade off with using higher-level design tools is that the performance of the
chips they generate is inferior to the performance that can be achieved using
lower-level design tools. This trade off is due to less flexible approaches and
assumptions that the CAD tools are forced to make in order to hide details from

the designer.

The goal of this research is to show that the state of the art is advanced
enough that a chip can be efficiently designed using a silicon compiler with a
performance evaluator and that the chip can satisfy the requirements of specific

applications.

Chapter 2 contains a more detailed discussion about silicon compilers as well
as a description of the specific silicon compiler that was used to design a Digital
Signal Processing (DSP) chip. This chapter also discusses the methods a
designer can use to improve the performance of the chip by using the data

obtained from a performance evaluator.

Chapter 3 discusses the tools used to support the design of a chip: the perfor-
mance evaluator (EPAD), the logic simulator, the Finite-State-M achine (FSM)

partitioner and the data-path-to-FSM interconnection program.

Chapter 4 discusses the coder-decoder chip (codec) which was designed
using the SPIL. This chip compresses and decompresses speech by performing
conversions between two speech coding formats, Adaptive Delta M odulation
(ADM) and Pulse Code Modulation (PCM). This chapter discusses chip design,

performance estimation, simulation and preparation for fabrication.

Chapter 5 includes test results and comparison to EPAD predictions. It also
includes suggested improvements to the silicon compiler and performance

evaluator. Chapter 6 contains the conclusions of this research.

CHAPTER 2

Design Automation and Silicon Compilation

A silicon compiler accepts a functional or behavioral language description as
input and generates a low-level description of chip fabrication masks as output.
This chapter will discuss the wide variety of silicon compilers as well as the simi-
larities and differences between them and the SPIL silicon compiler. The major-
ity of this chapter discusses SPIL since it is the silicon compiler which was used

for the codec chip design.

2.1. Introduction to Silicon Compilation

The high degree of design automation achieved using a silicon compiler is
due to the number of design details which the compiler manages. ldeally, the
designer need only to specify the highest overall function that the chip is to per-
form. This design style is very efficient in terms of the time it takes to design a
chip. However, the produced design suffers from a lack of application flexibility
and chip performance. This is due to the restrictions in the compiler’s input
language and compiling methods. Restrictions in compiling methods result, for

example, from using fixed circuit architectures.

The languages used to specify a designer’s algorithm are divided into two
main categories. structural and functional. Structural languages hierarchically
describe the interconnections of parts of a chip. The silicon compilers YA SC
[7], FIRST [8] and Apollon [9] accept as input structural descriptions of a data
path. YASC and FIRST are based on a data flow architecture. Apollon is
based on two data buses. Functional, also known as behavioral, languages
describe what kind of function the chip is to perform without necessarily imply-
ing how the chip is to perform it. A sub-class of functional languages is archi-
tectural languages [10] which directly imply certain architectural features. A rchi-
tectural languages are advantageous in that they compile faster than a pure
functional language because the compiler does not have to choose between archi-
tectural features. The disadvantage of architectural languages is lack of flexibil-
ity in what the compiler can put out. The silicon compilers MacPitts [11] and

SPIL [12,13] accept architectural input language descriptions.

The circuit architectures generated by silicon compilers tend to be fixed in
various aspects. This makes compilation easier, but reduces the number of
applications of the produced chip because the architecture has been designed for
a gpecific performance. The SPIL, MacPitts and A pollon architectures are dis-
tinctly divided into a data path and a control path. SPIL uses a single bus data
path. Apollon uses a two-bus data path. MacPitts uses an arbitrary number of

buses in the data path. The more buses, the more parallelism in the

architecture. However, more buses mean that the architecture is more complex
to generate and the performance of the architecture is not as consistently predict-
able. The control path for MacPitts is based on microcoding. The control path
for SPIL is based on an FSM. The architecture for YA SC is based on its data
flow input language. The architecture contains asynchronously connected data
flow blocks and it is well suited to parallel calculations. However, a large data
flow architecture is more difficult to lay out than simple data bus based architec-
ture. The architecture for the FIRST silicon compiler is based on serial process-
ing elements connected with globally-clocked latches between them. This archi-
tecture is well suited to high-speed D SP applications, but it is not very flexible in
its ability to implement a variety of algorithms. There are no looping constructs

in the FIRST language such as WHILE-DO loops.

Since there are many silicon compilers which are capable of generating a
wide variety of architectures, it is necessary to choose a specific silicon compiler
for a particular design. The major advantage of using the SPIL silicon compiler

is its ability to communicate to the performance evaluation tool EPAD.

2.2. Silicon Compilation using SPIL

In order to demonstrate the aspects of chip design using a silicon compiler, a
specific silicon compiler, SPIL, was used. The name SPIL is an acronym which
means Simplified Pascal Into Layout. SPIL was intended to generate chips for
digital signal processing applications. Asits name implies, SPIL accepts as input
a designer’s high-level program which is written in a language similar to Pascal
[14] and then from the designer’s program, SPIL generates a mask-level descrip-
tion of a chip layout. The format of the mask-level description is the Caltech

Intermediate Format (CIF).

Since SPIL’s input language very closely resembles Pascal, the language
describes the function that the chip performs. However, the components of the
SPIL language, such as variable names, directly imply architectural features,

such asregisters. Thus, the SPIL language is an architectural language [10].

SPIL trandlates an architectural language into a mask-level description of
the layout. These two levels of design description are nearly at opposite ends of
the spectrum in terms of containing high and low level design details. This
results in a high level of design automation because the designer is not con-
cerned with all of the details of the intermediate-level descriptions of a design,
such as a logic description. In addition, the architectural implications of the

SPIL language mean that compiling can be done more easily than a behavioral

10

language.

SPIL uses a fixed architecture with a single-bus data path controlled by a
Finite State Machine (FSM). This architecture does not have any data path
parallelism; however, it is very regular and very efficient to generate. The pro-
cess of generating the layout does not involve explicit trandations to logic cir-
cuits or transistor circuits. For example, SPIL chooses cells from the SPIL cell
library and places the cells in a matrix arrangement to generate the data path.

The architecture is still general enough to implement any numerical algorithm.

More details of SPIL will be described in the following sections, including
types of designs that SPIL is capable of generating, additional language issues,
the steps to compile a program, the circuit architecture, timing considerations

and, finally, some design trade off techniques.

2.2.1. SPIL Usage

The first issue that a designer must consider is whether SPIL is the correct
choice of tool to design a chip. This suitability of SPIL will depend greatly on
three criteria: the expertise of the designer, the performance required from the
chip and the time available in which to design it. These three criteria are
described in more detail below but they are merely heuristics to guide a potential

designer in selecting SPIL. A more quantitative argument based on the required

11

performance of the chip can be found in chapter 4 (ADM-PCM Codec Chip
Using SPIL). ADM means Adaptive Delta Modulation; PCM means Pulse Code

Modulation [15]. The word chip in this discussion is synonymous with chip set.

As to the first criterion, SPIL does not require that the designer have very
much expertise in logic and circuit design, compared to that which may be
required to do a similar design with lower-level tools such as a schematic or lay-
out editor [4]. In fact, the expertise required to design a chip using SPIL liesin
the design trade offs that occur when choosing different high-level statements to
perform a task. A more detailed explanation of these trade offs can be found in

section 2.2.6 (Design Trade Off Techniques).

The second criterion is the type of performance required from the chip.
Since the SPIL output data path does its calculations sequentially, this implies
low-speed applications, such as speech processing or communications, requiring
low data rates such as 19.2 kilobaud. SPIL should only be used if on-chip
memory requirements are low. A typical design contains 10 registers up to a
maximum of approximately 22 bits wide. Since SPIL can be used to generate
one or a few Application Specific Integrated Circuits (ASIC), SPIL chips may be
much more desirable than having an off-the-shelf microprocessor and all its asso-

ciated peripheral circuitry.

12

The third criterion is the time available in which to generate a chip. Using
SPIL requires less design time than lower-level design tools. The design time
can be reduced due to two reasons. The first reason is that SPIL manages
intermediate-level details which would otherwise require more designer effort
when lower-level design automation tools are used. The second reason is
increased reliability in getting a functionally correct design, because of a reduced
chance of designer error. An indication of reduced design time is given in

chapter 5 (Test Results and Suggested Enhancements).

2.2.2. Input Language

It is shown in this section how the SPIL language is an architectural
language. The functional aspects of the SPIL language stem from its similarities
to Pascal. The architectural aspects stem from language constructs which

directly imply architectural featuresin the layout.

The SPIL input language was designed to adhere as closely as possible to
Standard Pascal [14]. However, it was necessary to make changes to Pascal
because it was never intended as a hardware description language., These
changes were made for efficiency. However, the high degree of similarity
between the two languages makes the SPIL language easy to learn for designers

who are already familiar with Pascal. Some of the important differences

13

between the SPIL language and Pascal will be summarized here.

The SPIL language does not support the type real, nor the type construc-
tors set, record and enumeration. However, it does support the integer type,
since integer arithmetic can be efficiently done on a chip. It provides for
subrange types and one-dimensional arrays. It provides for pointer types, but
since it has no dynamic memory allocation, pointers refer to static locations
only. The function 2DDR has been added to the SPIL language to return the
address of a variable or array element. The SPIL language has the added types

input port and output port for describing chip input and output registers.

Any integers declared in a SPIL program correspond on a one-to-one basis
with storage registers created for them in the data path. This is an example of

why the SPIL language is an architectural language.

The SPIL language has binary-mask constants with don't care bhits of the
form 2?10B. The question marks are the don’t care bits. The B means binary.
These help hand optimization of data path conditional tests. This is a very good
example of an addition to the SPIL language from Pascal for reasons of effi-
ciency. Bit masks can greatly reduce the size of the control path. This will be

described in more detail in section 2.2.4 (The Circuit Architecture of SPIL).

14

The SPIL language has some predefined variables and constant names. All
such added symbols begin with an underscore to distinguish them from ordinary
variables. There is a predefined variable name for each of the input and output
registers of the computational units in the data path to permit hand optimization
of critical computations in the case where the automatic code improvement is
inadequate. An example of this is shown in the SPIL program in appendix A
(SPIL Codec Files). Some examples of these variables and constants follow.
The predefined symbolic constant data width controls the width of the data
path. The predefined variables add in 1 and add in 2 represent the two
input ports of the adder computational unit. The predefined variable add out

represents the output port of the adder computational unit.

The SPIL language has some additional operators for shifting and comple-
menting that were taken from the C language. These make low-level computa-
tion with the shifter and complementer easier. For example, the expression X
<< 1 means the value of X shifted to the left one bit. The least significant bit

will be padded with a zero. The most significant bit will be discarded.

The SPIL language has most of the control structures of Pascal, including
IF-THEN-ELSE, FOR-DO, WHILE-DO, REPEAT-UNTIL, GOTO, and CASE, but does
not include procedure invocation. The high overhead of procedure invocation

implemented by finite state machine makes it impractical currently. The only

15

procedure definition that the designer is allowed is for a procedure called reset
which will be invoked when the chip reset input is enabled. Details of this will

be discussed in the section 2.2.5 (Timing Considerations).

The SPIL language’'s similarities to a well-known language, Pascal, com-
bined with its specific adaptations for hardware description, make it an effective

language for describing chips.

In order to describe a chip using the SPIL language, the designer should
begin with an algorithmic description in the form of a signal-flow graph, equa-
tions, or even a program in another language. All of these representations are

well suited to step-by-step coding in the SPIL language.

A sample program to determine absolute value, illustrating some of the

basic SPIL language features, is shown in Figure 2.1.

In the CONST section the width of the data bus is set to 8 bits. In the VAR
section an input port called input and an output register called output are
defined, as well as a register called temp to hold intermediate results. There is
no reset procedure in this example. The program reads in the input and
stores it in the register temp, then tests the sign and takes the negative if neces-
sary to determine the absolute value. The result is then moved to the output

register.

16

PROGRAM Demo ;

CONST
_data width = 8 ;

VAR
input : input port CONNECT DOWNWARD ;
output : output port CONNECT UPWARD
temp : integer ;

BEGIN
temp := input ;
If (temp < 0) then temp := - temp ;
output := temp ;

END.

Figure 2.1. Demonstration SPIL Program

2.2.3. Compilation Steps

The steps involved in compiling a SPIL program are as follows (Figure 2.2).
The program is stored in the file demo.sp. The SPIL compiler is then run by the
command spil demo.sp. This command generates two new files. The first file,
demo.bm, is a readable description of the arrangements of cells in the data path.
The .bm file is called the bus map or a data path description. The second file,
demo.fsm , is a high-level description of the FSM controller. The .fsm file is
called the finite state machine file. The spil command also generates a source
listing which contains a finite state control description. Examples of these files
are shown in appendix A (SPIL Codec Files). The data path layout is produced

by running the bus generator program; the command busgen demo.bm creates the

17

output file demo_bm.cif. The FSM layout is produced by running the finite state
machine generation program called PLAmate [17]; the command PLAmate
demo.fsm creates the output file demo.cif. The CIF layouts are for a 3um CMOS

technology [18,19].

Final connections of the FSM to the data path and address decoders, and of
inputs and outputs to pad drivers are done manually using an interactive mask
editor, Caesar, and a program called TARCON. TARCON (Terminal ARray
CONnector) will route the opposite sides of a rectangular channel provided that
the channel that can be routed in one layer. This tool can save a great deal of
time during manual routing. More importantly, it can also be used in a program
which will automatically generate the interconnections between the data path

and the control path.

demo.bm

demo.sp

spil demo.sp

busgen

demo.bm

demo_bm.cif

Key :

file :

program :

demo.fsm

plamate

demo.fsm

demo.cif

command

Figure 2.2. Compiling a SPIL Program

18

19

2.2.4. The Circuit Architecture of SPIL

A block diagram of the architecture is shown in Figure 2.3. The finite state
machine provides the control flow for the algorithm and the data path performs
the computations. The designer specifies a digital algorithm in SPIL’s input
language. A fter compiling the program, the designer’s algorithm is permanently
encoded in the finite state machine [1]. This encoding is achieved by having
each state in the FSM controller represent one data transfer between two loca-
tions in the data path [20]. These two locations can be constants, storage regis-
ters or computational units, and they are specified by unique source and destina-
tion addresses. Thus an FSM state selects the two locations in the data path for
the data transfer by generating a source and a destination address pair. The two
addresses that the FSM generates are decoded by the address decoders in the

data-path half of the architecture.

To illustrate this concept, suppose that in a SPIL program the designer has
defined three variables A, B and C using the following syntax, which isidentical

to that of Standard Pascal:

var
A, B, C :integer ;

These three variables correspond on a one-to-one basis with storage registers
created for them in the data path. If the designer wanted to specify a calcula-

tion to add the contents of the B and C registers and store the result in the A

20

AnInput An Output Reset
J L ﬁ Clocks Go
. N
| >
width| R |"""|R |C | RS|LS|A ke ™
| —
A\v4 — .7 | Finite-
A Data Path ANASN Data Sate
Bus .
Machine
M| s
Source/Destination AR
A ddress Decoders) N

R : Register v

C : Complementer
RS: Right Shifter
LS: Left Shifter

A : Adder

Figure 2.3. SPIL Circuit Architecture

register, the following program syntax would be used:

A=B+ C,;

The architecture implements this high-level instruction by using three states
of the FSM. During the first state, the source address will select the register B
and the destination address will select the first input port of the adder computa-
tional unit. The second FSM state generates a source address for register C and
a destination address for the second input port of the adder. Finally, the third

state generates a source address for the output port of the adder and a

21

destination address for register A.

There are some further architectural features of SPIL worth noting. A
minimum of four computational units are needed : addition, left shift by one bit,
right shift by one bit with sign bit extension, and ones complement [20]. A
ripple-carry adder was used. A nother architectural feature is the data bus con-
nection between the data path and some of the inputs to the FSM. This feed-
back permits the FSM to make conditional transfers to different states based on
the result of some previous calculation and is used to implement high-level con-
ditional tests in the designer’s SPIL program. Note that this architecture does
not have status bits or a condition code register. However, the designer could
use an integer variable to store the result of a calculation for the purpose of con-
ditional branching at a later time. There are also input port cells for connection
of off-chip inputs to the data bus, and output registers to transfer data from the
data path to off-chip outputs. The width of the data path (and hence the
number of bitsin the data bus) is variable and is specified in the SPIL program;
the length of the data path is also variable and depends on the number of data
registers, constants, computational units, chip inputs and chip outputs required
by the algorithm. The width of each address busis also variable and depends on

the number of devices required in the data path.

22

As indicated, the controller is a finite state machine. PLA mate [17] is a
module generator that generates Programmable Logic Array (PLA) and finite
state machine layouts in Caltech Intermediate Form (CIF) for a 3um CMOS
technology. PLA mate accepts a high-level description of the PLA or FSM,
including input and output lines and their ordering, assignment statements with
Boolean expressions, FSM states, FSM state transitions, FSM outputs to be
asserted in a given state, FSM outputs to be asserted during a particular state
transition, and the FSM RESET state and RESET input. PLA mate then
automatically reduces the Boolean expressions to minterm form, minimizes them
and then produces the PLA/FSM layout, as well as a listing of the input/output

numbering sequence and a PLA connection matrix.

The PLA or FSM generated by PLA mate is currently a static complemen-
tary CMOS NAND-NAND structure (Figure 2.4). The two levels of the PLA
are the AND plane, which generates the minterms that are required, and the OR
plane, which combines the minterms to produce the functions required. This
particular structure (Figure 2.4) allows all NM OS devices to be placed in a com-
mon P well, reducing the silicon area required. The FSM automatically includes
input and output latches and the feedback paths required to form the state vari-
ables. The use of a complementary CM OS structure reduces power dissipation,
but results in a large silicon area because both PMOS and NM OS transistors are

required for each logic function. In addition, the width of the series NMOS

23

transistors in the NAND gates is multiplied by the number of NAND gate inputs

in order to maintain symmetric rising and falling propagation delays [17].

Inputs [B
—> —>
N PLA
. |Input |. AND
. |Latches|. [PMOS NMOS plane
. |transistors transistors NAND
gates
_>
Sate -
Feedback
(_
PLA
. |Output |. OR
. |Latches|. [PMOS NMOS plane
. . |transistors transistors NAND
<« gates
< i
Outputs ‘ — ‘ 7

Figure 2.4. PLAmate Static CMOS FSM

Since the architecture has now been described, it is possible to explain why
it was efficient to add the bit-mask tests such as ???0B to the SPIL language.
Essentially, the more don’'t care bits in the bit-mask, the fewer the number of
connections from the data bus to the finite state machine (Figure 2.3). Reduc-
ing the number of these connections can significantly reduce the size of the PLA

used in the FSM. Thus, using bit-mask tests can reduce the area of the design.

24

In summary, the SPIL architecture may be based on a simple register
transfer design; however, it is very efficient to generate, and is adequate for

low-performance chip designs.

2.2.5. Timing Considerations

2.2.5.1. External Signals

Three signals are used to control and monitor execution of the algorithm by
the FSM. These are RESET, READY and GO (Figure 2.3). RESET and GO
are inputs to the FSM. READY isan output from the FSM. When the RESET
input is set high the FSM is forced into state 0. If the designer specified a
_reset procedure, then state O will be its first state. This procedure will be fol-
lowed by a wait state. If the designer did not specify a reset procedure (Fig-
ure 2.1), state 0 will be the wait state. Figure 2.5 contains the FSM dtate
diagram for the program in Figure 2.1. In the wait state, the READY output
signal is set high. In this state, the FSM is waiting for a GO signal. When GO
is set high, the FSM leaves the wait state which causes READY to be set low.
Thisis followed by the FSM executing the main program of the SPIL algorithm.
The main program is contained between the two statements BEGIN and END
(Figure 2.1). When the FSM is finished executing the algorithm, it returns to

the wait state where the READY output is again set high and the FSM waits for

25

another GO signal. This READY-GO-execute cycle is the method to perform

repetitive calculations using the chip.

The FSM states (Figure 2.5) for the demonstration program illustrate the
operation of the controller and the way that a designer’s algorithm is coded in
the FSM. State SO is the wait state. In state S1 the chip input is moved to the
register temp when the FSM sends the source address of input and the destina-
tion address of temp to the address decoders in the data path; also the FSM is
loaded with the value of temp to be used in the conditional test in state S3.
State S2 is a no-operation state; thisis explained in the next section. In state S2
a source address of temp puts the register contents on the data bus for input to
the FSM. The sign bit is tested and conditional branching occurs. If it is neces-
sary to make temp positive because it is currently negative, thisis done by mov-
ing temp to the complementer (S3), the constant 1 to the adder (S4), the output
of the complementer to the adder (S5) and the output of the adder to temp (S6).
This generates a two’s complement using a one’s complement plus addition of
one. Finally, temp is moved to the output register (S7) and the FSM returns to

the wait state and turns on the READY signal.

from any
State

dest. = temp

source = temp

dest. = _compl_in

source = constant 1
dest. = _add_in_1

source = _compl_out
dest. = _add_in_2

source = _add_out
dest. = temp

source = temp
dest. = output

Figure 2.5. Sample Program FSM Controller

26

27

2.2.5.2. Critical Path Analysis

The remainder of this section on Timing Considerations contains a detailed
analysis of the races which could occur in the SPIL architecture during its opera-
tion. This analysis is important because it is the basis for predicting the operat-
ing speed of the chip. The races will be specified in an expresson which gives
the minimum clock period. Since the architecture uses two non-overlapping
clocks, there are four phases per clock cycle. The result of the critical path
analysis is a specification of the minimum possible value for each of the clock

phases.

Figure 2.6 shows all of the essential timing units of the architecture. The
control path is represented by the PLA and the two sets of FSM latches. These
FSM input and output latches are shown by the two blocks to the left of the
PLA. The top latch, labelled In, is the FSM input latch, the bottom one,
labelled Out, is the FSM output latch. These level-sensitive latches have two
modes of operation, locked and transparent. When a latched is locked, its out-
put contains the data that was previously applied to the input of the latch, at the
instant when it was locked. When a latch is transparent, the input is smply
passed to output. The FSM latches are clocked by PHI2. When PHI2 is low,
the input latch is locked and the output latch is transparent. When PHI2 is

high, the modes of the latches are reversed. The data path is represented by the

28

remaining parts of Figure 2.6.

The P-channel transistor at the top of the data bus represents the precharge
circuitry. The data bus has storage registers, input/output registers and computa-
tional units connected to it. However, only the adder computational unit is
shown in this diagram, since this is all that is needed to demonstrate timing.
One degtination latch and one source discharge port are shown. The adder’'s
source and destination ports are shown because the adder is the slowest unit on
the data bus. The source block has three signals connected to it, labelled o, B
and y. Signal o is connected to the data bus in order to conditionally discharge
it. Signal B isthe data which has been computed by the adder unit. When sig-
nal y is set high, it enables the source to conditionally discharge the data bus
based on the data input from signal B. The destination block has three signals
connected to it, labelled &, e and { Signal § is used to read from the data bus.
Signal ¢ is the output of the destination latch and is input to the computational
unit. When signal is set low it enables the destination to load the value from
the data bus using signal 6. The gates below the registers are used to enable a
particular source or destination unit when the address decoder selects that unit
and the appropriate clock signal, PHI1- or PHI2, is applied. The address
decoder is a combinational circuit which selects one source and one destination

unit when the appropriate addresses have been generated by the PLA.

29

Vdd GO QESET
o— PHI1-
Data Bus
AN
In 7
0 \‘ ‘/ dst OC/| |\ src
add_latch_a| ¢ B add_out
AN AN
add 7 A 7
enable enable
SOPHIZL o
G Y V
[“X~X] o0 [~X~X~]
PHI2 PHI1- Out
A ddress Decoders
READY

Figure 2.6. Timing Units of SPIL Architecture

The critical path will be described using Figures 2.7 to 2.10. These figures
show, with bold lines, the signals which are propagating in each of the four
phases. In each diagram, these boldly-drawn signals are the ones which have to
settle before the next phase can be entered. Figure 2.11 shows the relationship

between the four clock phase numbers and the clocks PHI1- and PH12.

Vdd GO QESET
[o— PHI1-
Data Bus
¢ In —
dst src
add_latch_a add_out
add —
enable enable 5 PH |2
[“X~X] 00 [~X~X~]
PHI2 PHI1-
sc
A ddress Decoders
READY

Figure 2.7. Phase 1 Timing, Precharge

In order to leave this phase and enter phase 2, three signals must have set-
tled. First, the data bus must be precharged. Second, the data through the

adder must have settled. And finally, the inputs to the AND gates which logi-

PLA

cally AND PHI1- and a source unit select line must have settled.

30

31

Vdd GO QESET
O— PHI1-
Data Bus
¢ In —
dst /| |\ src
add_latch_a add_out
N [N
— >add 7 —
enable enable
5 PHIZ| o 4
[“X~X] o0 [~X~X~]
PHI2 PHI1-
dst
A ddress Decoders
READY

Figure 2.8. Phase 2 Timing, Source Discharge

In order to leave this phase and enter phase 3, three signals must have set-
tled. First, the data bus must be conditionally discharged by the source unit.
Second, all the signals through the output latches of the FSM must have settled;
signals such as the READY signal drive output pads and could have much
longer settling times than signals which go to the address decoders. And finally,
the inputs to the NAND gates which logically NAND PHI2 and a destination

unit select line must have settled.

32

Vdd GO RESET
O— PHI1-
Data Bus
\| |/ dst ‘ ‘ src
add_latch_a add_out
N
— >add [7
enable enable
(b PHIZ| o 4
[“X~X] o0 [~X~X~] N
PHI2 PHI1- Out
A ddress Decoders 1]
READY

Figure 2.9. Phase 3 Timing, Destination L oad

In order to leave this phase and enter phase 4, two signals must have set-
tled. First, the data bus must be read into the destination register. Second, the

data through the input latches of the FSM must have settled.

33

Vdd GO QESET
O— PHI1-
Data Bus
In —
H src
add_latch_a add_out
—add —
enable enable
<}>7 PHIZI pLa
[“X~X] 00 [~X~X~]
PHI2 PHI1-
A ddress Decoders
READY

Figure 2.10. Phase 4 Timing, No Calculations

There are no signals propagating in phase 4 that prevent immediately enter-
ing phase 1. However, thisis a theoretical restriction. In a real chip, there could
be clock skew between phases. Thus, the PHI1- and PHI2 clocks which specify
the phases may have to define phase 4 to be on the order of a few nanoseconds
to avoid clock skew. This is discussed further in section 5.2 (Maximum Clock

Frequency Determination).

Figure 2.11 contains a timing diagram which shows all of the signals which

could possibly be part of the critical path. This timing diagram was obtained by

analysing Figures 2.7 to 2.10. Here are definitions of the timesin Figure 2.11.

Tmin

tadder

thL A OL src

is the minimum possible clock period for PHI1- and PH 2.

is the minimum possible duration of phase 1.

is the minimum possible duration of phase 2.

is the minimum possible duration of phase 3.

is the minimum possible duration of phase 4.

is the time between the PHI1- and PHI2 clock edges which may
prevent clock skew in a real chip in phase 4. The subscript tol
means tolerance. This time will be on the order of nanoseconds.
For the purposes of critical path calculations, thistime will be set to

Z€Ero.

is the time to precharge the data bus.

isthe time for data to propagate through the adder.

isthe time for the signals to propagate through the PLA, FSM out-
put latches and address decoders to the input of all the source
discharge units AND gates which are gated by PHI11-. Note that

only the inputs to these AND gates must have settled. It is not

thL A 0L

thL A 0L, dst

talat

35

necessary for all the outputs of the FSM latches to have settled.

is the time to conditionally discharge the data bus by the slowest

source unit.

is the time for signals to propagate through the PLA to the FSM

output latches.

is the time for signals to propagate through the PLA, FSM output
latches and address decoders to the input of the destination units

NAND gates.

is the time for a data bus value to be read into the slowest destina-

tion latch.

is the time for all signals to propagate to the output of the FSM

input latches.

Phases :

PHI11-

PHI2

4 1 2 3
precharge source destination
discharge load
Tmin
t 4 t 2 t 3
t tol
t adder
t PLA,OL,src
t
c
t
PLA,OL
'pLA,OL,dst
" dlat
! IL
Critical
Path

Figure 2.11. Critical Path Timing Diagram

37

The times shown in Figure 2.11 can be expressed as :

U= tigl (2.1)

ty = max (ty, tagder — ta tpLa,oL . sc — ta) (2.2)

tp=max (te, thaoLae — t1— t4, thraoL — t1— 1) (2.3)

tg= max (tga tiL) (2.4)

Thin=t1+ th+ t3+ t, (2.5)
1

frmax = T (2.6)

Note that equations 2.1 to 2.5 will usually result in a simpler expression for
Tmin- From a detailed analysis in Section 4.3.2 (SILOS Critical Path A nalysis),
there is a most likely critical path, and it is shown in Figure 2.11. The signifi-
cance of this is that the delay due to computational units in the data path does
not contribute to the critical path delay. This is a result of having latches at
both the inputs and the outputs of the PLA. These latches essentially create a
two-stage pipeline. This covert concurrency using a pipeline increases the
operating speed of the architecture and is very significant in a single-bus data

path architecture.

The effect of the two stage pipeline can be observed in the FSM controller in
Figure 2.5. In order to make a conditional branch, in state S2, the value to be
tested must be put on the data bus the state before the FSM performs the test,

state S1. The action performed by the source and destination addresses in state

38

S, as shown in Figure 2.5, does not have any effect. Some architectures with
pipelines solve the problem of starting calculations before a branch is taken by
flushing out the pipeline before the branch instruction [21]. However, there is an
approach to improve the speed of branch instructions, better-suited to this archi-
tecture. This approach involves moving calculation that occurs after the condi-
tional branch block into the unused state which occurs just before the conditional
branch. Naturally, this reordering of the calculations cannot change the final
result of the algorithm. Only few calculations, if any, would satisfy this restric-
tion. This kind of optimization is similar to the way that the RISC architecture
and RISC compiler fill a pipeline before a branch with no-operation instructions
(NOP) and then try to optimize the program by replacing the NOPs with other
calculations that are independent of the branch [22]. An example of a situation
where this optimization can occur is shown in appendix A (SPIL Codec Files),
file rx.spil_list. The operations in state S032 can be moved so that they are per-
formed in state s028. Thisis an example of how to save one state. There are at
least three states that can be deleted in this example. Currently, the SPIL com-

piler does not perform this kind of optimization with its branch instructions.

39

2.2.6. Design Trade Off Techniques

When a designer writes a SPIL program to describe a chip, there will be
many trade offs required into order to obtain a design which satisfies desired
design criteria. Methods of reducing the data path area, the finite state machine
area, the number of external pins, the chip speed and the chip power dissipation

are described below.

In order to reduce the size of the data path, the following techniques can be
used. The number of registers, or program variables, that the algorithm requires
should be reduced by reusing variables;, however, this makes the algorithm more
difficult to read. The number of constants that the algorithm uses should be
reduced by combining other constants using addition and shifting, resulting in
more states in the FSM. The number of input and output ports that the program
uses can be reduced by combining similar ports (i.e. just input ports) into one
port and then time-divison multiplexing different data through that one port
using a few additional output signals to control off-chip multiplexors; this also
increases the number of states in the FSM. The number of computational units
that a program uses should be reduced by trying to make use of the minimal
number; this may increase the number of statesin the FSM. An example of the
use of the minimal number of computational units is a multiplication program

which uses shift and add loops but tries to make use of only one shifter unit.

40

In order to reduce the size of the FSM, the following techniques can be
used. Currently, SPIL does not perform data flow optimizations between separate
high-level statements. This means that the designer can sometimes reduce the
numbers of wasted states between high-level statements by expanding the high-
level statements using lower level data transfers between the SPIL computational
unit ports, such as add in 1, add in 2 and add out; however, this makes
the designer’s program very difficult to read and thus more prone to program-
ming errors. The size of the PLA can be reduced when the designer uses bit-
mask tests in order to reduce the number of connections between data bus and
the FSM. A very important technique to reduce the size of the FSM is to parti-
tion one FSM into a number of smaller FSMs. This is discussed further in the

next chapter on SPIL Enhancement for DSP Design.

In order to conserve the number of external pins, the previously discussed
techniques of time-division multiplexing and using bit-mask tests can be

employed.

The operating speed of the chip can be improved by increasing the width-
to-length ratios of transistors in the library of SPIL cells which are used to create
the data path. A similar technique can be applied to the transistors in the
latches of the FSM. The cost of these increases will be a greater power dissipa-

tion.

41

A chip’s power disspation can be reduced by decreasing the width-to-length
ratios of transistors in the SPIL library for the data path and the FSM latches.

The cost is a decrease in operating speed.

If it is not possible to trade off design criteria in order to achieve a desired
performance, it may be necessary to consider if SPIL should be used for such a

design or if the size of the algorithm should be reduced.

2.3. Performance Evaluation with Silicon Compilation

The previous section describes some of the trade offs among different
aspects of a chip’s performance in order to obtain a desired chip performance.
This section discusses how performance measures are obtained and how they can

be used to effect changes in the output of a silicon compiler.

In developing the design aid, the target silicon compiler was assumed to
have the four levels shown in Figure 2.12. The behavioural description may
consist of functional blocks and their interconnections (with a functional block
such as an ALU specified in terms of inputs, outputs and the functions relating
them). Logic synthesis then generates a logic level description, consisting of sets
of Boolean equations. A given Boolean function can then be trandated to the
transistor circuit level, with a netlist specifying the connections. Through place-

ment and routing of layout cells, the transistor circuit description is transated to

a layout level description.

Slicon Compiler
Levels:

Behavioural
Description
(A rchitecture)

N

Logic

Description
(Boolean Functions)

N

Transistor
Circuit
(Netlist)

N

IC Layout

(CIF)

if

approved

if

approved

Design Aid Analysis
and Feedback :

FEEDBACK:

Change
fan-in,
fan-out, ...

A

FEEDBACK:

Change
Transistor size,
Add Buffers, ...

A

ANALYSIS

™ Power, Area,

Delays

L > Output
Data

N

User inputs &
Technology data

Figure 2.12. Design Aid Requirements

42

43

The analysis of the layout can be obtained using a performance evaluator
which determines estimates of power dissipation, area and delay. The objective
is to provide an analysis of the output of a silicon compiler and also provide
feedback to higher levelsin the silicon compiler. Currently in SPIL, all feedback

is performed manually by the designer.

The logic level decisions on the definition of Boolean functions affect the
number of transistors in one gate and the fan-in and fan-out, and changes could
be recommended to improve performance. Transisor width and length parame-
ters, plus the addition of buffers, also affect the performance measures, and
changes could be identified. Any feedback changes would require designer

approval before implementation.

CHAPTER 3
SPIL Enhancement for DSP Chip Design

In order to provide a complete design environment with SPIL, four CAD
tools were used: (EPAD, SILOS, Partition and TARCON). These tools helped

to generate and to analyse the final codec chip that was generated.

EPAD is a performance evaluator which analysed the codec chip layout
from SPIL to obtain estimates about the codec’s performance. SILOS is a logic
simulator. The SILOS circuit description file of the codec was generated
automatically from EPAD to allow the EPAD delay estimates to be used in a
logic simulation. The program called Partition can be used to partition an FSM
which is generated by SPIL, into two or more FSMs that have a combined area
less than the original. The program called TARCON can be used to interconnect

signals in the layout during preparation for chip fabrication.

45

3.1. EPAD

3.1.1. Incorporating EPAD into SPIL

A design aid called EPAD (Estimation of Power Area and Delay) has been
developed for performance estimation of silicon area, power disspation and pro-
pagation delays of CMOS VLS circuits. EPAD automatically extracts estimates
of performance measures from a description of the integrated circuit mask
features and has been tailored for use with SPIL. EPA D was designed to provide
feedback in the SPIL design cycle (Figure 2.12) Currently, EPAD performs only

an analysis of the layout; feedback is performed by the designer.

3.1.2. Overview

Two input files are required to run EPAD (Figure 3.1). One file provides a
CIF description of the layout, and the other provides a set of technology and
input parameters. Performance measure estimates are written into the .epad file
and designer parameters and errors are listed in the .log file. EPAD provides an
input, in the .dat file, to the logic and switch level simulator SILOS [23]. In
order to calibrate EPA D, the critical path simulations obtained from SILOS were
compared to test results of fabricated chips; this is described in chapter 5 (Test

Results and Suggested Enhancements). EPAD is written in awk, a pattern

scanning and processing language [24].

technology
file

Enter:
epad file

Vv

Area Extraction

<<

Vv

Transistor/Node
Extraction (mextra

Vv

Capacitance
Calculation

Vv

CMOSGate
Identification

Vv

CMOSGate
Delay & Power

Vv

Transmission Gate
Identification

Vv

Transmission Gate
Delay & Power

Vv

Network Listing

>

file .epad

Figure 3.1. Overview of EPAD

46

47

3.1.3. Performance Measures

The three performance measures which EPAD extracts from layouts are

power dissipation, layout area and propagation delay.

EPAD predicts the dynamic power dissipation associated with gate output
capacitances charging and discharging. For every gate in the layout, EPAD
applies the formula:

denamic = Cgate VDDZf (3.1)

where:

Paynamic 1S the dynamic power dissipated by the gate charging and

discharging is output node capacitance.

Cyate is the capacitance of the output node of the gate.
Vb is the voltage swing of the gate’s output node.
f is the switching frequency of the gate.

The areas predicted by EPAD are the area of minimal size bounding boxes

around each of the cells in the CIF layout.

The delays predicted by EPAD are on a per gate basis For every gate in
the layout, EPA D lists the propagation delay times of the gate for the two cases

when the output node is rising or falling. These propagation delay time

48

definitions are shown in Figure 3.2.

Figure 2. Propagation Delay Time Definitions
vin
Vdd)\

Vdd/2

time
Vout 4

vdd

Vdd/2

g Hlpe time

Figure 3.2. Propagation Delay Time Definitions

3.1.4. Delay Models

B.A .White and M.l.Elmasry considered several propagation delay models
for CMOS inverters [25] and compared them using the circuit smulator SPICE
[26]; they concluded that the Burns inverter delay model [27] gave the best
results. To determine the propagation delay estimates for static NAND and

NOR gates, it was necessary to transform the series and parallel transistor

49

groups in these types of gates into an equivalent CMOS inverter. For example,
the series N-channel transistors in a NAND gate would be transformed into one
N-channel transistor by determining a width-to-length ratio derived from the

resistances of all the on transistors.

Equations 3.2 and 3.3 are used to combine the width-to-length ratios of

parallel and series transistors.

[W \ = min
L parallel

e]

The parameter kcapseries will be used to calibrate EPAD. It is a designer

2], fe]

input which estimates how much of the capacitance of the nodes between the
series transistors in a gate will be added to the gate output capacitance during
the delay estimation. A's kcapseries approaches 1, the gate output capacitance
increases, resulting in longer estimated propagation delays. Thus, kcapseries can
be used to obtain bounds on gate delays due to the worst and best case capaci-
tive loading conditions. EPAD predications can be compared to the results of

testing in order to calibrate kcapseries.

50

3.1.5. EPAD Example

The following is a summary of an example used to verify EPAD during
development [16,25] and is included here because it explains relevant details of
EPAD. The circuit of Figure 3.3 was used to compare EPA D delay estimation
to SPICE. The circuit is a 44-transistor design of a four-to-one multiplexor
made from three two-to-one multiplexors linked hierarchically. A summary is
shown in Table 3.1. EPAD-0 gave estimates within 8% of SPICE, but requiring
only 1% of the CPU time. Furthermore, the SPICE results are bounded by the

EPAD-0 and EPA D-1 calculations.

When a SILOS simulation was performed on this example, using a .dat file
generated from an EPAD-1 run and using similar worst-case conditions that
existed in the SPICE simulation, the propagation delays were as follows. The
propagation delay (rising input) from s 0 to the node end was 38 ns, and the
delay for falling input was 32 ns. These SILOS times compare favourably with
the summations of EPAD-1 times of 39.55 ns and 32.77 ns (Table 3.1). Differ-

ences can be accounted by the fact that SILOS uses only integer values.

The EPAD power dissipation estimates were compared to a SPICE calcula-
tion of power dissipation, using a method proposed by Kang [28]. This involved
adding a dependent current source and parallel RC circuit to the SPICE netlist

in series with the Vpp line so that the voltage across the capacitor indicates the

51

sO 3 sl 34
- 158
in_0
98 111
106 L

in_1
L] 36
L 50 a
in_2
5 43
10
in_3

L end out

Figure 3.3. An EPAD Evaluation Circuit

average power consumption, without disturbing circuit operation. The SPICE
simulation showed a power dissipation of 21.17 micro-watts at 1 MHz. The
EPAD power dissipation estimates were 42.17 micro-watts (EPAD-0) and 52.38
micro-watts (EPAD-1). As expected, the EPAD estimates were higher, due to

the assumption that every gate is switching in every clock cycle.

Table 3.1. Comparison of EPAD to SPICE

52

50%-Point Propagation Delays (ns)

I nput Gate Output Risings_ 0 Fallings 0
Node Type Node | SPICE EPAD-0 EPAD-1 | SPICE EPAD-0 EPAD-1
s0 ANV 3 3.10 3.48 3.48 4.34 6.05 6.05
3 .NAND 158 7.05 6.83 8.27 4.63 4.36 5.29
158 .NAND 98 6.10 5.41 8.42 5.08 4.70 7.32
98 .NAND 111 7.09 6.83 8.27 4.63 4.36 5.29
111 .NAND 36 5.83 5.21 8.22 4.96 4.52 7.15
36 ANV end 4.06 2.89 2.89 2.83 1.67 1.67
s0 total end 33.23 30.65 39.55 26.47 25.66 32.77

EPAD-0 : kcapseries = 0.0
EPAD-1 : kcapseries = 1.0

3.2. SILOS

SILOS was chosen as the logic simulator to interface with EPA D because of

four important features.

The first feature is that the logic simulation capabilities of SILOS properly

simulate exclusive or gates modelled using transistors, as shown in Figure 3.4. In

less robust simulators, the feedback through transmisson gates is not correctly

modelled as a combinational circuit. The ripple-carry adders used in the SPIL

architecture are based upon circuits similar to the exclusive or gate.

The second feature of SILOS is its ability to model high-resistive transmis-

sion gates, as well as low-resistive transmission gates. This is important to the

SPIL architecture because the source discharge units must discharge the data bus

against the pull of of the trickle-charging data-bus precharge circuit.

53

The third feature of SILOS is its ability to perform fault simulation, con-

firming the quality of the circuit test pattern.

The fourth important feature of SILOS is its speed of execution. When
EPAD delay models were used in the logic smulator, it gave the accuracy

approaching that of a timing ssimulation, but requiring less CPU time.

| >
il
1
L
1

Exclusive OR
of A and B

Figure 3.4. Exclusive OR Gate Circuit

3.3. FSM Partitioning

The glicon area required by the FSM generated by PLA mate was observed
to increase rapidly as a function of the number of states in the algorithm, and
the number of product terms required, primarily due to the scaling of NMOS
transistor widths with the number of NAND gate inputs. One alternative for

reducing the FSM area (while still using PLAmate) is to partition the state

diagram into separate sequential parts. The separate parts are each used to gen-
erate finite state machines that are combined into one controller. The FSMs run
in sequence; the completion of the first one activates the second one, and so on.
The splitting can be done by modifying the .fsm PLA mate input file created by

SPIL ; therefore no changesto SPIL are required.

Partitioning was tried on the receiver’'s FSM controller. For the case of two
partitions, states O to 16 were used for the first FSM, with an added output to
generate the GO signal for input to the second FSM. New states were created to
assert this GO and then return to state 1. The second FSM was composed of
states 17 to 32. A new state 0 was added to assert the READY signal from the
second FSM and wait for the GO signal from the first FSM. State 32 was modi-

fied to return to this new state O which is also the RESET state.

Partitioning was achieved automatically by running a program, Partition
(written by Brian White), on the .fsm file generated by SPIL to produce new .fsm

files for the partitions. To run the program on the receiver, enter:

55

partition 3 17 32 receiver

where:
3 isthe number of the state that waits for the GO signal.
17 isthe starting state for the second partition.

32 isthe last state.

The partitions must be self-contained with a sequential state advancement at
the partition point (in this case, state 16 goes to 17). Also note that state 17 is
the beginning of a two-state conditional test block. It is not possible to start a
partition in the middle of a two-state conditional block such as states 17 and 18,
see appendix A (SPIL Codec Files), file rx.spil_list. The current version of the
partitioning program does not indicate if the designer has made such an invalid
partition. New .fsm files receiver_1.fsm and receiver_2.fsm are produced. The
first FSM has an added output GO_2 to give a GO signal at the appropriate
time to the second FSM. A ppropriate reset and starting states were added to the
second FSM, and appropriate ending states added to the first FSM. This is set
up in such a way that the address line outputs can be ORed together, the overall
GO sdignal is connected to only the first FSM, an overall READY signal is
obtained by ANDing all of the individual FSM ready signals, and the overall
RESET signal is connected to each FSM reset. The data path is connected to

the input latches of each FSM.

56

The program handles up to 10 partitions; in these cases the first FSM has an
output GO_2 to be connected to the GO input of the second FSM, the second

FSM has an output GO_3 to be connected to the third FSM, and so on.

The results of partitioning are shown in Table 3.2. There is some reduction
in the area in utilizing to two partitions. With this capability of partitioning, the
algorithm could be rewritten to provide for partition points. This analysis does
not include the area of the wiring and combinational circuits required to inter-
connect the partitions. The area saved by partitioning was not enough to war-
rant the extra design effort required.

Table 3.2. FSM Partitioning Results

Example Number Number Number Number Number Height Width Area
of of of of of (dsm”) (dsm) (dsm)2
Inputs Outputs States Sate Product

Lines Terms

1. no partition

receiver.fsm 10 9 33 6 38 2433 3137 7,632,321

2. two partitions
receiver_1.fsm 10 10 19 5 22 1534 1942 2,979,028
receiver_2.fsm 10 9 17 6 20 1524 1935 2,948,940
Total Area 5,927,968

* Design Scale Microns[18,19] (1 dsm = 0.6 pm)

57

3.4. TARCON

TARCON (Terminal ARray CONnector) was written by Dan Salomon. It is
a small program that can be used to route between the opposite sides of a chan-
nel, provided that the channel can be routed in one layer, such as metal. This
program will be the basis for automatically interconnecting the SPIL data path
and FSM. Currently, TARCON can be run by manually entering the coordi-
nates to be routed. Even used manually, TARCON is more efficient than Cae-
sar [29]. TARCON can be instructed to route the channel in any width. If the
channel cannot be routed in the specified width, the minimum possible width will

be used.

CHAPTER 4
ADM-PCM Codec Chip Using SPIL

4.1. Chip Specifications

In order to evaluate SPIL and its support tools, such as EPA D, an appropri-
ate design example had to be chosen. This example demonstrated that the

design methodology of using SPIL and EPA D increases design automation.

For the design example to be effective, it had to satisfy certain require-
ments, such as power dissipation, area and delay. These requirements or con-
straints are imposed by the algorithm and the packaging of the fabricated chips.
The algorithm will specify that the design will have to operate at a certain speed,
and thus, delays in the design will have to be minimized to satisfy the speed
requirement. The type of packaging for the chips obtained from the CMC
imposes limits on the chip area, power dissipation and number of external pins

[18,19].

Since the chips generated by SPIL have maximum clock frequencies on the
order of MHz, the maximum data rates will on the order of kHz. SPIL chips

can have approximately a dozen storage registers of up to about 22 bits wide.

58

59

The specific constraints imposed by the packaging are as follows. The
ceramic Dual-In-Line (DIP) packages can reliably dissipate 750 mW. The area
of a chip cannot exceed 4511um x 4511um. However, the design may use more
than one chip. If two chips are required, the data path could go on one chip
and the FSM could go on the other. The maximum number of pins for a
ceramic DIP package is 40. The maximum number of pins for a Pin-Grid-Array
(PGA) package is 68. The maximum power dissipation for the PGA is also 750

mwW.

Based on the limitations, a design example was chosen for speech process-
ing, specifically for speech compression. Since SPIL produces a digital signal
processing architecture, the example had to perform an all-digital compression.
The design example is a chip which performs conversions between high-speed
bit-serial Adaptive Delta Modulation (ADM) and low-speed bit-parallel Pulse
Code Modulation (PCM). The Song step-size predication algorithm was used
[15]. Since hardware multiplications in SPIL have to be done using shift-and-
add-loops, the cost of multiplications is very high. This means that more sophis-
ticated techniques, such as Linear Predictive Coding [30], could not be imple-
mented because they require multiplications. However, the Song algorithm, can
still compress 8-bit 8kHz PCM to and from 32kHz ADM and maintain a

Signal-to-Noise Ratio (SNR) of 25dB [15].

60

4.2. Algorithm Design

The chip is divided into two main parts. One part is called the transmitter
which converts an 8-bit PCM signal to an ADM signal. The other part is the
receiver which performs the reverse operation and convertsan ADM signal to an
8-bit PCM signal. Eight bit PCM was chosen because it is a standard value and
it provides a high enough SNR, compared to the theoretical restrictions of the
Song algorithm. Consider that the SNR of 8-bit PCM is about 8 bits x “6dB/bit
= 48 dB. This is higher than the maximum theoretical SNR of the Song algo-
rithm [15]. The transmitter and the receiver were designed separately using
SPIL and then combined into one chip using a layout editor, Caesar. The
transmitter and receiver operate independently. This means that with two chips
located at opposite ends of a channel that full-duplex communication can occur
because there are independent transmitter-receiver pairs at opposite ends of the

channel.

It is necessary to describe the receiver before the transmitter since the
transmitter is built upon the same circuitry present in the receiver. However,
looking ahead at the block diagram of the transmitter (Figure 4.5) may make

understanding the receiver easier.

61

A block diagram of the Song A DM-to-PCM conversion algorithm [15] used
in the receiver is shown in Figure 4.1. At the left is the bit-serial ADM input.
At the right is the bit-parallel PCM output. The block that the ADM bit stream
passes into is known as the step-size predictor. It tries to predict the the general
trend of the ADM input and adjusts the step size accordingly. The second block
in Figure 4.1 isfor the summation of the step sizes with the previous estimates of
PCM values. Finally, the AND gate at the end of the diagram represents a sim-
ple way of obtaining a PCM output at a lower bit-parallel data rate by using only
every Nth estimate from the summation block. Note that this simple method of
sampling to convert the PCM output down to the lower bit rate resultsin about a
7dB loss in SNR compared to digitally filtering the high-speed PCM before sam-
pling [15]. The loss in SNR is due to aliasing of the noise that the Song algo-
rithm creates in the conversion process. It was impractical to add such a digital
filter to the algorithm due to the multiplications that are required. However,
filtering could be done as a post-processing operation on the output of the SPIL

chip [31,32].

Equations 4.1 to 4.4 mathematically describe the details of the digital signal

processing algorithm.

A[%%((k) > }CM
x r X kN
B N
1 1
fS% éfg

N

Figure 4.1. Receiver : ADM-to-PCM Converter

e«(k) = +1,—1 represented in binary as 1, 0

S0 = Sl D) |efk= D + Spn efk- 2
X() = (k= 1) + S,(K)
fS: N fN
where:

62

(4.1)
(4.2)

(4.3)
(4.4)

e.(k) represents the error between the true PCM value and the estimate at time

step k. If e,(k) = 1 then the true PCM value is greater than or equal to

the estimate. If e (k) = —1 then the true PCM value is less than the esti-

mate.

S.(k) represents the value of the step size at time step k. In other words, the

estimate of the true PCM value at time step k has been increased by the

value of S (k).

63

Snin represents the smallest possible change that can be made to the step size.

A value of S;,;,;=1 has been used.

X(k) representsthe estimate of the true PCM value at time step k.

fg represents the sampling frequency of the ADM values.

fn represents the sampling frequency of the PCM estimates.

N is an integer greater than or equal to one. N is1 in the implemented ver-
sion. This is the most general implementation because it permits any

interface to the chip to arbitrarily choose N.

Equation 4.1 specifies the ADM values and how they are represented in

binary.

Equation 4.2 specifies how the next step size, S,(k), is calculated based on
the trend of the ADM inputs, e,(k—1) and e (k—2), over the previous two time
steps. The predictor equation (4.2) changes the step size, S,(k), to satisfy two
criteria. The first criteria is to adjust the step size’s sign so as to move toward
the true PCM value. The second criteria is to adjust the step size's magnitude to
decrease or increase if the predicted PCM value appears to be converging or not
converging on the true PCM value. In order to explain these two criteria of the

predictor, the details of its operation are shown in Table 4.1. Table 4.1 shows

all the combinations of negative and positive values that can exist in equation
(4.2). As an example, consider line three of the Table 4.1. The situation
described by line three is shown in Figure 4.2. Since e,(k—1) is+ 1 in Table
4.1, line 3, the true PCM value was greater than the predicted one at time k-1.
The situation was reversed at time step k-2. From e (k—1) which is positive,
equation (4.2) causes the step size, Si(k), to be positive so that the predicted
PCM value moves towards the true PCM value. Since the predicted PCM
value’s curve crossed just over the true PCM value’s curve, the predicted PCM
value must be converging on the true PCM value. Thus, the step size’'s magni-

tude is decreased to X-1 from X, and thus, the second criteria of the predictor is

met.
Table 4.1. The Song Predictor (Equation 4.2) (X>0) (Sy,in=1)

S(k) s | S(k-1) e (k-1) e (k-2)
-X-1 X -X -1 -1
X+ 1 X -X -1 +1
+ X-1 X -X +1 -1
+X+1 X -X +1 +1
-X-1 X + X -1 -1
X+1 X + X -1 +1
+ X-1 X + X +1 -1
+X+1 X + X +1 +1

65

PCM values
True PCM
Predicted PCM
| | |
\ 1 \ .
k-2 k-1 Kk Time

Figure 4.2. Situation in Table 4.1, line three.

Equation 4.3 specifies how the step size, Si(k), is added to the previous esti-
mate of the PCM value, X(k—1), to produce the current estimate of the PCM

value, X(k).

Equation 4.4 specifies that the sampling frequency of the ADM inputs must
be N times greater than the sampling frequency of the estimates of the PCM at

the output. Asindicated, N isequal to 1 for generality.

Figure 4.3 is a signal-flow graph representation of equations 4.1 to 4.4, as

well as an expanded version of the block diagram shown in Figure 4.1.

In this section the SPIL program which generates the receiver is described in
detail. The actual program follows this description as shown in Figure 4.4. In
order to help with the explanation, references will be made to Figure 4.3 because

the program implements, step by step, what is shown in the signal flow graph in

66

Smin=1
e (K) T8k D oD,
z z \X)
S (k) X (K)
D=
X (k-1)

(s)

‘Sx(k-l)‘
x|

s, (k-1)
-1
z

Figure 4.3. Receiver : Signal-Flow Graph

this figure. The program shown in Figure 4.4 is the final version of the algo-
rithm. Many iterations of this algorithm were performed and these iterations
required three weeks. A summary of designer experience and algorithm itera-

tion techniquesis given in section 2.2.6 (Design Trade Off Techniques).

67

The first part of the program is declarations. The first line of the program
gives the title, ADM to PCM converter. As shown in Figure 4.3, this chip con-
verts an ADM input, e,(k), to a PCM output, X(k). In the CONST section of the
program, a variable is declared called data width. This variable is a reserved
constant in SPIL which is used to set the width of the data bus. In this case, it
means that all the variables declared in the VAR section will be 8 bits wide.

Thus, the program will generate 8-bit PCM.

The first variable, ADM input, is a register to bring off-chip values to the
data bus when ADM input is selected. The parameters 0..0 UPWARD indicate
that only bit 0, the least significant bit, is supposed to connect to the chip and
that the off-chip input is suppose to run up the data path according to the orien-
tation shown in Figure 2.3. This variable must contain e, (k) for the entire dura-
tion of the main program (between BEGIN and END.) in order to be latched by

the hardware.

The second variable, PCM output, IS a register to latch data bus values
when PCM output is selected. The outputs of the register are taken off chip.
The parameter DOWNWARD indicates the off-chip lines are supposed to down run
data path according to the orientation shown in Figure 2.3. Since no bit range is
specified (such as 0..0 for ADM input), all eight register outputs will run off

chip. This variable will contain X(k) at the end of the main program.

68

The third variable, Ex, is one 8-bit SPIL variable and one 8-bit register on
the data path, but it holds two algorithm variables. The algorithm variables are
e.(k—1) and e (k—2). The least significant bit of Ex, bit O, stores e,(k—1) at the
beginning of the main program. The next significant bit of Ex, bit 1, stores

e.(k—2) at the beginning of the main program.
The fourth variable, sx of k, stores S (k) at the end of the main program.
The fifth variable, X of k, stores x(k) at the end of the main program.

After the variable declarations is the PROCEDURE reset. This is the only
procedure that is allowed in SPIL. It specifies the operations to be performed
when a hardware reset signal occurs. In this case, the procedure causes all three

integer variables to be set to zero.

The remaining part of the program is between the BEGIN and END. State-
ments. Here the algorithm is coded. The groups of statements in the program

will be related to the operations in the signal flow graph in Figure 4.3.

The first statement, IF Sx of k ..., performs the absolute value at the

output of the delay element, Z~1, at the bottom of Figure 4.3.

The next statement, IF Ex ..., computes the output of the multiplication
operator closest to the bottom of Figure 4.3. Note that the multiplication units

in the signal flow graph only have to perform a multiplication with + 1 or -1,

69

and thus, the multiplication operation in the SPIL program can be performed

using an IF statement.

The next group of statements spans six lines, starting with add in 1
They perform three sequential functions in Figure 4.3. The first is to compute
the output of the remaining multiplication operator. The second is to compute
the output of the leftmost addition operator. The third is to propagate the value

of S(k) to the output of the delay element closest to the bottom of Figure 4.3.

The next statement, X of k ..., performs two sequential functions in Fig-
ure 4.3. The first is to compute the output of the rightmost addition operator.
The second is to propagate the value of X(k) to the output of the rightmost delay

element.

The next group of statements spans two lines starting with Ex They
perform two sequential functions. The first function is to propagate e,(k—1) to
the output of the delay element which is fed directly from the output of the left-
most delay element. The second function is to read in the off-chip ADM signal

and to propagate it, e,(k), to the output of the leftmost delay element.
The last statement, PCM output ..., copies X(k) to the off-chip latches.

The various iterations of the receiver will not be discussed since the design
techniques which were used to iterate the design have already been summarized

in section 2.2.6 (Design Trade Off Techniques). A more detailed description of

the receiver may be found in A ppendix A (SPIL Codec Files).

PROGRAM ADM to PCM ;

CONST
_data width = 8 ;

VAR
ADM input : input port CONNECT 0..0 UPWARD ;
PCM output : output port CONNECT DOWNWARD ;
Ex , { starting from LSB(0) : Ex(k-1),)}
Sx of k , { Step to next predlcted PCM }
X of k : integer ; { Last PCM output }
PROCEDURE _reset ; { Chip initialization procedure }
BEGIN
Ex := 0 ; { Make Ex(k-1) = Ex(k- 0}
X of k =0 ;
Sx of k := 0 ;
END ;
BEGIN

IF Sx of k < 0 THEN Sx of k := 0 - Sx of k ;

IF Ex = ???????0B THEN Sx of k := 0 - Sx of k ;

~add in 1 := Sx of k ; { IF Ex(k-2) = 1 THEN }
IF Ex = ??????1?B THEN { }
~add in 2 := 1 { Sx of k := Sx of k + 1 }
ELSE { ELSE }
~add in 2 := -1 ; { Sx of k := Sx of k - 1;}

Sx of k := add out ; { (No over/under-flow check) }
X of k := X of k + Sx of k ; { No over/under-flow check }

Ex := Ex << 1 ; { Shift signals left i.e. one time step }
IF ADM input = ???????1B THEN Ex := Ex + 1 ;

PCM output := X of k ;
END. { ADM input must have remained valid all the time }

Figure 4.4. The Receiver Program

71

Figure 4.5 is a block diagram of the transmitter. It contains three parts.
Two of the parts, the predictor and the summer, have already been described in
the discussion about the receiver. The third block is a comparator, a combina-
tional circuit which generates either + 1 or -1 depending on the two inputs. If
the PCM input, x(k), is greater than or equal to the estimate, X(k), then the out-

put of the comparator is 1; otherwise the output is -1.

PCM COMPARATOR
A QQ{L ADM
+ 1
D o\
<J H%_l
X (k) -

S, (k)

2. Sd(k)

Figure 4.5. Transmitter : PCM-to-ADM Converter

72

The operation of the transmitter will now be described. Since the
transmitter is based upon the receiver, equations 4.1 to 4.4 are still valid. PCM
data is input to the transmitter at a rate fy, and ADM data is output at a rate N
times higher, fs This means that a particular PCM sample should be applied to
the input of the transmitter and held constant for N cycles so that N ADM data

values can be calculated per PCM value.

The SPIL program which generates the transmitter will not be described in
detail since it is very similar to the receiver. Only the significant differences
between the transmitter and the receiver will be discussed. The program follows
this description (Figure 4.6), but in order to help with the explanation, refer-
ences will be made to Figure 4.3 and Figure 4.5 because the program imple-

ments, step by step, what is shown in these figures.

The first significant differences between the transmitter and the receiver are
two variables. The first variable, PCM input, IS a register to bring off-chip
values to the data bus when PCM input is selected. The parameter DOWNWARD
indicates the off-chip lines are supposed to down run data path according to the
orientation shown in Figure 2.3. Since no bit range is specified (such as 0..0
for ADM output), all eight register outputs will run off chip. This variable must
contain x(k) for the entire duration of the main program in order to be latched

by the chip.

73

The second variable, ADM output, IS a register to latch data bus values
when ADM output is selected. The parameters 0..0 UPWARD indicate that
only bit 0, the least significant bit, is supposed to run off chip and that the off-
chip line is supposed to run up the data path according to the orientation shown

in Figure 2.3. This variable will contain e,(k) at the end of the main program.

The remaining significant differences between the transmitter and the
receiver are the last two groups of statements at the end of the transmitter pro-
gram. The first of these two groups of statements spans two lines, starting with
Ex It performs five sequential functions. The first function is to propagate
e.(k—1) to the output of the delay element which is fed directly from the output
of the leftmost delay element shown in Figure 4.3. The second function is to
read in the off-chip PCM data, x(k). The third function is to compute the out-
put of the addition operator shown in Figure 4.5. The fourth function isto com-
pute the output of the sign block shown in Figure 4.5. The fifth function is to
propagate e,(k) to the output of the leftmost delay element shown in Figure 4.3.
The last statement, starting with ADM output ..., copies e (k) to the off-chip

latches.

A more detailed description of the transmitter may be found in A ppendix A

(SPIL Codec Files).

PROGRAM PCM_to ADM ;

CONST
_data width = 8 ;

VAR

PCM input : input port CONNECT DOWNWARD ;
ADM output : output port CONNECT 0..0 UPWARD ;

1

1

Ex , { starting from LSB(0) : Ex(k-1),)}
Sx of k , { Step to next predlcted PCM }
X of k : integer ; { Last PCM output }
PROCEDURE _reset ; { Chip initialization procedure }
BEGIN
Ex := 0 ; { Make Ex(k-1) = Ex(k- 0}
X of k =0 ;
Sx of k := 0 ;
END ;
BEGIN

IF Sx of k < 0 THEN Sx of k := 0 - Sx of k ;

IF Ex = ???????0B THEN Sx of k := 0 - Sx of k ;

~add in 1 := Sx of k ; { IF Ex(k-2) = 1
IF Ex = ??????1?B THEN {
~add in 2 := 1 { Sx of k :=
ELSE { ELSE
~add in 2 := -1 ; { Sx of k :=
Sx of k := add out ; { «
X of k := X of k + Sx of k ; {

!
!
Sx of k + 1}
!
!

Sx of k - 1;

(No over/under-flow check) }

No over/under-flow check }

Ex := Ex << 1 ; { Shift signals left i.e. one time step }

IF PCM input > X of k THEN Ex := Ex + 1 ;

ADM output := Ex ;

END. { PCM_input must have remained valid all the time }

Figure 4.6. The Transmitter Program

74

75

After designing the transmitter and the receiver, it is possible to determine
the minimum clock frequency of the codec chip in order to process 32 kHz
ADM. From Appendix A (SPIL Codec Files), the transmitter requires 34 states

during its worst case of input and state conditions to generate an ADM output.

32000~ DS g4 SAES) gegyqp6 StAteS
second bit second

Since one FSM state corresponds to one clock signal, the clock frequency of the

chip will have to be 1.088 MH z, or higher.

4.3. EPAD Analysis

After SPIL generated the design example, the chip layout was completed by
manually interconnecting the data path and the FSM using the layout editor,
Caesar. This was done for both the receiver and the transmitter. EPAD was
run on the layout which was generated by SPIL. The files for the EPAD run

are in appendix B (EPAD Files).

This section about the EPA D analysis is divided into two parts. The first
part is on logic simulation for the purpose of verifying the chip generated by
SPIL and the algorithm which has been coded in the SPIL program. The second
part is on critical path ssimulation for the purpose of determining how fast the
chip can be clocked. Recall that these simulations are performed using SILOS

and that the circuit description file for SILOS was generated automatically from

76

EPAD.

4.3.1. SILOS Logic Verification

The sample output shown in appendix C (SILOS Logic Files), file output,
demonstrates part of the operation of the receiver: the ADM-to-PCM converter.
Only a few salient simulation time points are shown in this sample output. The
times in the simulation are in nanoseconds. The PHI1- and PHI2 clocks have

periods in this simulation of 1000 nanoseconds.

At time 0, the receiver reset signal, NRRESET, is high. The reset signal is
lowered at 875 after it is latched by the FSM’s input latches. Thisis followed by
the chip executing its reset procedure. The signal, NBREADY, which indicates
that the reset procedure is finished, rises at time 4772. Both the ADM input
signal, NaDM IN, and the go signal, NRGO, are high at time 5625 which causes
the chip to constantly convert ADM values of 1 to PCM values. It takes
between 20000 and 30000 nanoseconds to perform one conversion with the 1
MHz simulation clocks. Thus, at time 30772 when the ready signal rises again,
the initial PCM value has been computed. The PCM output is shown by the sig-
nals RPCMOUT H and RPCMOUT L which are the most significant and least signifi-
cant hexadecimal values. The PCM output at 30772 is FF (-1 decimal). The

next PCM output at 55772 is FF (-1 decimal). The next PCM output at 76772

77

is 00 (O decimal). The PCM outputs for ADM inputs are summarized in Table

4.2. These PCM outputs were verified using equations 4.1 to 4.4.

Table 4.2. Receiver Logic Verification Example

Smulation | Time | ADM Step PCM
Time Point | Input Size | Output
e(k) | Si(k) | (k)
-3
-2 -1
-1 -1 0 0
30772 0 1 -1 -1
55772 1 1 0 -1
76772 2 1 1 0
97772 3 1 2 2
118772 4 1 3 5
139772 5 1 4 9
160772 6 1 5 14
178772 7 -1 6 20
200772 8 -1 -5 15
226772 9 -1 -6 9
252772 10 -1 -7 2
278772 11 -1 -8 -6
304772 12 -1 -9 -15

The transmitter was verified in a similar manner to the receiver since they

are very similar.

78

4.3.2. SILOS Critical Path Analysis

Appendix D (SILOS Critical Path Files), file output, shows how a sample
propagation time was determined. The propagation time through the input
latches of the adder and the adder itself, ty 4 aqqer, Was determined from the last
column of the simulation output which shows the outputs of the adder settling at
time 13574. Since the input latches of the adder were enabled at time 13500, it

took 74 nanoseconds to propagate through the adder latches and the adder.

The propagation times in Table 4.3 were calculated in a similar manner.
The terms used in Table 4.3 have already been described in equations 2.1 to 2.6.
Tmin Was calculated using equation 29. The most important result of this section
is the prediction that the chip will run faster than 1.088 MHz. The 1.088 MHz
frequency is discussed at the end of section 4.3 (Algorithm Design). Thus,
EPAD predicts that the clock frequency is high enough to permit the codec to

compress and decompress 8 kHz PCM speech signals.

The transmitter and receiver contain 4996 transistors. The total power dissi-
pations of the codec chip from EPAD-0, kcapseries=0.0, and from EPAD-1,
kcapseries= 1.0, are 27.0mW and 31.4mW when operating at 1 MHz. EPAD

predictions for the codec chip are summarized in Table 4.4.

Table 4.3. Detailed Codec Propagation Delays (ns)

79

Times Receiver Transmitter
EPAD-0 | EPAD-1 | EPAD-0 | EPAD-1

tiol 0 0 0 0
ty 6 6 6 6
Ladder 54 54 54 54
thL A OL s 73 155 76 177
te 6 6 6 6
thLa oL 44 126 48 149
thL A OL dst 69 151 72 173
talat 29 29 29 29
t). 66 66 70 70
T min 145 227 152 253
fmax 6.90 4.40 6.58 3.95

Table 4.4. Design Summary for PCM-ADM Coder-Decoder

Parameter EPAD
EPAD-0 EPAD-1

Tx/Data Path 1633 x 1703 1633 x 1703
Area Tx/Control Path 1601 x 2069 1601 x 2069
(um)2 Rx/Data Path 1633 x 1703 1633 x 1703

Rx/Control Path 1460 x 1883 1460 x 1883

Codec 4511 x 4511 4511 x 4511
Clock Tx 6.58 3.95
Frequency Rx 6.90 4.40
(MH2) Codec 6.58 3.95
Power Tx 11.5 13.9
Dissipation RX 15.5 17.9
(mW) Codec 27.0 314

80

4.4, Test Plan

The architecture which SPIL generates does not contain any testing struc-

tures, such as a scan path [33]. Four methods of were considered.

The first method considered was the addition of test structures to test the
basic parameters of the process. This test structure is known as a test insert and
was placed in an unused area of the chip. If there is some question about the
correctness of the fabrication process, then these test structures can be probed.
The test structure is described by the schematic shown in Figure 4.7. This struc-
ture consists four sub-structures. The first sub-structure contains long poly lines
and contact chains, the second an N-Channel transistor, the third a P-Channel

transistor, and the fourth a CM OS inverter.

The second test consideration was to determine the correctness of the input
and output pads. This test structure consists of an input cell connected directly
to an output cell. Since the 1/0 cells were characterized at the CMC, the I/O
cells on the three chips could be evaluated in terms of the CMC’s previous

results [34].

Third, the chip contains a test structure to observe the eight data bus values
in the receiver. A single data bus line is observed by connecting the data bus
line to the gate of an N-Channel transisor. The source of this transistor is

grounded. The drain of the transistor is connected to a probe pad. This open-

81

drain structure can be used to observe changes in the data bus signals to a reso-

lution of 0.2 nswith a negligible effect on the data bus [35].

polysilicon

i
"W Dy O He 00
T

contact chains

Figure 4.7. The Tes Insert

The fourth test consideration was the development of a test pattern, and the
single-stuck-at fault coverage of the test pattern is 80.1 percent. It was found
that 9.0 percent of the undetected faults are redundancies in the SPIL architec-
ture. Appendix E (SILOS Fault Smulation Files) contains the results of the

SILOS fault simulation.

82

4.5. Submission for Fabrication

The codec was sent for fabrication on January 7, 1987. The chip is identi-
fied by the logo WTBRP in the upper right corner. The pad frame for the codec
was supplied by the CMC. The pad frame specified the maximum dimensions of
the chip that could be submitted. The codec used the largest possible one, the A
pad frame which is 4511 um by 4511 um. This pad frame isrestricted to having
10 bonding pads per side of the chip. See the plot of the chip in appendix B

(EPAD Files), file codec.cif.

The input and output pads that were employed were developed at CMC for
use by researchers using the VLSl implementation service [25]. There are two
criteria for selecting an 1/O cell. One criteria is simply whether an input cell or
an output cell is desired. The second criteria is the aspect ratio of the desired
cell. There are two possible aspect ratios, narrow (type X) and square (type Y).
Thus, there are four different 1/0O cells: XIN, XOUT, YIN and YOUT. The
codec used the Y cells since they do not extend as far into the chip as the X
cells. If Y cells are used, the working area of the A pad frame is reduced to
3911 um by 3911 um. The functions of the 1/O cells are now described. The
input cells pass the input signal directly to the inside of the chip, but this signal
is clamped to the upper and lower power rail voltages by a PNP and an NPN

transistor, respectively. The output cells could have been used as tri-state

83

buffers, but were not. The output cells were used as non-inverting buffers.
These output cells are capable of driving loads such as 50 pF with propagation

delays on the order of tens of nanoseconds.

By sharing only the Vpp and GND connections for the transmitter and

receiver, the chip requires 32 external pins.

Figure 4.8 contains a photomicrograph of the ADM-PCM Coder-Decoder.

e e MR e L= A TTLE = -|l Tmemss Tyl SR
e e - *""'"""
S, S i] S s - |

Figure 4.8. ADM-PCM Coder-Decoder Photomicrograph

CHAPTER 5

Test Results and Suggested Enhancements

This chapter describes three tests that were performed on the fabricated
codec chips. These tests verified the logic, determined the maximum clock fre-
guency and determined the power dissipation. The results are discussed, includ-

ing the calibration of EPA D, and enhancements are suggested.

5.1. Logic Verification

A block diagram of the test apparatus for logically verifying the receiver is
shown in Figure 5.1. The data generator was used to store and generate the test
patterns for the Device Under Test (DUT). An ammeter was employed to
obtain the static drain current of the DUT. The data analyser captured the

DUT outputs and to compared the captured data with the expected data.
The following method was used to test the chips.

The data generator was set up as follows. The initial clock frequency for
the test was chosen to be 1 MHz, since it was predicted that the chips would
operate at speeds of at least that frequency. Because the chips require two-phase
non-overlapping clocks, the width of each of the four clock phases was initially
set to 250ns. The data generator permitted the width and duration of each clock

85

86

HP Data Generator

Model 8180A
clocks data
PHI1- PHI2 ADM RESET GO
5V
E g VDD A mmeter
E B Power
] D B Supply
] c GND
- : L
READY PCM_OUT
strobe data

HP Data A nalyser
Model 8182A

Figure 5.1. Test Apparatus

pulse to be specified. During testing the clock frequency was increased to the
maximum possible frequency, as shown in Figure 5.2. The test patterns were
entered into the data generator. There were 1024 words of data stored, where
each word was three bits wide. The test data that was used is shown in Figures
5.3 and 5.4. Only the parts of the test data where changes occurred have been

shown in these two figures. The three bits of data that were used are the last

87

three bits of the first column of four-bit words. These three bits correspond to

the chip signals: ADM_IN, RESET and GO.

StatuE itoF
AddréEd 1003

Clmck Frequanay d.4F HHE claak Pariod tid. na

Balap Format HEdLR
Clogk 1 118. ms Ad fi.0 mm
Elack g 13E. ms RT 3.0 mE

Chanpel : : L.
Chinmgl ; L0
Channai d : LF0a
Chanmel : LF0.

Belwaft Furthar

Figure 5.2. Data Generator - Clocks

A's the 1024 test patterns were run through the chip, the data analyser cap-
tured the DUT outputs. The READY signal from the DUT is connected to the
clock strobe of the data analyser. The PCM outputs of the DUT are connected
to the data inputs of the data analyser. Each time the READY signal goes
high, signifying a new PCM output, the data analyser capturesit. Since it takes
about 25 input patterns to generate one output pattern, there are 40 bytes stored
in the data analyser. The captured data from the data analyser is shown in Fig-

ures 5.5, 5.6 and 5.7. This captured data was verified with the results of fault

88

ADDR SIR

Wiatur ST
Addrsgn 10E2
DATE ———
Cwr@ar am Chanmel E=E
BTR BATA

@001 Qo000 oooo
oll10 Qo0 000l
@110 ©0%0 0000
Ql@0 ooen ogoo
0100 0000 000Q
aion ool oo0g
0100 0000 0000

L
F

1a1
olai ooan
010l DoGD
ittt

i
i
0
|
0
o
0
o
b
o
i]
o
o
o
[
o
b

Figure 5.3. Data Generator - Data 1

simulation and showed that the chips performed functionally.

The test pattern that was used was run through a fault smulator, SILOS,
and the fault coverage of the pattern is 80.1%. However, 9.0% of the faults
cannot be detected by any pattern. This is because they are redundanciesin the
SPIL output which means that only 10.9% of the faults that are detectable have

not been detected by the pattern.

89
ADDR STR D
:|
15

{jialil

[ETT[T] aTar
Addrars 10E3

—_— e bath
AODIR STR DATA

i3
01353
ri134
013553
ri15§

Curssr on Chapnel =8

9181 Qoo o000
9101 0030 G090
0151 Q0G0 Qoo
Q181 o030 Q000
0101 00Q0 Qdon
9101 0000 Q000
Qigo oooo

Q000 ooon

o000 9000

oda Qooo

@009 oO0o0

2000 g0g0

g0ag gogo

gdoe gooo

oa0d oooo

A0y oood

¥ ¥ £1t

]
0
]
o
]
o
]
o
]
]
]
a
L]
]
a
-]
¥

Figure 5.4. Data Generator - Data 2

The transmitter was logically verified by performing a back-to-back test with
the receiver. The test was possible because the transmitter was built upon the
same logic blocks present in the receiver. Note that this test was not a simple
case of converting PCM to and from ADM and then verifying that the PCM out
of the receiver was the same as the PCM put into the transmitter. The test is
not ssimple is because the Song conversion algorithm introduces noise into the sig-
nal during the conversions so that the PCM output from the receiver is close, but
not exactly equal to the PCM which is put into the transmitter. Instead, the

back-to-back test made the input and state conditions the same on the predictor

90

DATA
PPPP PPPP
cCcccC cccc
MMMM MMMM
O0O00O0 O0OO0OO0O
Uuuu uUuuu
TTTT TTTT
7654 3210

BldEn Bintus HETIVE
Closk S4erad Mords 0040
e GTATE LIET

dleplay ErProrm TEF

ADER H&EE BATA

oooo = B1E1 LKL
oooe * 1111
opooz L]
ooo3

ooo#

ooons

ooos

goor

oooR

ooy

oo1e

[IEEN |

ooiz

o013

oD14

]

Figure 5.5. Data Analyser Observations 1

and summer blocks which exist in both the transmitter and the receiver (Figures

4.1 and 4.4).

The apparatus for the test is similar to the setup for the receiver; only the
differences will be described here. Both the transmitter and receiver READY
signals were ANDed together to form the one GO signal which was connected to
both the transmitter and the receiver. The AND gate synchronized the opera-
tion of the transmitter and the receiver because the transmitter works slower

than the receiver. The GO signal previously connected to the data generator

91

DATA
PPPP PPPP
cCcccC cccc
MMMM MMMM
O0O00O0 O0OO0OO0O
Uuuu uUuuu
TTTT TTTT
7654 3210

LILE L] [LTETT] AETIVE
Elpak ftared Horda 0040

—————————— G THTE LIAT
Blaplay Errors YL&

ADOR AAEE BATA

ooie * 1100 Qoils
garr « 1011 o101
agie E

Gony

L[F =]

Go21

ooEe

ogga

G4

BOES

oDEs

ooE?

-} 4]

=1-1 4]

[[-F 1:]

anal

Figure 5.6. Data Analyser Observations 2

was discarded. The PHI11- and PHI2 clocks of the transmitter were connected to
the same clocks of the receiver. The RESET signal from the data generator was
also connected to the transmitter. The ADM_IN signal from the data generator
was put into a network to convert it to a PCM signal for the transmitter. The

input to output mapping of this network is shown:

BigER
Elaak

92

DATA
PPPP PPPP
cCcccC cccc
MMMM MMMM
O0O00O0 O0OO0OO0O
Uuuu uUuuu
TTTT TTTT
7654 3210

Fhatun ROTIVE
—_— Bigrid Hords DOAE

. B TRTE LIBT
Maplay Errore YES

poaE
o33
oo34
003
oo3E
037
LibiE:]
o3y
ad40
an41

:

HAEE OATA

* oo 10
+ Qign
= Dalo
= 0opo
= 1ito
= 1100
+ 1oio
* i0go

O i
. P e e e m

A ik e i e e
0 T = = O

Figure 5.7. Data Analyser Observations 3

The programming in

Input Output
Receiver Transmitter
ADM IN PCM IN
0 (MSB) 10010101 (LSB)
1 01101010

the data generator underwent two changes. The first is

that the ADM_IN column of data, which was previously 1 between pattern

number 0 and 160 (Figures 5.3 and 5.4) was extended to be 1 between pattern

93

number 0 and 205 in order to maintain the same test as the one in the receiver
verification. The receiver ows down because it must occasionally wait for the
transmitter. To maintain the same logical test, the input data had to be
extended. The second programming change was to make the last address 640
instead of 1023. It was not possible to use the entire receiver pattern to verify
the transmitter. Beyond pattern number 640, the PCM output of the receiver
underflows; that is, the receiver PCM output attempts to go below the range 127
to -128. This was intended with the receiver test pattern in order to achieve a
higher fault coverage; however, it meant that the transmitter could not be tested

beyond the underflow limit.

Figure 5.8 contains the data that was captured by the data analyser. TX
means transmitter. RX means receiver. Note that the transmitter’'s ADM_OUT

and the receiver’'s ADM _IN are the same.

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

PPPP
cccce

ITIT

7654

0110
0110
0110
0110
0110
0110
0110
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001

TTTT TR RRRR RRRR
XXXX XX XXXX XXXX
PPPP AA PPPP PPPP
ccce DD CCCC CcCccC
MMVM MM MMMM MMMM
IIIT OI 0000 0000
NNNN UN UUUU UUUU
3210 T TTTT TTIT
7654 3210
Status ACTIVE
Stored Words 0020
LIST -----m—m oo

Display Errors YES

1010 0011 0011 1111 1111
1010 0011 0011 1111 1111
1010 0011 0011 0000 0000
1010 0011 0011 0000 0010
1010 0011 0011 0000 0101
1010 0011 0011 0000 1001
1010 0011 0011 0000 1110
0101 0011 0000 0001 0100
0101 0011 0000 0000 1111
0101 0011 0000 0000 1001
0101 0011 0000 0000 0010
0101 0011 0000 1111 1010
0101 0011 0000 1111 0001
0101 0011 0000 1110 0111
0101 0011 0000 1101 1100
0101 0011 0000 1101 0000
0101 0011 0000 1100 0011
0101 0011 0000 1011 0101
0101 0011 0000 1010 0110
0101 0011 0000 1001 0110

Figure 5.8. Transmitter Verification

94

95

5.2. Maximum Clock Frequency Determination

The test setups to determine the maximum clock frequency of the codec
were similar to the test setups used to logically verify the the transmitter and the
receiver. The only differences in the setups were the clock frequencies, which

were programmed differently into the data generator.

The maximum clock frequency was determined by reducing each of the four
clock phases one at a time until an error was detected in the observed output
pattern. Errors were observed because the test equipment can be programmed
to automatically highlight those bits which differ from what is expected. The
expected data was obtained from the logic verification tests. Finding the
minimum clock phase can be done efficiently in a manner similar to a binary

search.

Tables 5.1 and 5.2 contain the results of testing. Note that EPAD predicted
the clock frequency of the receiver to be between 4.40 MHz and 6.90 MHz.
Also, EPAD predicted the clock frequency of the transmitter to be between 4.40
MHz and 6.90 MHz. See section 4.3 (EPAD Analysis) These bounds
correspond to the worst and best case capacitive loading conditions on gates
within the layout. From Tables 5.1 and 5.2, lines 1,3,4 and 5, the mean values
of the maximum frequencies were determined. The maximum clock frequency

of the receiver is 4.27 MHz. The maximum clock frequency of the transmitter

96

is 3.11 MHz. The accuracy of EPAD’s worst-case-loading prediction for the

receiver is:

|4.40-4.27 |
4.27

= 3.0%

EPAD-1 Accuracy x100%

The accuracy of EPA D’s worst-case-loading prediction for the transmitter is :

|3.95-3.11 |
3.11

= 27.0%

EPAD-1 Accuracy =

x100%

Table 5.1. Maximum Clock Frequency of the Receiver

Minimum Minimum | Maximum
Chip Clock Period Clock
Number Phases(ns) (ns) Frequency
1 2 3 |4 (MH?2)
1 149 6| 70 | O 225 4.42
2 222 1 61| 70 | O 352 2.83
3 140 | 29 | 70 | O 239 4.18
4 149 | 14 | 70 | O 233 4.29
5 150 | 20 | 70 | O 240 4.17
Mean 4.27

Chip 2 contains a yield error.

In Tables 5.1 and 5.2 the duration of clock phase 3 is always 70 ns. Thisis
by choice. The sum of the durations of phases 1, 3 and 4 is a constant for any
DUT. After the durations of phases 3 and 4 are chosen, the value of phase 1

must be obtained by measurement. During testing, some phases could be

97

Table 5.2. Maximum Clock Frequency of the Transmitter

Minimum Minimum | Maximum
Chip Clock Period Clock
Number Phases(ns) (ns) Frequency
1 2| 3 | 4 (MH?2)
1 243 1 0| 70 | O 313 3.19
2 256 | 0| 70 | 0O 326 3.07
3 243 1| 0| 70 | O 313 3.19
4 257 | 0| 70 |0 327 3.06
5 265 | 0| 70 |0 335 2.99
Mean 3.11

Chip 2 contains a yield error.

reduced to zero and still maintain correct output results, however, this may not
be a reliable way to operate the chip. No reliability tests were performed. The
reason phase 2 for the receiver could not be reduced to zero is most likely due to
the dominant term in the critical path being tp 5 o instead of te (Figure 2.11).
This dominant term would be due to a slower-settling READY signal compared
to the transmitter. The idea of a sower-settling receiver READY signal is to
some extent confirmed by chip number 2’'s yield error. Chip number 2 has a
longer phase 2 and this chip’'s yield error was observed to be related to the
READY signal which never went lower than one volt above ground. The data
path’s for the receiver and transmitter are similar, but the Boolean logic in the

FSM’sis not similar and this could affect the results.

98

5.3. Power Dissipation

The first test that was performed was to determine the static drain current.
The only purpose of thistest isto check for yield defects which cause large static
drain currents. Both the receiver and the transmitter clocks were set so as to put
them into phase 4; no actions occur in phase 4. The results are shown in Table
5.3. Chip number 2 shows a relatively large drain current. Further analysis of
chip 2 showed that the output signal READY was at one volt when it should
have been at zero volts. It isassumed that this problem is due to a yield defect.
All of the other chip’'s static currents initially seemed high for 5000 transistors in
a 3um CMOS technology. This was due to having many N-channel or
P-channel transistor transmission gates,; that is, non-CMOS transmisson gates.
Since these gates are not complementary, they do not pass all voltages equally.
For example, the output of an N-channel transmission gate will only go as high
aSVpp — Vinresnoid- This will mean that the gate whose input is at the output of
the transmission gate will not be completely switched off. This hypothesis about
the cause of the high static drain current was verified by the observation of the
current immediately after the test patterns were run through the DUT, during
previous logic verification testing. The current slowly decayed over a period of
minutes. The current decay corresponds to the outputs of single transistor

transmission gates settling to final voltages as the transistors go into cutoff.

99

Table 5.3. Static Drain Current of the Codec

Chip Number | Current (mA)

0.316
9.036
0.356
0.345
0.371

O WNPEF

The dynamic power dissipation of the transmitter, receiver and codec were
determined. The test apparatus was identical to that of the corresponding logical
verification, except for the following points. There was a 4.7 ohm resistor put in
series with the ground of the chip and the system ground. An HP3400 True
RMS Voltmeter with a 10 Hz to 10 MH z bandwidth was connected across this
resisor. The codec power disspation was measured using the back-to-back test
apparatus. The transmitter power dissipation was measured using the back-to-
back test apparatus, except that the receiver was disconnected and put into state
4 and the transmitter GO signal was obtained from the data generator instead of

an AND gate.

This voltmeter was used to measure the RMS value of voltage across the
resigor, and by Ohm’s law, determine the RM S value of the A C component of
the current. Since testing was done with clock frequencies in the kHz range, it
was assumed that the AC component of the current below 10Hz was negligible.

The HP3486A multimeter was still kept in series with Vpp in order to measure

100

the DC component of the chip current.

Measurements were taken for frequencies from 20 kHz to 500 kHz in 20
kHz increments. At each frequency, two measurements were taken: the DC

power supply current and the AC RM S voltage across the 4.7 Q resistor.

The total chip power at a given frequency was determined from the follow-

ing equations.
2
VR RMS

S (5.1)

| 2 = 2 4
DD,RMS - DD,DC,RMS

Prota = lppb,rms VoD - RIDD,RM82 (5.2

101

where:

lbD.RMS is the RMS value of the power supply current, the drain

current.

lop.pc,rms IS the RMS value of the DC component of the power supply

current.

VR.RMS is the RMS value of the A C component of the voltage across

the resistor R.

R isthe resistor in series with the chip’s ground. R=4.7Q
Vb is the power supply voltage. Vpp = 4.989Y
Protal is the total power dissipation of the chip.

After the total powers were computed for each frequency, a linear regres
sion was performed on power versus frequency. The line was extrapolated to 1
MH z to obtain the dynamic power dissipation at 1 MHz. The y-intercept of the
line gave the static power. This analysis was performed for each of the four
chips which did not have yield errors. It was performed for the transmitter,

receiver and codec. The results are summarized in Tables 5.4, 5.5 and 5.6.

Table 5.4. Receiver Power Dissipation (mW) (Clocked at 1 MH2)

Chi p Number PStatic I:)Dynami c I:)Total
1 3.0 15.1 18.2

3 3.1 14.3 17.4

4 3.1 14.8 17.8

5 3.4 14.4 17.8

Mean 3.2 14.6 17.8

Table 5.5. Transmitter Power Dissipation (mW) (Clocked at 1 MHZz)

Chi p Number PStatic I:)Dynami c I:)Total
1 2.3 9.9 12.3

3 2.3 10.3 12.5

4 2.2 10.2 12.4

5 2.6 9.5 12.1

Mean 2.3 10.0 12.3

Table 5.6. Codec Power Dissipation (mW) (Clocked 1 MH2)

Chi p Number PStatic I:)Dynami c I:)Total
1 4.0 27.0 31.0

3 4.0 26.9 30.9

4 3.1 29.5 32.6

5 4.0 26.9 30.9
Mean 3.8 27.6 31.3

102

103

5.4. ADM-PCM Codec Chip Summary

The results for the ADM-PCM codec are shown in Table 5.7. The results
are a summary of Tables 4.4, 5.1, 5.2, 5.4, 5.5 and 5.6.

Table 5.7. Design Summary for PCM-ADM Coder-Decoder

Parameter EPAD Chip Test
Results
EPAD-0 EPAD-1 Calibrated
EPAD-
kcapseries
Tx/Data Path 1633 x 1703 | 1633 x 1703 - 1633 x 1703
AREA Tx/Control Path | 1601 x 2069 | 1601 x 2069 - 1601 x 2069
(um)?2 Rx/Data Path 1633 x 1703 | 1633 x 1703 - 1633 x 1703
Rx/Control Path | 1460 x 1883 | 1460 x 1883 - 1460 x 1883
Codec 4511 x 4511 | 4511 x 4511 - 4511 x 4511
CLOCK TX 6.58 3.95 1.32+0.02 3.11
FREQUENCY | Rx 6.90 4.40 1.05+0.05 4.27
(MH?2) Codec 6.58 3.95 1.19+0.15 3.11
POWER Tx 11.5 13.9 0.344+0.071 12.3
DISSPATION | Rx 15.5 17.9 0.958+0.136 17.4
(mw) Codec 27.0 31.4 0.651+0.344 30.9

The area of the codec is the largest that CMC permits fabricating. The
complexity of the chip in terms of the number of FSM states in the receiver and

transmitter is 33 and 38, respectively.

The chip results for the maximum clock frequency show that the mean
value of the chip clock frequencies are not bounded by the EPAD predictions of
the clock frequencies. This result is discussed later in this section. The mean
values and sample standard deviations of the clock frequencies are 4.27 + 0.12

for the receiver and 3.11 + 0.10 for the transmitter. The sample size is 4, the 4

working chips. Even though the sample size is small, it predicts the variations in

104

the overall effect of process parameters much better than an analysis of indivi-
dual process parameter variations. The range of frequencies within one standard
deviation is 4.39 to 4.15 MHz for the receiver and 3.21 to 3.01 MHz for the
transmitter. For a normal distribution, 14 percent of fabricated receivers will
have delays which are in the range predicted by EPAD. Essentially, none of the
fabricated transmitters will ever be in the frequency range predicted by EPAD.
The reason for the lower measured frequencies is most likely the effect of
polysilicon resistance. In the data path, the power runs vertically in polysilicon.
There are polysilicon links between metal parts of the data buses. Finally, in the
FSM, there are long polysilicon lines for the minterms. The effect of polysilicon
resisances is not taken into account in the EPAD delay models. This result
advocates a redesign of the SPIL cell library and the control path in order to
reduce the amount of polysilicon used. Recall that the transmitter and the
receiver use identical data paths. The decrease in speed in the transmitter is
solely due to the the effect of the control path having 5 more states. Even
though there is no physical interpretation of kcapseries when it is beyond the
range 0 to 1, this parameter can still be used to calibrate EPAD to the current
version of the SPIL data path cell library and the control path generator. The
mean and standard deviations of kcapseries averaged over the four receivers and

four transmitters are shown in Table 5.7.

105

The chip results show that the mean value of the power dissipations is
bounded by the EPAD predictions. This result is discussed later in this para-
graph. The mean values and sample standard deviations of the power dissipa-
tions are 17.8 + 0.3 for the receiver and 12.3 + 0.2 for the transmitter. The
sample size is 4, the 4 working chips. For a normal distribution, 54 percent of
fabricated receivers will have power dissipations which are in the range predicted
by EPAD. Essentially all of the fabricated transmitters will be in the power dis-
sipation range predicted by EPAD. Since EPAD assumes that all gates are
switching every clock cycle, the EPAD power dissipation predictions should have
been higher than test results. That the chip power disspation istoo high is most
likely due to three reasons. The first is the presence of hon-CM OS transmission
gates in latches of the FSM and data path. Gates connected to the outputs of
non-CMOS transmisson gates have higher static power dissipation, and this is
not taken into account in the EPAD power models. Second, chip capacitances
may be larger than nominal process values. Thisis confirmed by chip clock fre-
guencies being lower than predicted values. Third, chip static and dynamic
power dissipation may be higher due to leakage currents through input protection
devices. All three of these effects could cause chip power disspation to be higher

than initially expected, especially since the chip power disspation is very low,

th

210 of the maximum for the chip package. Since these effects should not

106

change radically from one SPIL design to the next, the single EPAD parameter
kcapseries will be used as the basis for calibrating EPAD. The mean and stan-
dard deviations of kcapseries averaged over the four receivers and four

transmitters are shown in Table 5.7.

Using SPIL reduces the design turn-around time. A fter the receiver was
designed, the author was familiar with chip design using SPIL and EPAD. The
transmitter was subsequently designed, verified and prepared for fabrication
within nine days, compared to an estimated six months required using low-level
layout design tools; an improvement of more than a factor of ten. This com-
parison is based on designers who have experience with their respective CAD
tools. No comparison of times required for a designer to become familiar with
the appropriate CAD tools is given. However, the learning time for SPIL will
not be greater than learning time for low-level design tools, assuming a designer
has no previous experience in chip design. A reasonable estimate of the time for
a designer to become thoroughly familiar with chip design using SPIL is two

months.

The designer can efficiently iterate designs using SPIL. To generate the
CIF files for the receiver required 43 seconds of CPU time on a VA X 11/785.
SPIL required 1 second, Busgen 7 seconds and PLA mate 35 seconds. To gen-

erate the CIF files for the transmitter required 52 seconds of CPU time on a

107

VAX 11/785. SPIL required 1 second, Busgen 8 seconds and PLA mate 43
seconds. Furthermore, the time complexity of SPIL and Busgen are linear,
meaning the CPU time required grows linearly with the number of lines in the
SPIL input file. The CPU time required by PLA mate grows non-linearly; how-
ever a finite state machine having about 65 states fills the largest CMC pad

frame but only requires approximately five minutes of CPU time.

5.5. Suggested Enhancements and Future Work

Suggested enhancements to SPIL and EPAD are given in this section. The
enhancements are listed in decreasing priority of importance; however, they are
not ordered with regard to the amount of work required to implement the

suggestions.

1 Have the data path and the control path connected automatically. This can

be based upon the Terminal ARray CONnecting program (TARCON).

2 Create a SPIL algorithm simulator to verify the SPIL program. One might
use the smulator N.2 [36] or have a trandator which trandates the SPIL
program into Standard Pascal. The trandator would be the easiest to imple-

ment.

108

3 Parameterize the SPIL data path cell library using the procedural layout
languages ICEWATER or IGLOO. This would allow the designer to give
power, area and delay specifications of the cells and provide an opportunity

to change power lines from polysilicon into metal.

4 The speed of the control path should be increased. The critical path analysis
indicates that the control path constitutes about 85 percent of the delay.
One method of speeding up the control path is to use additional pipelining,
such as putting a pipeline register after the AND plane of the PLA. This
has the advantages of not causing a drastic change to the SPIL architecture
and of cutting the delay of the PLA in half. Currently, SPIL is only a two-
stage pipelined architecture; three stages might provide a significant speed
up. This change could be coupled with the SPIL compiler optimizing branch

instructions, as previousy discussed.

5 PLA mate should label the signals in the output CIF file. This makes inter-

facing to CAD tools such as SILOS more efficient.

6 Some testability features must be added to the compiler [33]. The most
obvious addition would seem to be scannable FSM latches. Furthermore,
redundancies in the SPIL output should be removed to makes test pattern

generation easier. Currently, these are the redundancies:

109

a The cell for most significant bit of the left shifter has redundant

transistors which conditionally discharge an imaginary data bus.

b The destination decoder cells which are clocked by PHI2 contain

unused inverters.

¢ Unconnected cells of input and output registers contain unused cir-
cuitry. Note that these unconnected cells sometimes cannot simply
have their transistors removed; they may have to be replaced by
cells which set values on the data bus. An example of cells which
can have their transistors removed are bits 7 to 1 of the receiver

variable ADM IN.

d Unused bits of storage registers have extra circuitry. This is similar
to the input or output cells. An example of thisisthe receiver vari-

able Ex of k, bits7 to 2.

7 Allow SPIL to specify multiclock computational units to reduce clock period
and allow some computations over multiple clock periods. However, this
only becomes practical after the speed of the control path (currently

PLA mate’s FSM) gets increased by at least a factor of two.

8

10

11

12

110

Investigate having address decoders made of alternating NAND and NOR
gates instead of having a NAND gate and an inverter in every address
decoder. This would be relatively easy to implement, compared to a cus
tomized address decoder. But, a customized address decoder would take
less area and run faster. A ddress decoders might not even be necessary if
the control path generated horizontal addresses instead of vertical ones.

Currently address decoders are in the critical path.

Add more computational units, such as AND, OR, NAND, NOR, XOR

and XNOR, to the SPIL architecture.
A dd bidirectional off-chip latches, multiplexed chip inputs and outputs.

A dd indirection in SPIL by adding a feature to PLA mate. Indirection could
also be implemented by adding new SPIL cells which feed a value from the

data bus to the address decoders.

The area required by off-chip lines from an output register can be reduced

by having half the lines connect up and the other half connect down.

EPAD should be expanded to handle a CMOS technology which has two

layers of metal. Interconnection modelling should also be further investigated,

with consideration of extracting Penfield-Rubinstein-type data [37]. This model-

ling could be used to account for the effect of polysilicon in the layout. Tem-

perature effects on mobilities and threshold voltages should be considered and

111

could be included by formulas similar to those used in SPICE [26,38].

The designer interface to EPAD could be improved to provide automatic

summation of delays along circuit paths to provide a critical path analysis.

The feedback loop in SPIL should be completed. This would involve the
EPAD estimates of power dissipation, area and delay, which can be analysed to
obtain a critical path. This critical path information would be used to feedback

changes to a parameterized SPIL library.

CHAPTER 6

Conclusions

The successful design, verification, fabrication and testing of a chip to pro-
cess speech signals demonstrates that using SPIL and EPAD is an efficient
design style. SPIL increases design automation in comparison to lower-level
CAD tools. Since all SPIL layouts are very similar, the performance of the lay-
out is consigtent from one design to the next. Furthermore, calibrating EPA D
using kcapseries allows the performance of future SPIL designs to be accurately
predicted by EPAD and SILOS. The turn-around time of a SPIL design is less
than low-level design tools because SPIL manages of all the intermediate levels
of detail. With fewer details dependent on the designer, the probability that the
design is correct is higher. SPIL designers do not require as much technology or
circuit design experience. However, they are required to become familiar with
the SPIL design environment; gaining familiarity requires approximately two
months. With a design as complex as the receiver, an experienced SPIL
designer would require approximately three weeks of design iterations to achieve
a final layout. The predictability of the SPIL output, combined with the perfor-
mance estimation from EPAD, allow the designer to determine if the generated

chip meet the desired specifications. Thus, EPAD allows a design to meet a

112

113

chip’s specifications. The cost of using SPIL is lower chip performance in terms
of area and speed. However, the speed is increased by having covert con-
currency present in the architecture. Thus, SPIL can be used to design chips for
low-speed applications, such as speech processing. Since these applications will
continue to exist, silicon compilers such as SPIL will become more prevalent as

VLS fabrication technology continues to improve.

Appendix A
SPIL Codec Files

Although a more detailed description of the meanings of these files may be
found in the SPIL User's Manual [16], a brief description of the files will be

included here for clarity.

Recever Source File (rx.sp)

Thisfile is the input to the SPIL program. The designer describes the chip’s
algorithm in this program. This file has been extensively discussed in section 4.2
(Algorithm Design).

PROGRAM ADM to PCM ;

CONST
_data width = 8 ;

VAR
ADM input : input port CONNECT 0..0 UPWARD ;
PCM output : output port CONNECT DOWNWARD ;
Ex , { starting from LSB(0) : Ex(k-1),)}
Sx of k , { Predlcted PCM }
X of k : integer ; { Last PCM output }
PROCEDURE _reset ; { Chip initialization procedure }
BEGIN
Ex =0 ; { Make Ex(k-1) = Ex(k- 0}
X of k =0 ;
Sx of k := 0 ;
END ;
BEGIN

114

115

IF Sx of k < 0 THEN Sx of k := 0 - Sx of k ;

IF Ex = ???????0B THEN Sx of k := 0 - Sx of k ;

~add in 1 := Sx of k ; { IF Ex(k-2) = 1 THEN }
IF Ex = ??????1?B THEN { }

~add in 2 := 1 { Sx of k := Sx of k + 1 }
ELSE { ELSE }

~add in 2 := -1 ; { Sx of k := Sx of k - 1;}
Sx of k := add out ; { (No over/under-flow check) }
X of k := X of k + Sx of k ; { No over/under-flow check }

Ex := Ex << 1 ; { Shift signals left i.e. one time step }
IF ADM input = ???????1B THEN Ex := Ex + 1 ;

PCM output := X of k ;
END. { ADM input must have remained valid all the time }

Receaver Source File Listing (rx.spil_list)

Thisfile is the listing output from the SPIL compiler after the compilation of
the SPIL program (file rx.sp). The first part of this file, having lines numbered
1 to 39, isthe same as the receiver source file (rx.sp). The next part of thisfile
begins with ** Program Graph **. This part indicates the width of the three
buses. The width of the data bus is specified by the designer. The source and
destination buses are determined by SPIL to be each four bits wide. That means
there can only be up to 16 (2% source units and 16 destination units in the data
path. This part of the file also contains a description of the states of the
receiver; the states are numbered 0 to 32. Consider state 0. It indicates a des-
tination unit numbered 10 and a source unit numbered 11. The meanings of

these numbers are shown in columns in the last part of thisfile, ** Bus Map **.

116

Thus, state 0 performs a data transfer from constant 0 to register Ex. As indi-
cated just above state 0, this data transfer implements the high-level statement
numbered 16 in the first part of this file. The Moore mask indicates what sig-
nals are the outputs of a given state. The left bit isthe READY signal. The
next bit is the least significant bit of the destination bus. The next bit is the least
significant bit of the source bus, and so on. The source and destination buses

are interleaved. State 0 indicates to transfer (arc) to state 1, unconditionally.

refers to the matching condition of the FSM conditional test. The left signal is
RESET. The next signal is GO. This is followed by the most to least significant
bits of the data bus. Question marks in the condition represent don't care bits.
Thus, the condition in state 3 means go to state 4 if the GO input to the FSM is
set high. The last part of the file begins with ** Bus Map **. This part contains
six columns of attributes. Each row describes one device in the data path. The
first two columns contain source and destination address numbers. The third
column describes the name of the cells used by Busgen to generate the layout.
The sixth column contains the name of the device that can be used in the
designer’s program (rx.sp). The fourth and fifth columns sometimes contain
additional information. For example, row 12 describes the variable ADM IN and
the fourth and fifth columns indicate the bit range that is connected off chip.

This bit range was specified in the designer’s program (rx.sp). Destination unit

117

7 is shown as -7, this negative sign means the off-chip outputs are connected at

the bottom of the data path

Finite-state-control description in file: rx.fsm
Bus map in file: rx.bm

1 PROGRAM ADM to PCM ;

2

3 CONST

4 _data width = 8 ;

5

6 VAR

7 ADM input : input port CONNECT 0..0 UPWARD ;

8 PCM output : output port CONNECT DOWNWARD ;

9

10 Ex , { starting from LSB(0) : Ex(k-1),)}
11 Sx of k , { Predlcted PCM }
12 X of k : integer ; { Last PCM output }
13

14 PROCEDURE reset ; { Chip initialization procedure }
15 BEGIN

16 Ex := 0 ; { Make Ex(k-1) = Ex(k- 0}
17 X of k =0 ;

18 Sx of k := 0 ;

19 END ;
20
21 BEGIN
22 IF Sx of k < 0 THEN Sx of k := 0 - Sx of k ;
23
24 IF Ex = ??2?2?20B THEN Sx of k := 0 - Sx of k ;
25
26 ~add in 1 := Sx of k ; { IF Ex(k-2) = 1 THEN }
27 IF Ex = ??????1?B THEN { }
28 ~add in 2 := 1 { Sx of k := Sx of k + 1}
29 ELSE { ELSE }
30 ~add in 2 := -1 ; { Sx of k := Sx of k - 1;}
31 Sx of k := add out ; { (No over/under-flow check) }
32
33 X of k := X of k + Sx of k ; { No over/under-flow check }
34
35 Ex := Ex << 1 ; { Shift signals left i.e. one time step }
36 IF ADM input = ???????1B THEN Ex := Ex + 1 ;
37
38 PCM output := X of k ;
39 END. { ADM input must have remained valid all the time }

** Program Graph **

Data bus width = 8

118

Dest addr width = 4

Source addr width = 4

--- Source Line 16 ---

0) dest = 10, source = 11 (const: 0), Moore mask: 001110011
Arc to: #1 on condition: default

--- Source Line 17 ---
1) dest = 8, source = 11 (const: 0), Moore mask: 001010011
Arc to: #2 on condition: default

--- Source Line 18 ---
2) dest = 9, source = 11 (const: 0), Moore mask: 011010011
Arc to: #3 on condition: default

--- Source Line 1 ---

3) dest = 0, source = 0, Moore mask: 100000000
Arc to: #4 on condition: ?1?7????2???
Arc to: #3 on condition: default

--- Source Line 22 ---
4) dest = 0, source = 9, Moore mask: 001000001
Arc to: #5 on condition: default

5) dest = 0, source = 9, Moore mask: 001000001
Arc to: #6 on condition: ??1????2???
Arc to: #10 on condition: default

6) dest = 5 (cu), source =9, Moore mask: 011001001
Arc to: #7 on condition: default

7) dest =1 (cu), source = 12 (const: 1), Moore mask: 010000101
Arc to: #8 on condition: default

8) dest = 2 (cu), source =5 (cu), Moore mask: 001100100
Arc to: #9 on condition: default

9) dest = 9, source = 2 (cu), Moore mask: 010010010
Arc to: #10 on condition: default

--- Source Line 24 ---
10) dest = 0, source = 10, Moore mask: 000010001
Arc to: #11 on condition: default

11) dest = 0, source = 10, Moore mask: 000010001
Arc to: #12 on condition: ????????7?0
Arc to: #16 on condition: default

12) dest = 5 (cu), source = 9, Moore mask: 011001001
Arc to: #13 on condition: default

13) dest =1 (cu), source = 12 (const: 1), Moore mask: 010000101
Arc to: #14 on condition: default

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

28)

dest = 2 (cu), source =5 (cu), Moore mask: 001100100

Arc to: #15 on condition:

dest = 9, source = 2 (cu),
Arc to: #16 on condition:

Source Line 26 ---

default

Moore mask: 010010010
default

dest = 1, source = 9, Moore mask: 011000001

Arc to: #17 on condition:

Source Line 27 ---

default

dest = 0, source = 10, Moore mask: 000010001

Arc to: #18 on condition:

default

dest = 0, source = 10, Moore mask: 000010001

Arc to: #19 on condition:
Arc to: #20 on condition:

Source Line 29 ---

dest = 2, source = 12 (const: 1),

Arc to: #21 on condition:

Source Line 30 ---

dest = 2, source = 13 (const: -1), Moore mask: 001100101

Arc to: #21 on condition:

Source Line 31 ---

default

default

default

dest = 9, source = 2, Moore mask: 010010010

Arc to: #22 on condition:

Source Line 33 ---
dest = 1 (cu), source = 8,
Arc to: #23 on condition:

dest = 2 (cu), source = 9,
Arc to: #24 on condition:

dest = 8, source = 2 (cu),
Arc to: #25 on condition:

Source Line 35 ---
dest = 3 (cu), source = 10,

Arc to: #26 on condition:

dest = 10, source = 3 (cu),
Arc to: #27 on condition:

Source Line 36 ---

default
Moore mask: 010000001
default

Moore mask: 001100001
default

Moore mask: 000010010
default
Moore mask: 010110001

default

Moore mask: 001110010
default

dest = 0, source = 6, Moore mask: 000010100

Arc to: #28 on condition:

default

dest = 0, source = 6, Moore mask: 000010100

Arc to: #29 on condition:
Arc to: #32 on condition:

default

Moore mask: 000100101

119

29)

30)

31)

32)

dest = 1 (cu),

source = 10,

Arc to: #30 on condition:

dest = 2 (cu),

source = 12

Arc to: #31 on condition:

dest = 10,

source = 2 (cu),

Arc to: #32 on condition:

Source Line 38 ---

dest = 7,

source = 8,

Arc to: #3 on condition:

** Bus Map **

dest source
addr addr

o O Wwo R NOOO
Ul o o w OO oNOoO

1
~
[l oo Ne)

10

O O O wo

11

(@)

12

device.

data prech
add out
adder

add latch b
add latch a

shift left
dlatch
shift right
dlatch
compl

dlatch

oc_in latch
oc_out latch
out enable
dlatch

out enable
dlatch

out enable
dlatch
const

const
const

Moore mask: 010010001

default

(const: 1),
default

Moore mask:

Moore mask: 000110010

default

* * O O * * % ok F * %k ok F %

O ¥ ¥ * x*

Moore mask: 010101001
default

* * J O * * %k ok * * %k %k F

* %k ok F

*

_ADD OUT
*
_ADD IN 2
_ADD IN 1

_SHFL_OUT
_SHFL_IN
_SHFR_OUT
_SHFR_IN
_COMPL,_OUT

_COMPL_IN
ADM_INPUT
PCM_OUTPUT
X OF K

000100101

120

121

Recever Busgen File (rx.bm)

This file was generated by SPIL. It is a description of devices in the data
path. Each line of the file describes one or more columns of items in the data
path. The first line indicates the number of bits in the data bus, followed on the
same line by the number of bits in the source and destination address buses.
The remaining lines map on a one-to-one basis with the last part (** Bus Map
**) of the listing file (rx.spil_list), excluding the symbol column in the listing
file. This file could be input to Busgen. The actual file which was given as

input to Busgen is shown in the next section.

8 4 4
0 0 9 0 0
0 2 2 0 0
0 0 3 0 0
2 0 1 0 0
1 0 0 0 0
0 3 23 0 0
3 0 10 0 0
0 4 25 0 0
4 0 10 0 0
0 5 5 0 0
5 0 10 0 0
0 6 11 0 0
-7 0 12 0 7
0 8 22 0 0
8 0 10 0 0
0 9 22 0 0
9 0 10 0 0
0 10 22 0 0
10 0 10 0 0
0 11 6 0 0
0 12 6 1 0
0 13 6 -1 0

122

Recever Busgen File (rx_no_right_shifter.bm)

Thisis file is the same as rx.bm except that the lines

o
I

25 0 0
4 0 10 0 0

which describe the input and output ports of the right shifter and the right shifter
have been removed. The file shown here had the right shifter removed because
it is not used in the receiver algorithm. The version of SPIL that was used did

not automatically remove unused devices.

8 4 4
0 0 9 0 0
0 2 2 0 0
0 0 3 0 0
2 0 1 0 0
1 0 0 0 0
0 3 23 0 0
3 0 10 0 0
0 5 5 0 0
5 0 10 0 0
0 6 11 0 0
-7 0 12 0 7
0 8 22 0 0
8 0 10 0 0
0 9 22 0 0
9 0 10 0 0
0 10 22 0 0
10 0 10 0 0
0 11 6 0 0
0 12 6 1 0
0 13 6 -1 0

123

Recever FSM File (rx.fsm)

This file was generated by SPIL for input to PLAmate. This file's syntax is
acceptable to PLA mate; it's semantics are similar to the state-by-state description
of the FSM given in the SPIL listing file (rx.spil_list). The second line of this
file (rx.fsm) shows the inputs to the FSM. Signal x00 is the RESET signal.
Signal x01 isthe GO signal. Signal x02 is the least significant bit of the data
bus and so on up to the most significant bit of the data bus, x09. The third line
shows the outputs. Signals y00 to y08 correspond exactly to the Moore mask in
the SPIL listing file (rx.spil_list). This is followed by a list of the symbolic
states, such as s000, and the corresponding actual FSM state numbers, such as
0. The line beginning with RESET indicates that when signal x00 is raised high,
the FSM should enter state s000, the reset state. The RESET line is followed by
the state description. Consider state s005. It indicates two output signals, y02,
y08, which are set high during state s005. If input x02 is high, then the next

FSM state will be s008, otherwise s010 will be the next FSM state.

FSM ADM TO PCM;
INPUTS x00, x01, x02, x03, x04, x05, x06, x07, x08, x09;
OUTPUTS vy00, y01, y02, y03, y04, y05, y06, y07, y08;

STATES
s000
s001
s002
s003
s004
s005
s006

L | | N | N | R 1}
AUk WNPRE O

s007 = 7,

s008 = 8,

s009 = 9,

s010 = 10,
s011 = 11,
s012 = 12,
s013 = 13,
s014 = 14,
s015 = 15,
s016 = 16,
s017 = 17,
s018 = 18,
s019 = 19,
s020 = 20,
s021 = 21,
s022 = 22,
s023 = 23,
s024 = 24,
s025 = 25,
s026 = 26,
s027 = 27,
s028 = 28,
s029 = 29,
s030 = 30,
s031 = 31,
s032 = 32;

RESET x00 : s000;

STATE s000 > y02, yO03,
OTHERWISE : s001;

STATE s001 > y02, y04,
OTHERWISE : s002;

STATE s002 > y01, y02,
OTHERWISE : s003;

STATE s003 > y00;
x01 : s004;
OTHERWISE : s003;

STATE s004 > y02, yO08;
OTHERWISE : s005;

STATE s005 > y02, y08;
x02 : s006;
OTHERWISE : s010;

STATE s006 > y01, yo02,
OTHERWISE : s007;

STATE s007 > y01, yo06,
OTHERWISE : s008;

y04, y07, y08;

124

STATE s008 > y02, y03,
OTHERWISE : s009;

STATE s009 > y01, yo04,
OTHERWISE : s010;

STATE s010 > y04, yO08;
OTHERWISE : s011;

STATE s011 > y04, y08;
x09’ : s012;
OTHERWISE : s016;

STATE s012 > y01, yo02,
OTHERWISE : s013;

STATE s013 > y01, yo06,
OTHERWISE : s014;

STATE s014 > y02, yO03,
OTHERWISE : s015;

STATE s015 > y0l, yo04,
OTHERWISE : s016;

STATE s016 > y01, y02,
OTHERWISE : s017;

STATE s017 > y04, yO08;
OTHERWISE : s018;

STATE s018 > y04, y08;
x08 : s019;
OTHERWISE : s020;

STATE s019 > y03, yo06,
OTHERWISE : s021;

STATE s020 > y02, yO03,
OTHERWISE : s021;

STATE s021 > y01, yo04,
OTHERWISE : s022;

STATE s022 > y0l, yO08;
OTHERWISE : s023;

STATE s023 > y02, y03,
OTHERWISE : s024;

STATE s024 > y04, yO07;
OTHERWISE : s025;

STATE s025 > y01, yO03,

y06;

y07;

y05, y08;

y08;

y06;

y07;

y08;

y08;

y06, y08;

y07;

y08;

y04, y08;

125

126

OTHERWISE : s026;

STATE s026 > y02, y03, y04, y07;
OTHERWISE : s027;

STATE s027 > y04, yo06;
OTHERWISE : s028;

STATE s028 > y04, y06;
x09 : s029;
OTHERWISE : s032;

STATE s029 > y0l, y04, yO08;
OTHERWISE : s030;

STATE s030 > y03, y06, yO08;
OTHERWISE : s031;

STATE s031 > y03, y04, y07;
OTHERWISE : s032;

STATE s032 > y0l, y03, y05, y08;
OTHERWISE : s003;

Recever Busgen Listing File (rx.bm_list)

This file is the listing file from Busgen and simply indicates the size of the

F%aléiath. The units of microns which are shown are design scale microns

Dimensions of device array:
Height = 2721 microns
Width = 2839 microns

127

Recever FSM Listing File (rx.fsm_list)

This file is the listing output of PLAmate. It contains a description of the
AND as well as the OR planes of the PLA. The rows of the AND plane
represent the FSM inputs x00 to x09 followed by the six state lines from the
least to the most significant bits. The rows extended beyond 80 characters per
line and wrap around to the beginning of the line so that one row of the AND
plane spans two rows of text. The rows are numbered just before the character
|. The numbers 1 to 16 correspond to the signals by the order that the rows of
the AND plane were described above. |f a negative number is shown, it refers
to the inverted version of the signal. The columns of the AND plane represent
the minterms. In the OR plane output, the rows represent the minterms and the
columns represent the FSM outputs. The order of the FSM outputs from left to
right is y08 to y00 and then the least significant bit to the most significant bit.
Above each of the AND and OR plane columns is the number of ones in each
column. The end of this file indicates the size of the FSM, even though the

word PLA isshown. Unitsof size are design scale microns.
--- PLAMATE - University of Waterloo PLA/FSM generator ---

PLA/FSM "ADM TO PCM" generated on Tue Dec 2 18:48:52 1986

SYMBOLS :

INPUT 1 = x00

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE

O W OJO0O Ul WN

=

W oo JO0O Ul WN K

0 JOoO Ul WNhEO

x01
x02
x03
x04
x05
x06
x07
x08
x09

y00
yO01l
y02
y03
y04
y05
yo06
y07
y08

s000
s001
s002
s003
s004
s005
s006
s007
s008
s009
s010
s011
s012
s013
s014
s015
s016
s017
s018
s019
s020
s021
s022
s023
s024
s025
s026
s027
s028
s029
s030
s031
s032

(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)
(explicit)

128

129

Before minimization:

Number of inputs is 10.
Number of outputs is 9.
Number of state lines is 6.
Number of minterms is 39.

There were 0 errors in this description.

After minimization, number of minterms is 38.
THE AND PLANE:

8 8 8 8 7 7 7 7 7 8 7 8 7 7 7 8 7 7 6 7 7 7 7 7717
7 8 7 8 7 7 6 6 7 7 7 7 8

-1 111111111111 11111 1 1 1 11 1 1 1
1111111 1 1 1111

-2 o0 0O0OO0OO0OOOOOTZ11O0O0O0O0O0UO0OTUO0O0O0O0O0TO0O0
O 0 0o 0o 00O 0O0O O OO0 O0UDO

2] 1.0 0 0 00 O0O0O0O0OUOOUOO0OO0OOOOO0O0O0O0 O
0O 0 0o 0o 0o 0O 0O0O 0O 0 OO0 O00O

3] oo 00O0OOOOO0OOOOO0OO0O11IO0O0O0UO0OTUO0O0O0O0 0
0O 0 0o o 0000 0O OO0 O00DO

3] o1 000O0OUO0OO0OO0OOOOOO0O0OOOUO0O0O0 00 0
O 0 0o o 00 0O0O OO O 00O

9| o000 O0OO0OO0OOOUOOUOOOOUOOOO0O0O0O0O0 00
010 0 0 0O O OO OOTOTUDO
9
0
0
0
0

| o oo 0 o0O0OOOOOUOOU O OOOUOOUOO0OO0O0O0O0O0 O
0O 0 0o 0o 0o 00O 00 0 01
| oo 0o o0o0O0OOOOO?11O0TU0OO0O0OOOUO0OO0O0O0O0O0O0O
0O 010 0 0 0O OO O 0O
| o o11 00 00O0O0OO0OUO0OO0OO0OOOUO0OO0O0O0UO0O0TO0O0
0O 0 0o o 0o 0O 0O0O 0O 0 O0 00O
11| o 0 01 0 0 OO O0OOOUOOTU OOOOUOOTO0OT1I 1 1 11
1111111 1 1 1111
i1/ 11 101111 1 1 1111 1 1 1 1 11 00 0 0 O
0O 0 0o o 0o 0 0O0O O 0O O 00O
12| o101 00 0O0O0O0OWOPU ©?1?1T1?11111 0 0 000
o 0011 1 0 01 1 1 1 0
2] 1 01 0111 1 1 1 11 000O0O0O0O0OUO0OT1T11 11
11 1 0 0 0o o0 0 0 0 0 0 1
.13 1 0 1 0 0 0 00 1 1 11 00001111 00 001
11 1 0 0 0 0 1 1 1 1 1 1
13/ 01 01 111100001111 0000O0OT1T1 1 10
0o 0 011 1 1 0 0 O0O0O0TODO
-14 | 1 10 0 0 0 1 1 0 0 1 1 00 1 1 000100110
6011001 1 0 0 1 1 1 1
4] 001 1 11001 1 001100110011 001
10 0 1 1 0 0 1 1 0 O 0 O
-1 1110 0 1 0 1 0 1 0 1 0 1 0 1 01 01 0 1 01 0

130

10 1 01 0 1 0 1 0 1 1 O

o 0011011011 01101 0110101 01 01 01

60101 01 0 1 0 1 0 0 1

15
-16 |

1111111111111 1111111 11111

1111111 1 1 1 0 11

o 0o 0o o 0o 0o 0000 00 06 0O0 0O O0OO0ODOOO0OTUO0OTO

0o 0 0o 0o 0000 O 01 00

16

THE OR PLANE:

213 14 11 20 3 10 9 2519 19 17 17 18 2

10 0 0 0O OO O O OOT11I 0 0O

0o 0100 0 0 01 01 1 0 0 O
o 0 001 0 0 061 00 0 o0 1 0
o 0 00 1201 0 01 01 1 1 0
0o 0 06110 0 1 0 0 0O 0 0 0 1

6010 01 0 0 1 0 0 0 0 0 1 o0

o 6011200 0 01 0 O 01 1 O
010 0 0 01 01 0 0 0 1 0 O
o 0 00 12101 0 0 0 01 1 1 0
o 0o 001 0 0 061 00 1 1 0 O
o 0 061 001 0601 1 01 01 0
10 0 0 0O OO O O1 1 0 0 0 O

01001 0 0 01 01 1 1 1 0
01000 01 01 01 1 1 0 O
01001 0 0 1 0 01 1 0 1 O
0o 0100 0 0 01 01 01 00O
601011 0 0 0 1 01 0 1 1 o0
01001 0 0 1 0 01 0o 1 0 O
o 0o 0010 0 01 01 0 o010
0o 01010 0 1 1 01 0 0 0 O
o 0 061 o001 01 111110
0o 011001 0 01 111 00
01000 O0O0OOT11T111 010
6011001 0 01 1 1 1 0 0 O
o 01110 01 01 1 01 1 O
o 0 001 0 0 0601 11201 0O
o 0 0010 0 01 00 1 0 1 O
6011010 01 1 1 1 0 0 0 O
0o 0o 0o 1 0 1 0 0 0 0 0 o0 0 1
6011001 0 01 1 01 1 0O
o 011001 01 1 01 010
0o 0100 0 0 01 1 01 0 0 O
o 0o 00 10 0 1 01 0 o0 1 1 o0
o 0112001 0 01 001 00
011000 0O O0O1T 10 0 010
0101 01 0 0 1 1 1 0 0 0 O
o 01110 01 1 1 00 0 0 O

o 0 00 10 0 01 1 1 0 010

2433 Microns

1
2
3
4
5
6
7
8

9
10

11
12
13

14
15

16

17

18
19

20

21
22
23

24

25

26

27

28
29

30
31
32
33
34
35
36
37
38

PLA HEIGHT:

131

PLA WIDTH: 3137 Microns

Transmitter Source File (tx.sp)

The transmitter files have meanings similar to those of the receiver files. A

description will not be repeated.

PROGRAM PCM_to ADM ;

CONST
_data width = 8 ;

VAR
PCM input : input port CONNECT DOWNWARD ;
ADM output : output port CONNECT 0..0 UPWARD ;
Ex , { starting from LSB(0) : Ex(k-1),)}
Sx of k , { Step to next predlcted PCM }
X of k : integer ; { Last PCM output }
PROCEDURE _reset ; { Chip initialization procedure }
BEGIN
Ex := 0 ; { Make Ex(k-1) = Ex(k- 0}
X of k =0 ;
Sx of k := 0 ;
END ;
BEGIN

IF Sx of k < 0 THEN Sx of k :

0 - Sx of k ;

IF Ex = ???????0B THEN Sx of k := 0 - Sx of k ;

~add in 1 := Sx of k ; { IF Ex(k-2) = 1 THEN }
IF Ex = ??????1?B THEN { }
~add in 2 := 1 { Sx of k := Sx of k + 1}
ELSE { ELSE }
~add in 2 := -1 ; { Sx of k := Sx of k - 1;}

Sx of k := add out ; { (No over/under-flow check) }
X of k := X of k + Sx of k ; { No over/under-flow check }

Ex := Ex << 1 ; { Shift signals left i.e. one time step }
IF PCM input > X of k THEN Ex := Ex + 1 ;

ADM output := Ex ;
END. { PCM_input must have remained valid all the time }

Transmitter Source File Listing (tx.spil_list)

Finite-state-control description in file: tx.fsm
Bus map in file: tx.bm

1 PROGRAM PCM to ADM ;

2

3 CONST

4 _data width = 8 ;

5

6 VAR

7 PCM input : input port CONNECT DOWNWARD ;

8 ADM output : output port CONNECT 0..0 UPWARD ;

9

10 Ex , { starting from LSB(0) : Ex(k-1),)}
11 Sx of k , { Step to next predlcted PCM }
12 X of k : integer ; { Last PCM output }
13

14 PROCEDURE reset ; { Chip initialization procedure }
15 BEGIN

16 Ex := 0 ; { Make Ex(k-1) = Ex(k- 0}
17 X of k =0 ;

18 Sx of k := 0 ;

19 END ;
20
21 BEGIN
22 IF Sx of k < 0 THEN Sx of k := 0 - Sx of k ;
23
24 IF Ex = ??2?2?20B THEN Sx of k := 0 - Sx of k ;
25
26 ~add in 1 := Sx of k ; { IF Ex(k-2) = 1 THEN }
27 IF Ex = ??????1?B THEN { }
28 ~add in 2 := 1 { Sx of k := Sx of k + 1}
29 ELSE { ELSE }
30 ~add in 2 := -1 ; { Sx of k := Sx of k - 1;}
31 Sx of k := add out ; { (No over/under-flow check) }
32

33 X of k := X of k + Sx of k ; { No over/under-flow check }
34

35 Ex := Ex << 1 ; { Shift signals left i.e. one time step }
36 IF PCM input > X of k THEN Ex := Ex + 1 ;

37

38 ADM output := Ex ;

39 END. { PCM_input must have remained valid all the time }

** Program Graph **
Data bus width = 8
Dest addr width = 4

Source addr width = 4

132

--- Source Line 16 ---
0) dest = 10, source = 11 (const: 0), Moore mask: 001110011
Arc to: #1 on condition: default

--- Source Line 17 ---
1) dest = 8, source = 11 (const: 0), Moore mask: 001010011
Arc to: #2 on condition: default

--- Source Line 18 ---
2) dest = 9, source = 11 (const: 0), Moore mask: 011010011
Arc to: #3 on condition: default

--- Source Line 1 ---

3) dest = 0, source = 0, Moore mask: 100000000
Arc to: #4 on condition: ?1?????2???
Arc to: #3 on condition: default

--- Source Line 22 ---
4) dest = 0, source = 9, Moore mask: 001000001
Arc to: #5 on condition: default

5) dest = 0, source = 9, Moore mask: 001000001
Arc to: #6 on condition: ??1????2???
Arc to: #10 on condition: default

6) dest = 5 (cu), source =9, Moore mask: 011001001
Arc to: #7 on condition: default

7) dest = 1 (cu), source = 12 (const: 1), Moore mask: 010000101
Arc to: #8 on condition: default

8) dest = 2 (cu), source =5 (cu), Moore mask: 001100100
Arc to: #9 on condition: default

9) dest = 9, source = 2 (cu), Moore mask: 010010010
Arc to: #10 on condition: default

--- Source Line 24 ---
10) dest = 0, source = 10, Moore mask: 000010001
Arc to: #11 on condition: default

11) dest = 0, source = 10, Moore mask: 000010001
Arc to: #12 on condition: ????????720
Arc to: #16 on condition: default

12) dest = 5 (cu), source = 9, Moore mask: 011001001
Arc to: #13 on condition: default

13) dest =1 (cu), source = 12 (const: 1), Moore mask: 010000101
Arc to: #14 on condition: default

14) dest = 2 (cu), source =5 (cu), Moore mask: 001100100
Arc to: #15 on condition: default

133

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

dest = 9, source = 2 (cu),
Arc to: #16 on condition:

Source Line 26 ---
dest = 1, source = 9,

Arc to: #17 on condition:

Source Line 27 ---

134

Moore mask: 010010010
default

Moore mask: 011000001

default

dest = 0, source = 10, Moore mask: 000010001

Arc to: #18 on condition: default

dest = 0, source = 10, Moore mask: 000010001

Arc to: #19 on condition: ??????2??17

Arc to: #20 on condition: default

Source Line 29 ---

dest = 2, source = 12 (const: 1), Moore mask: 000100101
Arc to: #21 on condition: default

Source Line 30 ---

dest = 2, source = 13 (const: -1), Moore mask: 001100101

Arc to: #21 on condition:
Source Line 31 ---
dest = 9, source = 2,

Arc to: #22 on condition:

Source Line 33 ---

dest = 1 (cu), source = 8,
Arc to: #23 on condition:
dest = 2 (cu), source = 9,
Arc to: #24 on condition:
dest = 8, source = 2 (cu),
Arc to: #25 on condition:

Source Line 35 ---
dest = 3 (cu), source =
Arc to: #26 on condition:

dest = 10, source = 3 (cu)
Arc to: #27 on condition:

Source Line 36 ---

dest = 1 (cu), source = 13
Arc to: #28 on condition:
dest = 2 (cu), source = 6,
Arc to: #29 on condition:
dest = 5 (cu), source = 2
Arc to: #30 on condition:

10,

default

Moore mask: 010010010

default
Moore mask: 010000001
default

Moore mask: 001100001
default

Moore mask: 000010010
default

Moore mask: 010110001
default

, Moore mask: 001110010

default

(const: -1),

default

Moore mask: 011000101
Moore mask: 000110100
default

(cu), Moore mask: 010011000
default

30)

31)

32)

33)

34)

35)

36)

37)

135

dest = 1 (cu), source = 8, Moore mask: 010000001
Arc to: #31 on condition: default
dest = 2 (cu), source =5 (cu), Moore mask: 001100100
Arc to: #32 on condition: default
dest = 0, source = 2 (cu), Moore mask: 000010000
Arc to: #33 on condition: default
dest = 0, source = 2 (cu), Moore mask: 000010000
Arc to: #34 on condition: ??1??????7?
Arc to: #37 on condition: default
dest = 1 (cu), source = 10, Moore mask: 010010001
Arc to: #35 on condition: default
dest = 2 (cu), source = 12 (const: 1), Moore mask: 000100101
Arc to: #36 on condition: default
dest = 10, source = 2 (cu), Moore mask: 000110010
Arc to: #37 on condition: default
Source Line 38 ---
dest = 7, source = 10, Moore mask: 010111001
Arc to: #3 on condition: default
** Bus Map **
dest source
addr addr device. infol info2 symbol
0 0 data prech * * *
0 2 add out * * _ADD OUT
0 0 adder * * *
2 0 add latch b * * _ADD IN 2
1 0 add latch a * * _ADD IN 1
0 3 shift left * * _SHFL, OUT
3 0 dlatch * * _SHFL, IN
0 4 shift right * * _SHFR_OUT
4 0 dlatch * * _SHFR_IN
0 5 compl * * _COMPL_OUT
5 0 dlatch * * _COMPL,_IN
0 -6 oc_in latch 0 7 PCM INPUT
7 0 oc_out latch 0 0 ADM OUTPUT
0 8 out enable * * X OF K
8 0 dlatch * * "
0 9 out enable * * SX OF K
9 0 dlatch * * "
0 10 out enable * * EX
10 0 dlatch * * "

136

const

11
12
13

const
const

Transmitter Busgen File (tx.bm)

23

10

25
10

10

11
12
22
10

22
10

22
10

10

10

11
12
13

137

Transmitter Busgen File (tx_no_right_shifter.bm)

23

10

10

11
12
22

10

22

10

22

10

10

10

11
12
13

138

Transmitter FSM File (tx.fsm)

FSM PCM_TO_ ADM;
INPUTS x00, x01, x02, x03, x04, x05, x06, x07, x08, x09;
OUTPUTS vy00, y01, y02, y03, y04, y05, y06, y07, y08;

STATES

s000 = O,

s001 = 1,

s002 = 2,

s003 = 3,

s004 = 4,

s005 = 5,

s006 = 6,

s007 = 7,

s008 = 8,

s009 = 9,

s010 = 10,
s011 = 11,
s012 = 12,
s013 = 13,
s014 = 14,
s015 = 15,
s016 = 16,
s017 = 17,
s018 = 18,
s019 = 19,
s020 = 20,
s021 = 21,
s022 = 22,
s023 = 23,
s024 = 24,
s025 = 25,
s026 = 26,
s027 = 27,
s028 = 28,
s029 = 29,
s030 = 30,
s031 = 31,
s032 = 32,
s033 = 33,
s034 = 34,
s035 = 35,
s036 = 36,
s037 = 37;

RESET x00 : s000;

STATE s000 > y02, y03, y04, y07, y08;
OTHERWISE : s001;

STATE s001 > y02, y04,
OTHERWISE : s002;

STATE s002 > y01, yo02,
OTHERWISE : s003;

STATE s003 > y00;
x01 : s004;
OTHERWISE : s003;

STATE s004 > y02, yO08;
OTHERWISE : s005;

STATE s005 > y02, y08;
x02 : s006;
OTHERWISE : s010;

STATE s006 > y01, yo02,
OTHERWISE : s007;

STATE s007 > y0l, yo06,
OTHERWISE : s008;

STATE s008 > y02, y03,
OTHERWISE : s009;

STATE s009 > y0l, yo04,
OTHERWISE : s010;

STATE s010 > y04, yO08;
OTHERWISE : s011;

STATE s011 > y04, y08;
x09’ : s012;
OTHERWISE : s016;

STATE s012 > y01, yo02,
OTHERWISE : s013;

STATE s013 > y01, yo06,
OTHERWISE : s014;

STATE s014 > y02, y03,
OTHERWISE : s015;

STATE s015 > y01, yo04,
OTHERWISE : s016;

STATE s016 > y01, y02,
OTHERWISE : s017;

STATE s017 > y04, yO08;
OTHERWISE : s018;

yQ07,

y04,

y05,

y08;

y06;

y07;

y05,

y08;

y06;

y07;

y08;

y08;

y07, y08;

y08;

y08;

139

STATE s018 >

y04, y08;

x08 : s019;

OTHERWISE

STATE s019 >
OTHERWISE

STATE s020 >
OTHERWISE

STATE s021 >
OTHERWISE

STATE s022 >
OTHERWISE

STATE s023 >
OTHERWISE

STATE s024 >
OTHERWISE

STATE s025 >
OTHERWISE

STATE s026 >
OTHERWISE

STATE s027 >
OTHERWISE

STATE s028 >
OTHERWISE

STATE s029 >
OTHERWISE
STATE s030 >
OTHERWISE

STATE s031 >
OTHERWISE

STATE s032 >
OTHERWISE

STATE s033 >

s020;

y03, y06, y08;
5021;

y02, y03, y06,
s021;

y0l, vy04, y07;
s022;

y01, y08;
s023;

y02, y03, y08;
s024;

y04, vy07;
s025;

y01l, y03, y04,
s026;

y02, y03, y04,
s027;

y01l, y02, y06,
s028;

y03, y04, y06;
5029;

y01l, y04, yO05;
s030;

y01, y08;
s031;

y02, y03, y06;
5032;

y04;
s033;

y04;

x02 : s034;

OTHERWISE

STATE s034 >
OTHERWISE

STATE s035 >

s037;

y01l, y04, y08;
s035;

y03, y06, y08;

y08;

y08;

y07;

y08;

140

141

OTHERWISE : s036;

STATE s036 > y03, y04, y07;
OTHERWISE : s037;

STATE s037 > y01, y03, y04, y05, y08;
OTHERWISE : s003;

Transmitter Busgen Listing (tx.bm_list)

Dimensions of device array:
Height = 2721 microns
Width = 2839 microns

Transmitter FSM Listing (tx.fsm_list)

--- PLAMATE - University of Waterloo PLA/FSM generator ---

PLA/FSM "PCM TO ADM" generated on Sat Dec 13 05:19:00 1986

SYMBOLS :
INPUT 1 = x00
INPUT 2 = x01
INPUT 3 = x02
INPUT 4 = x03
INPUT 5 = x04
INPUT 6 = x05
INPUT 7 = x06
INPUT 8 = x07
INPUT 9 = x08
INPUT 10 = x09

OUTPUT 1 = y00
OUTPUT 2 = yOl
OUTPUT 3 = y02

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

W 00 J O Ul

STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE 9
STATE 10
STATE 11
STATE 12
STATE 13
STATE 14
STATE 15
STATE 16
STATE 17
STATE 18
STATE 19
STATE 20
STATE 21
STATE 22
STATE 23
STATE 24
STATE 25
STATE 26
STATE 27
STATE 28
STATE 29
STATE 30
STATE 31
STATE 32
STATE 33
STATE 34
STATE 35
STATE 36
STATE 37

0 JOoO Ul WNE O

= y03
= y04
= y05
= y06
= y07
= y08

= s000
= s001
= s002
= s003
= s004
= s005
= s006
= s007
= s008
= s009
= s010
= s011
= s012
= s013
= s014
= s015
= s016
= s017
= s018
= s019
= s020
= s021
= s022
= s023
= s024
= s025
= s026
= s027
= s028
= s029
= s030
= s031
= s032
= s033
= s034
= s035
= s036
= s037

Before minimization:

Number of
Number of
Number of
Number of

inputs is
outputs is
state lines is
minterms is

explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit
explicit

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(explicit

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

10.
9.
6.

44 .

142

143

There were 0 errors in this description.

After minimization, number of minterms is 43.

THE AND PLANE:

6

-15
0
15
1
-16
1
16
0

8 8 8 8 7 7 7 7 7 8 7 7 8 7 7 7 7 8 7 7 6 8 7 7717
7 7 7 8 7 7 7 7 7 7 6 6 7 7 6 7 8

| 11111111111 1 1111 1 1 1 1 1 1 1 1 1
111111111 111111 11

| o oo o0o0O0O0OOOOOUOT1IO0O0OUOOUOO0OO0O0UO0O0TO0O
o 0o 0o o o 0o 0o 00 00 0 0 0 0 00O

| L. oo 0o o0O0O0OOOUOOU O OOOUOOUOO0OO0O0O0O0O0O0
o 0 0o 0o o 0o 000 OO OO0OO0ODOTO0OTDO

| o o0 0o0O0OOOOOOOOOOOUOOTZ11O0O0O01O0 00
o 0 0o 0o 0o 0000 OO0OOOTO0OOTOTPWO

| o011 00 00 0O0OOOU OOOOUOOUOO0OO0O0O0OO0TO0O
o 0o 0o 0o o 0o 0o 00 00 0 0 0 0 00O

| o oo 0 o0O0OOOOOOOU O OOOUOOUOO0OO0O0O0O0O0O
o 0 061 o 06 06 00 00 0O O0 0 0 00O

| o oo 0 o0O0OOOOOUOOU O OOOUOOUOO0OO0O0O0O0 0O
o 0o 0o 0o o 0o 000 00O O0OO0OO0ODOTO0OTI1

| o oo o0o0O0OOOOO?11O0TU0OO0O0O0OOOO0OO0O0O0O0O0TO0O
o 0 0o 0o o 0o 000 OO0 O0OO0OO0ODOTO0OTDWO

| o o0 1 00 0O0O0OUOOU O O0OOOUOOUOO0O0O0O0O0TO0O
o 0 0o 0o o 0000 OO OOO0OOTO0OTDWO

| o oo o0o0O0OOOOOOOU O OOOOOUOO0OO0O0OO0O0 1 1
111111111 111111 11

| 11111 111111 1 1111 1 1 1 1 11 1 0 o0
0o 0 0o 0o o 0o 0o 00 00 0 0 0 0 00

| o 11000 0O0O0OOOOOOTI1I11171711 1111 00
o 0 00 o0 1 111001 1 010

| 1 o011 1 1 1 111 1 1 10 00O0O0O0O0O0OUO0OTO0TI11
11111100 0 O0OO0OO0OO0OO0O O0O 0 1

| 1L o112 0090011111 1000WO0OO0OT1T1T1T1T71T00O0
0111110 0 0 001 1 1 1 1 1

| o1 0901 1 11 000O0O01 111 1 00000 1 1
10 0 0 001 1 1 1 1 0 0 O OO0 O

| 111000 110011 100111 0001100
10 0 1 11 0 0 1 1 1 0 0 1 1 1 1

| o o011 1 0011000110001 1000 1 1
0110001 1 0 O0O0OI1 1 0 0 00

| 111101010101 1010110101101
101 01 1 01 0 1 1 0 1 0 1 1 O

| o oo 01 0 1010100101001 0 10010
01010 01 01 0 01 0 1 0 01

| 1101 1 1 1111101 1110 1 1 1 1 0 1 1 1
111101111 01 1 1 1 0 1 1

| o o100 0 0O0O0OOOTZ1IO0O0O0OUO0O1O0TU0O0O0O0T1O0TUO0SFO
o 0o 001 0 0 0601 00 0 01 00O

144

THE OR PLANE:

216 16 13 23 4 10 9 27 23 21 20 17 18 7

10 0 0 0O OO O O OOT11I 0 0 O
0o 0100 0 0 01 01 1 0 0O
0o 0o 001 0 0 0 001 0 0 0 1
0o 0 001 0 0 0601 0 00010
0o 0112001 0 0 O0OO0OO0OO0OO0OT1
010 01 0 0 1 0 0 0 0 0 1 o0

0o 0112000 01 0 001 1 0
010 0 0 01 01 0 0 0 1 0 O
60110001 01 0 01 1 1 0
o 0o 001 0 0 06100 1 1 00
o 0 061 001 601 101010
o 0o 061 o 01 061 0 0 1 0 0 1
10 0 0 0O OO O O1 1 0 0 0 O

010011 0 0 0 01 1 1 1 0
01000 01 01 01 1 1 0 O
01001 0 0 1 0 01 1 0 1 O
6010111 0 0 1 1 1 0 0 0 O
0o 0100 0 0 01 01 01 00O
01011 0 0 0 1 01 0 1 1 o0
010 01 0 0 1 0 01 0o 1 0 O
o 0o 00 10 0 01 01 0o o0 1 O
o 0o 001 0 0 0 01 01 0 0 1
0o 01010 0 1 1 01 0 0 0 O
010000 O0OOT11T11 11 10
o 011001 0 01111 00
01000 O0O0OOT11T 111 010
6011001 0 01 1 1 1 0 0 O
o 01110 01 01 1 01 1 0
o 0o 00 1710 0 01 1 1 01 00
o 0 0010 0 01 00 1 0 1 O
01001 0 0 0 1 11 0 0 0 1
6011010 0 1 1 1 1 0 0 0 O
o 0 01101 0 01 011 1 0
6011001 0 01 1 01 1 0O
0o 011001 01 1 01 010
o 0 0611 0 0 1 01 0 1 0 0 1
0o 0100 0 0 01 1 01 0 0 O
o 0 00 10 0 1 01 0 o0 1 1 o0
0o 0112001 0 01 001 00O
6011000 0O O0O1T 10 0 010
0o 0 001 0 0 0 01 0 0 0 0 1
o 01110 01 1 1 00 0 0 O

o 0o 00 10 0 01 11 0 010

2668 Microns
3447 Microns

1
2
3
4
5
6
7
8

9
10

11
12
13

14
15

16

17

18
19

20

21
22
23

24

25

26

27

28
29

30
31
32
33
34
35
36
37
38
39
40

41

42

43

PLA HEIGHT:
PLA WIDTH:

Appendix B
EPAD Files

EPAD CMOS Technology File (epad.analyss)

This file contains the CMOS technology parameters that were used to run
EPAD. The technology file contains the (kcapseries=1.0. This parameter was

explained in section 3.1.4 (Delay Models). Thisfile is self-explanatory.

tech cmos-nt # CMOS3 technology Jan 1986

#

capacitance parameters (as .cadrc)

#

areatocap metal 27 # areatocap is cap per unit area in
areatocap poly 60 # aF/micron*micron

areatocap diff 100

areatocap poly/diff 690

perimtocap poly 20 # perimtocap is cap per unit perimeter in
perimtocap diff 800 # aF/micron

perimtocap metal 40

perimtocap poly/diff 50

#

other capacitance parameters

#

coxn 690 # gate capacitance (NMOS) in aF/micron*micron
coxp 690 # gate capacitance (PMOS) in aF/micron*micron
covn 300 # overlap capacitance (NMOS) in aF/micron

covp 250 # overlap capacitance (PMOS) in aF/micron

#

additional delay and power calculation factors

#

un 775.0 # electron surface mobility in cm*cm/ (V-s)

up 250.0 # hole surface mobility in cm*cm/ (V-s)

vtn 0.7 # zero bias threshold voltage NMOS in V

vtp 0.8 # zero bias threshold voltage (absolute value) PMOS in V
gamn 1.1 # bulk threshold parameter NMOS in V**0.5 (gamma)
gamp 0.6 # bulk threshold parameter PMOS in V**0.5

phin 0.6 # surface potential NMOS in V (2*phi-f)

145

146

phip 0.6 # surface potential PMOS in V

#

INPUT PARAMETERS

#

kcapseries 1.0 # factor for series transistor capacitance combination
normally between 0.0 and 1.0

vdd 5.0 # power supply voltage in V

fsw 1.0 # switching frequency in MHz

147

Layout Input File (codec.cif)

The layout file is much too big to be shown here. Instead, a diagram of the

layout is shown.

0 ® [& 1 =

(@
&

i

]

o M
L BBk 8 & ¥ 3]

g

E!‘EF'

E Rt 8
E ot g
MM N
AWM N
L

EPAD Output Log File (codec.log)

directionality is unresolved.
Thisfirst point is one transistor at the most significant bit of the left shifter. This
transistor does nothing; it is a redundancy generated by SPIL and EPA D cannot
determine the direction of signal propagation through the transistor. The second
point is test inserts. Error messages labelled with the name tins are due to
EPAD errors in identifying the test inserts.

using EPAD and SILOS. No noticeable effect on any codec results occurred

This file displays any errors that EPAD detected. Some transmisson gate

because of these error messages.

Tue Dec 23 03:50:23 EST 1986
epad INPUT FILE = codec.cif
- mextra log -------------------—----

Window:

the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

label
label
label
label
label
label
label
label
label
label
label
label
label
label
label
label
label
label
label

-2255.4 2255.4 -2255.4 2255.4 @ u=100

"add_co’ has 16 occurrences
"add_cin’ has 14 occurrences
"lat _com’ has 80 occurrences
"src_add’ has 8 occurrences
"src_com’ has 8 occurrences
'dst_add’ has 8 occurrences
"SRC_EN’ has 20 occurrences
"dst_com’ has 8 occurrences
"add_a’ has 16 occurrences
"add b’ has 16 occurrences
"add s’ has 16 occurrences
'D_IN' has 16 occurrences
‘dst’ has 8 occurrences

'DST _EN’ has 16 occurrences
'D BUS’ has 16 occurrences
"src’ has 8 occurrences

'D OUT' has 16 occurrences
"PHI1-' has 2 occurrences
"PHI2’ has 2 occurrences

2584 neg enhancement
2412 pos enhancement

148

It is a minor annoyance and is due to two points.

Test inserts were not simulated

149

3291 nodes
—————————— epad.analysis parameters used ---------------
tech cmos-nt
areatocap metal 27
areatocap poly 60
areatocap diff 100
areatocap poly/diff 690
perimtocap metal 40
perimtocap poly 20
perimtocap diff 800
perimtocap poly/diff 50
coxn 690
coxp 690
covn 300
covp 250
GATES WITH > 10 INPUTS - ASSUMED COMPLEMENTARY
un 775.0
up 250.0
vtn 0.7
vtp 0.8
gamn 1.1
gamp 0.6

.6

.6

——————— INPUT PARAMETERS -------

kcapseries 1.0

vdd 5.0

fsw 1.0

ERROR: Some transmission gate directionality unresolved
ERROR: Unresolved transfer gate directionality in SILOS input
8126 NPASS.1 1.70319 0.309967 1.3177 1.0 8145 sel 3 -

8145 NPASS.2 1.4354 0.261232 1.11052 1.0 8126 sel 3 -
tins2a NPASS.1 33.6633 6.12645 13.0221 1.0 tins2c tins2b -
tins2c NPASS.2 34.3378 6.24921 13.283 1.0 tins2a tins2b -
tins4c NPASS.1 34.3134 6.24476 13.2736 1.0 tins4d tins4a -
tins4d NPASS.2 36.1015 6.57018 13.9653 1.0 tins4c tins4a -
8494 NPASS.1 1.4353 0.261214 1.11045 1.0 8739 tsel 3 -
8739 NPASS.2 1.70309 0.309949 1.31763 1.0 8494 tsel 3 -
tins3a PPASS.1 6.79251 39.6306 13.2257 1.0 tins3c - tins3b
tins3c PPASS.2 6.87809 40.1299 13.3923 1.0 tins3a - tins3b
tins4b PPASS.1 6.9188 40.3674 13.4716 1.0 tins4d - tins4a
tins4d PPASS.2 7.17234 41.8467 13.9653 1.0 tins4b - tins4a

150

EPAD SILOS-Input File (codec.dat)

This file contains a logic description of the codec chip. It is too big to be
shown in its entirety. Each line shown represents one capacitance from a node
to ground. The nodes names are in the first column and are automatically gen-
erated by mextra, when EPAD calls mextra. The capacitances in femto-Farads
are shown in the third column. This file contains other circuit elements such as
CMOS gates, N-channel transmission gates and P-channel transmisson gates,

but they are not shown.

.TITLE SILOS INPUT FOR codec.cif

#

Add clock/pattern specification for input nodes
#

nlo0s59 .CAP 596
nl0080 .CAP 130
nl0082 .CAP 608
nl0135 .CAP 665
nl0138 .CAP 127
nl0140 .CAP 127
nl0142 .CAP 127
nl0144 .CAP 126
nl0l46 .CAP 127

nl0148 .CAP 127

151

EPAD Output File (codec.epad)

This file is the output from EPA D and contains power disspation, area and
delay predictions. This file is too big to be shown in its entirety. The first part
of the file describes the areas of cells in the CIF layout. Only two cells are
shown. The units of length and area for the cells are in physical um, not design
scale microns. The gate delays and power disspations are grouped by gate types.
CMOS gate delays are listed first. This is followed by D-latch delays. D-latches
are the level-sensitive latches used in the FSM latches and in data path registers.
Finally complementary and non-complementary transmission gate data are
shown. These tables are self-explanatory. The last three parts of the EPAD

output file contain the circuit connectivity, again segregated by gate types.

Tue Dec 23 03:31:20 EST 1986
epad INPUT FILE = codec.cif

SILICON AREA :

NAME/SYMBOL : padouty; 1
HEIGHT (microns) 300

WIDTH (microns) 312

ARFA (sq. microns) 93600
ASPECT RATIO 0.96
NAME/SYMBOL : padiny; 2
HEIGHT (microns) 300

WIDTH (microns) 312

ARFA (sq. microns) 93600
ASPECT RATIO 0.96

152

CMOS GATE DELAYS , POWER :
Output node Gate PMOS (rise) NMOS (fall) Power Frequency
type delay (ns) delay (ns) uw Mhz
10171 LINV 2.393 1.326 3.64 1.000
10226 LINV 0.847 0.782 2.15 1.000
10238 LINV 4.043 2.240 6.15 1.000
tsel 8 .NAND 4.255 3.274 17.98 1.000
tsel 9 LINV 4.329 3.997 10.98 1.000
Total Power 11647.83

D LATCH DELAYS , POWER :

Output node Input node Rise input Fall input Power Freq. Output

Q or QOBAR D delay (ns) delay(ns) uw Mhz type
2237 1127 5.354 2.582 0.00 1.000 QBAR
src 0 1127 8.951 4.021 17.56 1.000 Q
12702 12567 5.354 2.582 0.00 1.000 QBAR
12082 tst in 5 59.187 46.313 0.00 1.000 QBAR
tst_outs tst_in 5 70.322 50.768 100.66 1.000 Q

Total Power 4096.21

TRANSMISSION GATE DELAYS , POWER :
*

Output Input Rising Falling Power Freq. Type

node node delay (ns) delay(ns) uw Mhz
10277 GND 1.746 0.318 1.35 1.000 NPASS
10320 add a#11l 4.123 2.316 4.28 1.000 CPASS
10320 add b#11 11.062 2.013 4.28 1.000 NPASS
tready vad 5.887 34.347 45.09 1.000 PPASS
tready vad 5.887 34.347 45.09 1.000 PPASS
tready vad 5.887 34.347 45.09 1.000 PPASS
Total Power 15617.71

**

** Some transmission gate directionality is unresolved
** and therefore double counted in power summation

CMOS GATE NETWORK CONNECTIONS :

Output node Type Input nodes
10171 INV add co#12
10226 NV add s#ll

10238 INV add b#ll
tsel 7 LINV 14380

tsel 8 .NAND 14675, tPHI2
tsel 9 JINV 14376

D LATCH NETWORK CONNECTIONS :

Output node Input node Clock Signal Output
Q or QBAR D Type
2237 1127 1885 QBAR
src_0 1127 1885 Q
12702 12567 12420 QBAR
tst out4 tst in 4 tPHI2 Q
12082 tst in 5 tPHI2 QBAR
tst outs tst in 5 tPHI2 Q

TRANSMISSION GATE NETWORK CONNECTIONS :

*

Output node Input node NMOS Gate PMOS Gate Type
10277 GND 10256 - NPASS
10320 add a#11l add b#11 10238 CPASS
10320 add b#11 add a#11 - NPASS
tready vad - 16789 PPASS
tready vad - 16789 PPASS
tready vad - 16789 PPASS

**

** Some transmission gate directionality is unresolved
** and therefore both directions appear

153

Appendix C
SILOS Logic Simulation

This appendix contains the files associated with running a SILOS logic simu-

lation.

Batch Command File (batchfile)

This file contains the UNIX™ command the was used to start the SILOS
simulation. The file called commands contains the SILOS commands. The file

called output contains the output of SILOS.

cat commands | silos > output

154

155

SILOS Commands File (commands)

This file contains the SILOS commands. The first command reads the three
.dat files for SILOS. The second command runs a logic simulation from 0
nanoseconds to 400000 nanoseconds. The third command shows any errors if

they existed. The fourth command exits SILOS and saves the simulation results.

input top.dat codec.dat bot.dat
sim O to 400000

ty err

exit save

Circuit Description Part 1 of 3 (top.dat)

This file contains the top of the SILOS circuit description file. It just shows

the title.

.TITLE Silos input from epad 1 for codec.dat
#

The circuit description :

#

156

Circuit Description Part 2 of 3 (codec.dat)

This file contains a description of circuit elements of the codec. Recall the
it was generated by EPAD. See appendix B (EPAD Files). It will not be

repeated here.

Circuit Description Part 3 of 3 (bot.dat)

This file describes the logic test to be performed on the receiver. This file
contains a description of the signals which are input to the circuit to perform a
logic verification. It also describes the signals which were observed, the outputs
of the circuit. Input signals are shown by the .CLK symbol in the second column
of any line. The first column contains the signal nhame. The transmitter signals
which are shown are: RESET, GO, PHI1-, PHI2 and the eight PCM input sig-
nals. The receiver signals are: RESET, GO, PHI1-, PHI2, the ADM input sig-
nal and the seven unused signals of the ADM_IN register which had to be
grounded. Test structures were given input signals to prevent SILOS error mes-
sages, but test structure outputs were not analysed. Consider the signal
ntreset, at time 0 it is defined to be D1 (driving-strength, logic 1). At time
875 (nanoseconds), it is defined to be D0. The Output data definitions

begin with the .sym statement. This statement indicates the meaning of charac-

157

ters in the output file. For example, SILOS shows a supply-strength signal (s0)
by the symbol 0. Logic values may be 1, 0 or X (unknown). Signal strengths
may be supply, driving, resistive or high-impedance. The statement .hex indi-
cates groups of four logic outputs which are to have an equivalent hexadecimal
name. For example, the most significant bit of the hexadecimal signal rdata h
is nD 7. More hexadecimal signals are defined than are used, but that did not
affect the simulation. The final statement, .mon, indicates all the signals which
are to displayed in the output file. Whenever any one of the signals changes, all
signals will be displayed at the time that the change occurred. The signalsin the
.mon statement are: PHI1-, PHI2, RESET, GO, ADM input, READY, PCM
output (high and low hexadecimal values), current FSM state (high and low hex-
adecimal values), data bus values (high and low hexadecimal values), source

address, and destination address.

#
Input waveforms :

#

transmitter

ntreset .CLK 0 D1 875 DO

ntgo .CLK 0 DO 5625 D1

ntphil- .CLK 0 DO 250 D1 1000 DO .REP O
ntphi2 .CLK 0 DO 500 D1 750 DO 1000 DO .REP O
#

nD IN#8 .CLK 0 DO 192875 D1

nD IN#9 .CLK 0 D1 192875 D1

ntpcminb .CLK 0 DO 192875 DO

ntpcmind .CLK 0 DO 192875 DO

ntpcmin3 .CLK 0 DO 192875 DO

ntpcmin2 .CLK 0 DO 192875 DO

ntpcminl .CLK 0 DO 192875 DO

158

ntpcmin0 .CLK 0 DO 192875 DO

receiver

nrreset .CLK 0 D1 875 DO

nrgo .CLK 0 DO 5625 D1

nrphil- .CLK 0 DO 250 D1 1000 DO .REP O
nrphi2 .CLK 0 DO 500 D1 750 DO 1000 DO .REP O
nADM IN .CLK 0 D1 160875 DO

#

nD IN#1 .CLK 0 D1

nD IN#2 .CLK 0 D1

nD IN#3 .CLK 0 D1

nD IN#4 .CLK 0 D1

nD IN#5 .CLK 0 D1

nD IN#6 .CLK 0 D1

nD IN#7 .CLK 0 D1

test structures

ntestin .CLK 0 DO 100 D1 200 DO
ntins2a .CLK 0 DO
ntins2b .CLK 0 DO
ntins2c .CLK 0 DO
ntins3a .CLK 0 D1
ntins3b .CLK 0 D1
ntins3c .CLK 0 D1
ntins4a .CLK 0 DO
ntins4b .CLK 0 D1
ntins4c .CLK 0 DO
ntins4d .CLK 0 D1

#

Output data definitions
#

.sym s0=0 s*=X sl=1 d0=0 d*=X dl=1 r0=0 r*=X rl=1
+ Zz0=- z*=X zl=+ 0d=v *d=X 1d=" *s=S

.hex rdata h=nD 7,nD 6,nD 5,nD 4 rdata 1=nD 3,nD 2,nD 1,nD 0
rstate h=.GND, .GND,nst _out 5,nst out 4

rstate 1=nst out 3,nst out 2,nst out 1,nst out 0O
rinlat=n5943,n6154,n6288,n6366

routlat 1=.GND, .GND,nst in 5,nst in 4

routlat 2=nst in 3,nst in 2,nst in 1,nst in 0
rsrc=nsrc_3,nsrc_2,nsrc_1l,nsrc_0
rdst=ndst 3,ndst 2,ndst 1,ndst 0O

rdecsrc 1=n2151,n2145,n2141,n2137

rdecsrc 2=n2133,n2129,n2125,n2121

rdecsrc 3=.GND, .GND,n2119,n2117

rdecdst 1=n2149,n2147,n2143,n2139

rdecdst 2=n2135,n2131,n2127,n2123

raddlatb h=nadd b#7,nadd b#6,nadd b#5,nadd b#4
raddlatb l=nadd b#3,nadd b#2,nadd b#1l,nadd b#0

+ 4+ 4+

159

raddlata h=nadd a#7,nadd a#6,nadd a#5,nadd a#4
raddlata l=nadd a#3,nadd a#2,nadd a#l,nadd _a#0
rshfl h=n7949,n7519,n7085,n6479

rshfl 1=n5757,n4513,n3774,n3087

rcompl h=n7948,n7518,n7084,n6478

rcompl 1=n5756,n4512,n3773,n3086

rpcmout h=nrpcmout 7, nrpcmout6, nrpcmout5, nrpcmout4
rpcmout 1l=nrpcmout3, nrpcmout?2, nrpcmoutl, nrpcmout0
rx of k h=n7947,n7517,n7083,n6477

rx of k 1=n5755,n4511,n3772,n3085

rsx of k h=n7946,n7516,n7082,n6476

rsx of k 1=n5754,n4510,n3771,n3084

rex h=n7945,n7515,n7081,n6475

rex 1=n5753,n4509,n3770,n3083

roli 1=n894,n943,n1127,n1301
roli_2=nl462,nl709,n1729,n1886
roli_3=n2070,n2502,n2803,n3155

roli 4=.GND,n3506,n3736,n4044

raddout h=n8147,n7718,n7293,n6861

raddout 1=n6147,n5013,n4050,n3381

B R T I T S S S A T I T I T

Output data :

H 3 3+

.mon nrphil- nrphi2 ;
nrreset nrgo nADM IN ;
nbrready ;

rpcmout h rpcmout 1 ;
rstate h rstate 1 ;
rdata h rdata 1 ;

rsrc rdst ;

+ 4+ + + + o+

160

Circuit Description of the Transmitter (bot_tx.dat)

If this file replaces the file bot.dat, then logic verification tests will be per-

formed on the transmitter.

This file is the same as the receiver file (bot.dat)

except for the corresponding transmitter signalsin the .mon statement.

#

Input waveforms :

#

transmitter

ntreset
ntgo
ntphil-
ntphi2

#
nD_IN#8
nD_IN#9
ntpcminb
ntpcmind
ntpcmin3
ntpcmin2
ntpcminl
ntpcmin0

receiver

nrreset
nrgo
nrphil-
nrphi2
nADM IN
#

nD IN#1
nD IN#2
nD IN#3
nD IN#4
nD IN#5
nD IN#6
nD IN#7

.CLK
.CLK
.CLK
.CLK

.CLK
.CLK
.CLK
.CLK
.CLK
.CLK
.CLK
.CLK

.CLK
.CLK
.CLK
.CLK
.CLK

.CLK
.CLK
.CLK
.CLK
.CLK
.CLK
.CLK

0
0
0
0
0

0
0
0
0
0
0
0

test structures

ntestin
ntins2a
ntins2b

.CLK 0
.CLK 0
.CLK 0

o O oo

OO OO OoOooOo

D1 875 DO

DO 5625 D1

DO 250 D1 1000 DO .REP O
DO 500 D1 750 DO 1000 DO .REP O
DO 192875 D1

D1 192875 D1

DO 192875 DO

DO 192875 DO

DO 192875 DO

DO 192875 DO

DO 192875 DO

DO 192875 DO

D1 875 DO

DO 5625 D1

DO 250 D1 1000 DO .REP O
DO 500 D1 750 DO 1000 DO .REP O
D1 160875 DO

D1

D1

D1

D1

D1

D1

D1

DO 100 D1 200 DO

DO

DO

ntins2c .CLK

0 DO
ntins3a .CLK 0 D1
ntins3b .CLK 0 D1
ntins3c .CLK 0 D1
ntins4a .CLK 0 DO
ntins4b .CLK 0 D1
ntins4c .CLK 0 DO
ntins4d .CLK 0 D1

#

Output data definitions

#

.sym
+

.hex

Bk T T T T T S o e AT T T T S SO S S SRR SR R

H 3 3

s0=0 s*=X sl=1 d0=0 d*=X dl=1 r0=0 r*=X rl=1
z0=- z*=X zl=+ 0d=v *d=X 1d=" *s=S

tdata h=ntD 7,ntD 6,ntD 5,ntD 4 tdata 1=ntD 3,ntD 2,ntD 1,ntD 0

tstate h=.GND, .GND,ntst out5,ntst out4

tstate 1l=ntst out3,ntst out2,ntst outl,ntst outO
tinlat=n10525,n10377,n10209,n10082

toutlat 1=.GND, .GND,ntst in 5,ntst in 4

toutlat 2=ntst in 3,ntst in 2,ntst in 1,ntst in 0
tsrc=ntsrc_3,ntsrc_2,ntsrc 1,ntsrc 0
tdst=ntdst 3,ntdst 2,ntdst 1,ntdst 0

tdecsrc 1=n14691,n14685,n14681,n14677

tdecsrc 2=n14673,n14669,n14665,n14661

tdecsrc 3=.GND, .GND,nl14659,n14657

tdecdst 1=n14689,n14687,n14683,n14679

tdecdst 2=n14675,n14671,n14667,n14663

taddlatb h=nadd b#15,nadd b#14,nadd b#13,nadd b#12
taddlatb l=nadd b#11,nadd b#10,nadd b#9,nadd b#8
taddlata h=nadd a#15,nadd a#l4,nadd a#l13,nadd a#l2
taddlata l=nadd a#ll,nadd a#10,nadd a#9,nadd a#8
tshfl h=n8689,n9130,n9562,n10336

tshfl 1=n11438,n12612,n13274,n13959

tcompl h=n8687,n9128,n9560,n10334

tcompl 1=n11436,n12610,n13272,n13957

tx of k h=n8685,n9126,n9558,n10332

tx of k 1=n11434,n12608,n13270,n13955

tsx of k h=n8683,n9124,n9556,n10330

tsx of k 1=n11432,n12606,n13268,n13953

tex h=n8681,n9122,n9554,n10328

tex 1=n11430,n12604,n13266,n13951

toli 1=n14782,n14620,n14499,n14325

toli 2=n14205,n14018,n13852,n13710

toli 3=n13652,n13472,n13253,n13115

toli 4=.GND,nl13001,n12751,n12567

taddout h=n8607,n9049,n9480,n10226

taddout 1=n11158,n12421,n13150,n13830

Output data :

161

162

.mon ntphil- ntphi2 ;

ntreset ntgo

nD IN#8 nD IN#9 ntpcmin5 ntpcmind ntpemin3 ntpemin2 ntpeminl ntpemin0 ;
nbtready ;

nadm out ;

tstate h tstate 1 ;

tdata h tdata 1 ;

tsrc tdst

+ 4+ o+ 4+ + 4+

SILOS Output File (output)

This file contains the output of SILOS. Only some of the output file is
shown. Signals are shown in columns and times are shown in rows. The part of
the file which is shown indicates the PCM outputs of the receiver (PCMOUT H and
PCMOUT L) when the READY signal rises. The meaning of this test is described

in section 4.3.1 (SILOS Logic Verification).

- SILOS 2D.1- MONITOR 20:22:20 Mar 25 1987
SILOS INPUT FOR CODEC.CIF

PP SS DD SD
RGD TT RS

EOM

B

TT

'CHESEE
=

2 H
KOoOprPr@EH®"OW=

B HE88283
zl
zl

TIME
0 00 101 ? ** ** FEF *%*

763 10 101 0 00 ** 00 00
875 10 001 O 00 ** 00 00

4772 10 001 1 00 03 00 00

5625 11 011 1 00 03 FF 00

6763
30760
30772
55760
55772
76760
76772
97760
97772

118760
118772
139760
139772

10

10
10

10
10

10
10

10
10

10
10

10
10

011

011
011

011
011

011
011

011
011

011
011

011
011

00

FF
FF

FF
FF

00
00

02
02

05
05

09
09

04

03
03

03
03

03
03

03
03

03
03

03
03

FF

FF
FF

FF
FF

00
00

02
02

05
05

09
09

00

00
00

00
00

00
00

00
00

00
00

00
00

163

Appendix D
SILOS Critical Path Simulation

The execution of SILOS for the critical path analysis was the same as the
execution described in the SILOS Logic Files appendix, except for the following

different files.

Circuit Description File Part 3 of 3 (bot.dat)

This file describes the receiver analysis. The only difference from A ppendix
C (SILOS Logic Simulation) is the .mon statement. The .mon statement lists
every signal that was necessary to perform a critical path analysis. The .mon
signals are shown by lines. The first line gives PHI1-, PHI2 and PHI2'. The
second line gives all the outputs of the FSM input latches. The third line gives
all the outputs of the FSM output latches. The fourth line gives the data bus.
The fifth line gives all the outputs of the address decoders. The sixth line gives
the outputs of the adder’s input ports. The seventh line gives the outputs of the
left shifter’'s and complementer’s input ports. The eighth line gives outputs all
other register’s input ports. The ninth line gives the inputs of all FSM output

latches. The last line gives the inputs of the adder’s output port.

164

165

#
Input waveforms

#

transmitter

ntreset .CLK 0 D1 875 DO

ntgo .CLK 0 DO 5625 D1

ntphil- .CLK 0 DO 250 D1 1000 DO .REP O
ntphi2 .CLK 0 DO 500 D1 750 DO 1000 DO .REP O
#

nD IN#8 .CLK 0 DO 192875 D1

nD IN#9 .CLK 0 D1 192875 D1

ntpcminb .CLK 0 DO 192875 DO

ntpcmind .CLK 0 DO 192875 DO

ntpcmin3 .CLK 0 DO 192875 DO

ntpcmin2 .CLK 0 DO 192875 DO

ntpcminl .CLK 0 DO 192875 DO

ntpcmin0 .CLK 0 DO 192875 DO

receiver

nrreset .CLK 0 D1 875 DO

nrgo .CLK 0 DO 5625 D1

nrphil- .CLK 0 DO 250 D1 1000 DO .REP O
nrphi2 .CLK 0 DO 500 D1 750 DO 1000 DO .REP O
nADM IN .CLK 0 D1 160875 DO

#

nD IN#1 .CLK 0 D1

nD IN#2 .CLK 0 D1

nD IN#3 .CLK 0 D1

nD IN#4 .CLK 0 D1

nD IN#5 .CLK 0 D1

nD IN#6 .CLK 0 D1

nD IN#7 .CLK 0 D1

test structures

ntestin .CLK 0 DO 100 D1 200 DO
ntins2a .CLK 0 DO
ntins2b .CLK 0 DO
ntins2c .CLK 0 DO
ntins3a .CLK 0 D1
ntins3b .CLK 0 D1
ntins3c .CLK 0 D1
ntins4a .CLK 0 DO
ntins4b .CLK 0 D1
ntins4c .CLK 0 DO
ntins4d .CLK 0 D1

#
Output data definitions
#

166

.sym s0=0 s*=X sl=1 d0=0 d*=X dl=1 x0=0 r*=X rl=1
+ Zz0=- z*=X zl=+ 0d=v *d=X 1d=" *s=S

.hex rdata h=nD 7,nD 6,nD 5,nD 4 rdata 1=nD 3,nD 2,nD 1,nD 0
rstate h=.GND, .GND,nst _out 5,nst out 4

rstate 1=nst out 3,nst out 2,nst out 1,nst out 0O
rinlat=n5943,n6154,n6288,n6366

routlat 1=.GND, .GND,nst in 5,nst in 4

routlat 2=nst in 3,nst in 2,nst in 1,nst in 0
rsrc=nsrc_3,nsrc_2,nsrc_1l,nsrc_0
rdst=ndst 3,ndst 2,ndst 1,ndst 0O

rdecsrc 1=n2151,n2145,n2141,n2137

rdecsrc 2=n2133,n2129,n2125,n2121
rdecsrc_3=.GND, .GND,n2119,n2117

rdecdst 1=n2149,n2147,n2143,n2139

rdecdst 2=n2135,n2131,n2127,n2123

raddlatb h=nadd b#7,nadd b#6,nadd b#5,nadd b#4
raddlatb l=nadd b#3,nadd b#2,nadd b#1l,nadd b#0
raddlata h=nadd a#7,nadd a#6,nadd a#5,nadd a#4
raddlata l=nadd a#3,nadd a#2,nadd a#l,nadd_a#0
rshfl h=n7949,n7519,n7085,n6479

rshfl 1=n5757,n4513,n3774,n3087

rcompl h=n7948,n7518,n7084,n6478

rcompl 1=n5756,n4512,n3773,n3086

rpcmout h=nrpcmout 7, nrpcmout6, nrpcmout5, nrpcmout4
rpcmout l=nrpcmout3, nrpcmout?2, nrpcmoutl, nrpcmout0
rx of k h=n7947,n7517,n7083,n6477

rx of k 1=n5755,n4511,n3772,n3085

rsx of k h=n7946,n7516,n7082,n6476

rsx of k 1=n5754,n4510,n3771,n3084

rex h=n7945,n7515,n7081,n6475

rex 1=n5753,n4509,n3770,n3083

roli 1=n894,n943,n1127,n1301
roli_2=nl462,nl709,n1729,n1886
roli_3=n2070,n2502,n2803,n3155

roli 4=.GND,n3506,n3736,n4044

raddout h=n8147,n7718,n7293,n6861

raddout 1=n6147,n5013,n4050,n3381

B T Tk T T T T S S e S e R A A T T TR T T TN e T S S S S S

Output data :

HH 3 3+

.mon nrphil- nrphi2 ; nl885 ;

rstate h rstate 1 rinlat n6487;

routlat 1 routlat 2 rsrc rdst nbrready ;

rdata h rdata 1 ;

rdecsrc_1 rdecsrc 2 rdecsrc 3 rdecdst 1 rdecdst 2 ;

raddlatb h raddlatb 1 raddlata h raddlata 1

rshfl h rshfl 1 rcompl h rcompl 1

rpcmout h rpemout 1 rx of k h rx of k 1 rsx of k h rsx of k 1 rex h rex 1 ;
roli 1 roli 2 roli 3 roli 4 ;

raddout h raddout 1

+ 4+ + o+ o+ o+ o+

167

Circuit Description File Part 3 of 3 (bot_tx.dat)

This file describes the transmitter analysis. It isidentical to the receiver file

(bot.dat) except for equivalent transmitter .mon signals.

#
Input waveforms :

#

transmitter

ntreset .CLK 0 D1 875 DO

ntgo .CLK 0 DO 5625 D1

ntphil- .CLK 0 DO 250 D1 1000 DO .REP O
ntphi2 .CLK 0 DO 500 D1 750 DO 1000 DO .REP O
#

nD IN#8 .CLK 0 DO 192875 D1

nD IN#9 .CLK 0 D1 192875 D1

ntpcminb .CLK 0 DO 192875 DO

ntpcmind .CLK 0 DO 192875 DO

ntpcmin3 .CLK 0 DO 192875 DO

ntpcmin2 .CLK 0 DO 192875 DO

ntpcminl .CLK 0 DO 192875 DO

ntpcmin0 .CLK 0 DO 192875 DO

receiver

nrreset .CLK 0 D1 875 DO

nrgo .CLK 0 DO 5625 D1

nrphil- .CLK 0 DO 250 D1 1000 DO .REP O
nrphi2 .CLK 0 DO 500 D1 750 DO 1000 DO .REP O
nADM IN .CLK 0 D1 160875 DO

#

nD IN#1 .CLK 0 D1

nD IN#2 .CLK 0 D1

nD IN#3 .CLK 0 D1

nD IN#4 .CLK 0 D1

nD IN#5 .CLK 0 D1

nD IN#6 .CLK 0 D1

nD IN#7 .CLK 0 D1

test structures

ntestin .CLK 0 DO 100 D1 200 DO
ntins2a .CLK 0 DO
ntins2b .CLK 0 DO
ntins2c .CLK 0 DO
ntins3a .CLK 0 D1

ntins3b .CLK

0 D1
ntins3c .CLK 0 D1
ntins4a .CLK 0 DO
ntins4b .CLK 0 D1
ntins4c .CLK 0 DO
ntins4d .CLK 0 D1

#

Output data definitions

#

.sym
+

.hex

Bk T T T T T S o e AT T T T S SO S S SRR SR R

HH 3 3

s0=0 s*=X sl=1 d0=0 d*=X dl=1 r0=0 r*=X rl=1
z0=- z*=X zl=+ 0d=v *d=X 1d=" *s=S

tdata h=ntD 7,ntD 6,ntD 5,ntD 4 tdata 1=ntD 3,ntD 2,ntD 1,ntD 0

tstate h=.GND, .GND,ntst out5,ntst out4

tstate 1l=ntst out3,ntst out2,ntst outl,ntst outO
tinlat=n10525,n10377,n10209,n10082

toutlat 1=.GND, .GND,ntst in 5,ntst in 4

toutlat 2=ntst in 3,ntst in 2,ntst in 1,ntst in 0
tsrc=ntsrc_3,ntsrc 2,ntsrc 1,ntsrc 0
tdst=ntdst 3,ntdst 2,ntdst 1,ntdst 0

tdecsrc 1=n14691,n14685,n14681,n14677

tdecsrc 2=n14673,n14669,n14665,n14661

tdecsrc 3=.GND, .GND,nl14659,n14657

tdecdst 1=n14689,n14687,n14683,n14679

tdecdst 2=n14675,n14671,n14667,n14663

taddlatb h=nadd b#15,nadd b#14,nadd b#13,nadd b#l2
taddlatb l=nadd b#11,nadd b#10,nadd b#9,nadd b#8
taddlata h=nadd a#15,nadd a#l4,nadd a#l3,nadd a#l2
taddlata l=nadd a#ll,nadd a#10,nadd a#9,nadd a#8
tshfl h=n8689,n9130,n9562,n10336

tshfl 1=n11438,n12612,n13274,n13959

tcompl h=n8687,n9128,n9560,n10334

tcompl 1=n11436,n12610,n13272,n13957

tx of k h=n8685,n9126,n9558,n10332

tx of k 1=n11434,n12608,n13270,n13955

tsx of k h=n8683,n9124,n9556,n10330

tsx of k 1=n11432,n12606,n13268,n13953

tex h=n8681,n9122,n9554,n10328

tex 1=n11430,n12604,n13266,n13951

toli 1=n14782,n14620,n14499,n14325

toli 2=n14205,n14018,n13852,n13710

toli 3=n13652,n13472,n13253,n13115

toli 4=.GND,nl13001,n12751,n12567

taddout h=n8607,n9049,n9480,n10226

taddout 1=n11158,n12421,n13150,n13830

Output data :

.mon ntphil- ntphi2 ; nl2420 ;

+

tstate h tstate 1 tinlat n9880;

168

+ 4+ + o+ o+ o+

toutlat 1 toutlat 2 tsrc tdst nbtready ;

tdata h tdata 1 ;

tdecsrc 1 tdecsrc 2 tdecsrc 3 tdecdst 1 tdecdst 2 ;

taddlatb h taddlatb 1 taddlata h taddlata 1

tshfl h tshfl 1 tcompl h tcompl 1

nadm out tx of k h tx of k 1 tsx of k h tsx of k 1 tex h tex 1 ;
toli 1 toli 2 toli 3 toli 4 ;

taddout h taddout 1

169

SILOS Output File (output)

This file contains the output of SILOS. Not all of the file is shown.

file has been described in section 4.3.2 (SILOS Critical Path A nalysis).

- SILOS 2D.1-
SILOS INPUT FOR

TIME
250
13520
13522
13526
13534
13542
13550
13556
13558
13566

13574
13583

'CHESRZE

00
10

11
11
11
11
11
11
11
11
11
11
11

[Sa I Ie N i

[eoNeNeoNeNoNolNoNoNoNoNe)

MONITOR
CODEC.CIF

SSI6
TTN4
AAT8
TTA7
EET

&l

*hKD
*hKD

OEFO0
OEFO0
OEFO0
OEFO0
OEFO0
OEFO0
OFFO0
OFFO0
OFFO0
OFFO0
OFFO0

OOSDB
UURSR
TTCIR

B
<O HE

*kkkD
*okk kD

0F520
0F520
0F520
0F520
0F520
0F520
0F520
0F520
0F520
0F520
0F520

18:44:57

DD

B

TT

2

&l

FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

DDDDD
EEEEE
Cccce
SSSDD
RRRSS
CCCTIT

12312

*kkk*k
*kkk*k

20080
20080
20080
20080
20080
20080
20080
20080
20080
20080
20080

Mar 25 1987

RRRRRRRRRRRRRRRR
ARAASSCCPPXXSSEE
DDDDHHOOCC XXXX
DDDDFFMMMMOO
LLLILLLPPOOFFOCHL
ARAA LIUU _FF
TTTTHL, _TTKK
BBAA HL

HLHL,

HILHL HL

khkkkkkkkkkkkkkk*k

khkkkkkkkkkkkkkk*k

FF01000000000000
FF01000000000000
FF01000000000000
FF01000000000000
FF01000000000000
FF01000000000000
FF01000000000000
FF01000000000000
FF01000000000000
FF01000000000000
FF01000000000000

0000
LLLL
ITIT

1234

*kk*k
*kk*k

3274
3274
3274
3274
3274
3274
3274
3274
3274
3274
3074

B &

DD
DD

HE8

&l

**
**

0*
01
03
07
OF
1F
1F
3F
T
FF
FF

170

The

Appendix E
SILOS Fault Smulation

This appendix contains the files associated with running a SILOS fault simu-
lation on the receiver. Fault simulation was not performed on the transmitter

since it was verified in a back-to-back test with the receiver.

Batch Command File (batchfile)

This file contains the command the was used to start the SILOS simulation.

cat commands | silos > output

171

172

SILOS Commands File (commands)

This file contains the SILOS commands. Thisfile is similar to the file which
was described in Appendix C, with the following exceptions. A file called
inst.dat has been included as SILOS input in order to specify fault smulation
commands. The statement ty clocks displays information about all the .CLK
signals. The statement ty noconv displays information about all the signals
which did not converge during simulation; all simulation signals did converge.
The next statement specifies fault simulation to be performed between 950 ns
and 1023000 ns with circuit outputs analysed every 1000 ns. The next statement
prints out an activity summary of circuit nodes. The next statement prints out

all detected and undetected faults.

input top.dat receiver.dat bot.dat inst.dat
sim 0 to 1023000

ty err

ty clocks

ty noconv

fsim 950 to 1023000 step 1000

ty activity

ty faults / det und

exit save

173

Circuit Description Part 1 of 3 (top.dat)

This file contains the top of the SILOS circuit description file.

.TITLE Silos input from epad 1 for receiver.dat

#

The circuit description :

#

Circuit Description Part 2 of 3 (receiver.dat)

This file contains a description of circuit elements of the receiver. Recall
the it was generated by EPAD. This file istoo large to be shown in its entirety.
It is similar to the codec.dat file shown in Appendix C (SILOS Logic V erifica-

tion).

174

Circuit Description Part 3 of 3 (bot.dat)

This file describes the logic test to be performed on the receiver. This file

contains a description of the signals which are input to the circuit to perform a

logic verification.

It also describes the signals which were observed, the outputs

of the circuit. Additionally, this file contains the test pattern for the receiver.

#

Input waveforms :

#

nRESET
nGoO
nPHI1-
nPHI2
nADM IN
#

nD IN#1
nD IN#2
nD IN#3
nD IN#4
nD IN#5
nD IN#6
nD IN#7

#

Output data :

#

.CLK
.CLK
.CLK
.CLK
.CLK

.CLK
.CLK
.CLK
.CLK
.CLK
.CLK
.CLK

O O O oo

O OO oo oOo

D1 875 DO

DO 5625 D1

DO 250 D1 1000 DO .REP O
DO 500 D1 750 DO 1000 DO .REP O
D1 160875 DO

D1
D1
D1
D1
D1
D1
D1

.sym s0=0 s*=X sl=1 d0=0 d*=X dl=1 r0=0 r*=X rl=1
+ Zz0=- z*=X zl=+ 0d=v *d=X 1d=" *s=S

.mon nRESET nGO nPHI1- nPHI2 ; nADM IN ;;

+
+
+
+

nREADY ; npcm 7 npcm 6 npcm 5 npcm 4 npcm 3 npcm 2 npcm 1 npcm 0 ;5
nD 7nD 6 nD5nD 4nD 3nD2nb1nDO0 ;;

nst out 5 nst out 4 nst out 3 nst out 2 nst out 1 nst out 0 ;;
nsrc 3 nsrc 2 nsrc_1 nsrc 0 ; ndst 3 ndst 2 ndst 1 ndst 0 ;;

175

Fault Simulation Method File (inst.dat)

This file contains a description of the fault smulation method. Essentially it
shows that a thorough non-statistical fault simulation was performed. The
observable output signals are given by the .tnode statement. The statements
.slow to .ishigh specify that 100 percent of all gate-output stuck-low, gate-
output stuck-high, gate-input stuck-low and gate-input stuck-high faults are to be
simulated. The .fmon indicates signals to be displayed during fault simulation.

The last statement indicates the any possible detections are counted.

.tnode nready npcm 7 npcm 6 npcm 5 npcm 4 npcm 3 npcm 2 npcm 1 npcm 0
.slow .pct=100%

.shigh .pct=100%

.islow .pct=100%

.ishigh .pct=100%

.fmon

.fcontrol .npdet=0 .fitr=500

SILOS Output File (output)

176

This file contains the output of SILOS. Only some of the output file is

shown, that part relevant to the fault smulation summary. The OVERALI FAULT

DETECTION is also called the fault coverage.

It is the sum of total hard detec-

tions and total possible detections. The end of the file shows a rough plot of the

number of detections versus time in nanoseconds.

NUMBER
FAULTED
Count

.SLOW 1031 100.
.SHIGH 1031 100.
. ISLOW 2115 100.
. ISHIGH 2174 100.
TOTAL 6351 100.

| OVERALL FAULT DETECTION:

HARD
DETECTION
Count

766 74.3
697 67.6
1595 75.4
1385 63.7
4443 70.0

80.1% |

POSSIBLE UNDETECTED
DETECTION FAULTS
Count % Count %
49 4.8 216 21.0
210 20.4 124 12.0
68 3.2 452 21.4
316 14.5 473 21.8
643 10.1 1265 19.9

177

DETECTIONS VS. TIME = Output-Stuck o

Input-Stuck i

Possible Output-Stuck
Possible Input-Stuck

H O
|

'_l
o
=
H O k- k-
@]
Pt

II0I
0000000 OO O00IOCO O I I I I I

oOuUtTwVwiNNOH

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

C.Mead and L.Conway, Introduction to VLY Systems, Reading, MA:
A ddison-Wesley, 1980.

P.A.D.Powell, M.I.Elmasry, The ICEWATER Language and Interpreter,
21st Design Automation Conference, IEEE, June, 1984, pp 98-102.

M.Pulver, M.I.Elmasry, Using Igloo: A Constraint Based Layout Language
for VLSl Design, 1987 Canadian Conference on Very Large Scale Integration,
University of Manitoba, Winnipeg, Manitoba, Oct., 1987.

UW/NW VLSl Consortium, VLS Design Tools Reference Manual Release
1.0, University of Washington, Seattle, Washington, Oct, 1983.

W.S.Scott, R.N.Mayo, G.Hamachi, J.K.Ousterhout and editors, 1986 VLS
Tools. Sill More Works by the Original Artists, Report Number UCB/CSD
86/272, University of California, Berkeley, California, Dec., 1985.

Mohamed |I. Elmasry, Digital VLS Systems, IEEE Press, New York, New
Y ork, 1985.

D.E.Krekelberg, G.E.Sobelman and C.S.Jhon, Yet Another Slicon Compiler,
Proceedings of the 22nd Design Automation Conference, Jun. 1985, pp
176-182.

N.Bergmann, Software Support for FIRST, Technical Report, Edinburg
University, Jun. 1982.

R.Jamier and A .A .Jerraya, APOLLON, A Data-Path Slicon Compiler, IEEE
Circuits and Devices Magazine, Vol. 1, No. 3, May 1985.

[10] A.V.Goldberg, S.S.Hirschhorn, K.J.Lieberherr, Approaches Toward Slicon

Compilation, IEEE Circuits and Devices Magazine, Vol. 1, No. 3, May
1985.

[11] J.R.Southard, MacPitts. An Approach to Slicon Compilation, Computer, Vol.

16, Dec. 1983, pp74-82.

[12] D.J.Salomon, S.Sadler and M.l.EImasry, A VLSl Architecture and a Sili-

con Compiler for Designing Numerical Processors, VLS DESGN, pp. 62-70,
Feb., 1985.

178

179

[13] B.R.Petersen, B.A .White, D.J.Salomon, and M.l.Elmasry, SPIL: A Silicon
Compiler with Performance Evaluation, Proceedings of the International
Conference on Computer Aided Design (ICCAD-86), Santa Clara, California,
Nov., 1986.

[14] ANSI/IEEE770X3.97-198x American National Sandard Programming
Language Pascal, Prepared by the Joint ANSI/X2J9 IEEE Pascal Standards
Committee X 3J9/82-151, JPC/82-151, Oct. 19, 1982.

[15] J.L.LoCicero and D.L.Schilling, An All-Digital Technique for ADM to PCM
Conversion, 1976 National Telecommunications Conference, Pt.l1l, Dallas,
Texas, U.S.A, pp. 29.2/1-5, Nov. 29 - Dec. 1, 1976.

[16] B.A .White, B.R.Petersen, D.J.Salomon, and M.l.Elmasry, Chip Design
using SPIL : A Slicon Compiler with Performance Evaluation, VLSl Group,
University of Waterloo, Waterloo, Ontario, May 1987, also available as
ICR Report No. UW/ICR 87-07 (Includes: The SPIL User’s Manual).

[17] J.M.Leask, P.M.Gaboury and M.l.Elmasry, PLAmate, A PLA/FSM Com-
piler for MOS Technologies, 1984 Canadian VLS Conference, Edmonton,
A lberta.

[18] Canadian Microelectronics Corporation, CMC Guide for Designers Using the
Northern Telecom CMOS3 Process, Queen’s University, Jun., 1985.

[19] Canadian Microelectronics Corporation, Guide to the Integrated Circuit
Implementation Services of the Canadian Microelectronics Corporation,
Queen’s University, Jun. 4, 1986.

[20] B.R.Mears, A Modular Method for Designing Custom Signal Processing
Integrated Circuits, Proceedings of the IEEE Conference on Digital Sgnal
Processing, San Diego, California, 1983.

[21] K.Hwang, F.A.Briggs, Computer Architecture and Parallel Processing,
McGraw-Hill Book Company, New York, New Y ork, 1987.

[22] M.G.H .Katevenis, Reduced Instruction Set Computer Architectures for VLS,
The MIT Press, Cambridge, Mass., 1985.

[23] SMUCAD, SLOS Logic and Switch-Level Smulator User’s Manual, Rev. 4,
Incline Village, Nevada, Sep. 1986.

[24] A.V.Aho, B.W.Kernighan and P.J.Weinberger, A Pattern Scanning and Pro-
cessing Language (Second Edition), Bell Laboratories, Murray Hill, New Jer-
sey, Sep, 1978.

180

[25] B.A .White, M.l.EImasry, Performance Estimation in CMOS VLS Circuits,
VLS Group, University of Waterloo, Waterloo, Ontario, Feb. 1986, also
available as ICR Report No. UW/ICR 87-06.

[26] A.Vladimirescu, A.R.Newton and D.O.Pederson, SPICE Version 2G6
User’s Guide, University of California, Berkeley, Calif., U.S.A., Oct., 1980.

[27] J.R.Burns, Switching Response of Complementary-Symmetry MOS Transis-
tor Logic Circuits, RCA Review, pp. 627-661, Dec., 1964.

[28] SM.Kang, Accurate Smulation of Power Dissipation in VLS Circuits,
IEEE Journal of Solid-Sate Circuits, Vol. SC-21, NO. 5, Oct, 1986.

[29] J.Ousterhout, Editing VLS Circuits with Caesar, University of California,
Berkeley, Cal., 1984.

[30] L.R.Rabiner, R.W.Schafer, Digital Processing of Speech Sgnals, Prentice-
Hall Inc., U.S.A, 1978.

[31] A.V.Oppenheim, R.W.Schafer, Digital Sgnal Processing, Prentice-Hall,
Englewood Cliffs, New Jersey, 1975.

[32] W.D.Stanley, G.R.Dougherty, R.Dougherty, Digital Sgnal Processing, Res-
ton Publishing Company Inc., A Prentice-Hall Company, Reston, Virginia,
22090, 1984.

[33] T.W.Williams, K.P.Parker, Design for Testability-A Survey, Proceedings of
the IEEE, Vol.71, No. 1, Jan. 1983.

[34] Paul DeMone, CMOS3 1/O Cells, The Canadian Microelectronics Corpora-
tion, Oct. 14, 1986.

[35] L.A.Glasser, D.W.Dobberpuhl, The Design and Analysis of VLS Circuits,
Addison-Wedey Publishing Company, Reading, Massachusetts, 1985.

[36] ENDOT Inc., N.2 Smulator User’s Manual, Document # 106, Version 1.12 -
12/2/85, 1985.

[37] P.Penfield, J.Rubinstein, Signal Delay in RC Tree Networks, ACM |IEEE
Design Automation Conference Proceedings, Nashville, Tenn., 1981, pp613-
617.

[38] A.Vladimirescu and S.Liu, The Smulation of MOS Integrated Circuits Using
SPICE2, University of California, Berkeley, Feb, 1980.

	bpa: (xi)
	isbn: ISBN 0-315-38754-8
	email address: email: b.petersen@ieee.org

