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Abstract

In this thesis a cost-effective means to gain access to wireless communication

channels is proposed and implemented. A testbed is created using mostly commercial

off–the–shelf components, and the signal processing is implemented in an Alterar DE–

3 development board, which includes Alterar’s Stratix IIIr field programmable gate

array, as well as two Terasicr ADA boards which provide analog–to–digital and

digital–to–analog conversions. Modulation and demodulation was performed on both

the forward and reverse channels to bring the signals to an intermediate frequency

such that no low pass filter was needed before the signal was acquired by the devel-

opment board. Testing showed that the CDMA power–control algorithm was able

to perform within acceptable limits, and that the implemented system was nearly

transparent to both the mobile and the base station. To demonstrate how the sys-

tem could be used, non–uniform sampling was also implemented in a variety of ways,

which included a simple method of incrementally introducing noise.
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Chapter 1

Introduction

1.1 Background

In a CDMA system, all mobile stations must be received by the base station

at the same power. If one mobile station were to be stationed next to the base station

and transmitting at full power, the base station would not be able to detect the other

mobiles which are further away. One of the most used solutions to mitigate this

near-far problem is power control [1].

Several types of power control are available, such as the ones simulated by

Chulajata and Kwon, who showed that by combining more than one power control

algorithm it was possible to increase performance [2]. However, as is shown by Sim

et al. it is possible to lower the bit error rate of a moving mobile station by sim-

ply updating the power control more frequently but at the cost of using increased

resources [3].

CDMA is a spread spectrum technology that originally had its background in

military applications providing secure communications [4]. The standard started as

IS95, and has since evolved to its current form seen today: cdma2000. EVDO was

integrated with cdma2000 to provide high rate data packet services without having
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to support old standards [5]. This project utilizes the CDMA/EVDO technology as

a basis for communication between the mobile and the base station.

Time–varying channel conditions are also present in CDMA systems, which

requires the power control algorithm to respond accordingly to ensure communication

continues, as well as signal filters to remove possible multipath effects. Channel fading

generally follows Rayleigh or Ricean fading distributions, and consists of flat fading

or fading in the small scale [1].

1.2 Problem

The communication medium used by cellular CDMA systems for power control

is a closed system; the relationship between the transmitter and receiver is such that

it is not meant to have a third party join the communication or modify the channel.

In order to gain access into the communication stream, a system must be set up in

order to intercept the signal sent from a mobile station to the base station and vice

versa. Once the signal is captured (and possibly modified), having it continue back

through the original transmission medium will be required to make it appear to both

devices as if the system is transparent.

1.3 Objective

The objective of the proposed research consists of designing and implementing

a system in which it is possible to capture and retransmit the communication between

a mobile station and a CDMA base station. The solution is implemented using as

many COTS components as possible.

The motivation for developing this system is to analyze both the forward and

reverse links simultaneously. Modern mobile phones are able to separate the forward

and reverse links internally using customized proprietary hardware. Because of this

2



it is impossible to gain access or control of the phone’s hardware.

There are other systems which have been designed or implemented which per-

form similar functions to the system proposed in this thesis, each with their own

benefits and drawbacks. Niida et al. had an entire cell phone network set up with

multiple base transceiver stations and multiple mobile stations [6]. An ultra wideband

transceiver prototyping test bed has also been built, but requires 8 high speed ADCs

to capture signals using time samples, not frequency shifting, at sampling rates of

up to 8 GHz [7]. Also, the emphasis in the research was on the demodulation only.

Another design by Shono et al. has a transceiver architecture with a digital signal

processor at its core, and was designed for the IEEE 802.11 standard, however it did

not use an explicit modulator or demodulator [8].

In order to gain access to both the forward and reverse channels, the signal

will have to be demodulated, passed through a device which is controllable such as an

FPGA, and then modulated back up to RF. With this system it should be possible

to monitor the transmission that is being sent by the base station to the mobile

station and vice–versa. It could also allow researchers to modify the captured signal

to determine if that signal can be controlled externally. Also, using this system it

may be possible to model the channel and possibly evaluate current power-control

algorithms and phone performance.

1.4 Contributions

The architecture put forth in this research will serve as a test bed for future

research on mobile communications channels. Since the forward and reverse link

channels are separated and handled individually within the FPGA it is possible to

apply channel conditions to only one channel at a time. This gives the ability to clearly

see how a test condition on one channel can potentially affect the other channel.

3



The purpose of this system is to allow researchers to view the communica-

tions channel while in real world conditions and allow modifications to the channels.

Using the system proposed it may also be possible to obtain data on the channel

characteristics from these measurements.

After dominion over the power-control is established it would be possible to

test alternative power-control algorithms in a real-world scenario and compare the

results to well established algorithms. Also, because it would be possible to assert a

channel model, the ability to test to see under what conditions current power-control

algorithms fail becomes a possible use of this architecture.

To help save complexity and to help ensure that as little signal is lost as possi-

ble, the LPFs in the original design were removed. In order to do this the guarantee

that there would be no interference with aliasing effects present after demodulation

had to be ensured. After much investigation, it was found that the signal of interest

in both the forward and reverse channels could be safely brought down to IF without

any interference.

It was also discovered that the base station and the mobile phone would still

communicate with each other when the signals were demodulated down to baseband

before they were acquired by the FPGA. Because the ADCs are not guaranteed to

function properly when acquiring signals below 1 MHz, it appeared that there would

be a local fade in the channel, similar to the channel modeled by Mar and Chen [19].

Finally, non-uniform sampling was implemented as a low complexity method

of injecting noise. Three separate approaches were taken during the implementation.

The first approach was a proof of concept to show that it was possible to introduce

noise using non–uniform sampling. The other two approaches investigated a simple

method of incrementally introducing noise.

4



Chapter 2

Overview of Architecture

2.1 Description of System

The system proposed is placed in-between a base station and a CDMA–enabled

phone using the PCS1900 standard and handles all communication between the two.

This is shown graphically in Figure 2.1. Since the 10 MHz wide I and Q signal

components are separated before they are passed to the FPGA there is a minimum

requirement of four ADCs and four DACs; two of each on both the sending and

receiving side. Because the ADCs have a documented lower bound on the frequency

they are able to acquire, an IF of 10 MHz will be used to transmit the individual I

and Q channels from the demodulator to the ADCs.

Because the FPGA is the centre of the design, the architecture is able to be

broken up into two separate sides: one side that includes the base station and another

side that includes the mobile. Because of this split, it is possible to use the FPGA to

Base
Station MobileProposed

System

Figure 2.1: High–level proposal
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control the communications path and monitor all data being passed back and forth.

For all except one test, the signals were not demodulated down to baseband

but instead to an IF. This was done because of limitations of the ADCs, however, it

also means that this architecture can be implemented in such a way that it does not

impede on an individual user’s privacy.

2.2 Overall Requirements Analysis

The major requirement of this project was to establish a communications chan-

nel through a medium that was externally controllable. External control could be done

through a connection to a personal computer, or even a simple approach such as using

pushbuttons and dip switches present on most FPGA evaluation boards. This trans-

parent pass–through system would then be extensible to further assist researchers.

In order to facilitate the extensibility, the system must also be reconfigurable so that

new tests and algorithms can be implemented.

In order to achieve data pass–through, the system would have to appear trans-

parent so that there is minimal data corruption and delay. The delay introduced by

the system should be minimal. Because of this, the processing speed of the system

must guarantee a timely response. This can be done by choosing fast components

and using a parallel architecture.

Keeping the final implementation cost effective was also a requirement due to

a limited budget.

2.2.1 Baseband Data Transfer Rate

Since the maximum RTAP rate for the EVDO protocol over the cdma2000

standard is 153.6 kbps for the reverse link and 2.4 Mbps for the forward link, the bus

transporting the data must at a minimum support double the sum of these speeds.

6



Base
Station

Mobile

ADC

DAC

ADC
FPGA
BoardDAC

Switch Control

LPF

LPFX

X

X

X
+

frev

ffwd

Figure 2.2: Initial design idea.

However, if the data is to be passed through at an IF, the bus has to ensure a

throughput of double the IF to compensate for data at IF going in both directions.

At the IF rate used, the GPIO pins provided by all the FPGAs investigated for this

project were able to transfer data at the necessary speeds.

2.3 Architecture Design Iterations

The design of the overall system went through many iterations. Some changes

occurred because they made the design more extensible, other changes were made

because of the difficulty and cost of procuring parts. Major decisions are discussed

below.

2.3.1 Initial Designs

Shown in Figure 2.2, the initial design had some major issues that needed to

be resolved. Top among them is that the FPGA has to generate the data required

for the test, or at least be able to play back a pre-recorded data stream for testing.
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FPGA

Base
Station

Mobile

ADC

DAC

ADC
ADA
BoardDAC

LPF

LPFX

X

X

X
+

frev

ffwd

ADA
BoardDAC

ADC

DAC

ADCLPF

LPFX

X

X

X
+

ffwd

frev

Figure 2.3: Functional diagram for the final design.

A switch was to be included so that the mobile would be taken completely out of the

loop, and the entire data transfer would be supported by the architecture that was

to be designed. Since implementing the EVDO standard would have been a task too

large given the time constraints, and the playback of recorded data would have not

guaranteed the normal responses to various channel perturbations, these ideas were

eventually rejected.

Another design iteration was similar to the first, however, it required a rel-

atively expensive and difficult–to–obtain diplexer, and still required that the entire

CDMA/EVDO specification be implemented in the FPGA. Such an implementation

would have increased the time to completion to an unreasonable length.

2.3.2 Final Idea

The final functional design which was built is shown in Figure 2.3. This design

has the benefit of not needing the redundant diplexer, has fewer power splitter/com-
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biners, and allows for both the forward and reverse links to be completely separated,

as well as also having the I and Q channels separated on each link. The trade-off,

however, is a slightly higher cost for the FPGA system. However, cost was kept down

by choosing the Terasicr DE3 FPGA development board which had the resources to

attach two ADA daughter boards. This is discussed further in Chapter 3.
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Chapter 3

Hardware Selection

In order to meet the requirement of being cost effective, the majority of the

system proposed was implemented using COTS components. In doing so, this re-

moved the need to design complex PCBs and allowed the focus to be shifted to unit

testing and full system tests. Although one PCB was required to be designed, it was

relatively simple compared to the Alterar DE-3 [9] development board used.

One of the first major decisions made while selecting hardware was choosing

between a microprocessor–based design, or an FPGA–based design. Because the I

and Q channels need to be captured and processed simultaneously, having the ability

to perform parallel processing became a requirement. Also, if a general purpose

central processing unit were implemented, the time it would take to perform any

signal processing would become an issue. Although both platforms would provide an

extendable architecture, the choice to use an FPGA was ultimately made because of

it’s high reconfigurability to perform specific tasks.

3.1 Clock Sources

Several clock sources were investigated because of the requirement to have

a highly stable reference frequency. Standard clock sources which were based on
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rubidium oscillators, cesium oscillators, the GPS reference signal and the CDMA

reference signal were investigated, before the decision to purchase two high stability

OCXO–based signal sources was made. Unlike the other options, this provided a

stable 10 MHz reference output out of the back panel which could be used to drive

other parts of the project to keep everything locked together, and did not require

any custom PCBs to be built to provide the high frequency clock sources required for

modulation and demodulation.

3.2 Individual Part Requirements

3.2.1 Modulators and Demodulators

The Hittiter HMC97LP4 modulators and Hittiter HMC597LP4 demodulators

are used in this project. The demodulators were required to bring signals from the

PCS band, in the 1900 MHz range, down to an IF which could be acquired by the

FPGA. The modulators are required to do the opposite, bring signals from the IF

up to the appropriate PCS band. Although the PCS band is used for the purposes

of this project, the modulator’s output and demodulator’s input have an operational

range of 100-4000 MHz [10][11]. This allows the system put forward to operate over

a large range, and can be used in the future to run tests in another frequency band.

3.2.2 FPGA and Daughter Cards

Most FPGA development boards investigated included ADCs and DACs pre–

built on to them. However, all of the development boards investigated contained only

one or two ADCs and DACs each, if any. If the board did not contain enough ADCs

and DACs, the ability to network the FPGAs together would become a requirement.

Another possible solution to this problem, and ultimately the solution chosen for this

project, was to use a board which was extendable in such a way that daughter cards
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which contained the required four ADCs and four DACs could be used. Because all

of this was contained on one FPGA board, synchronization between the ADA boards

was made trivial, and allowed for data to be passed through the system at rates much

higher than needed. Also, not having to create a communication interface for two

FPGAs simplified the final design.

Because an IF of 10 MHz was selected, the ADCs and DACs chosen would

have to ensure at least a minimum of a 40 MHz sampling rate in order to satisfy the

Nyquist criterion; bandpass sampling requires the sampling frequency is more than

four times the width of the passband. On both sides of the FPGA the signals are

broken into their I and Q components, and then passed into the FPGA. After any

signal processing has taken place, the I and Q components are transmitted out of the

FPGA, recombined and continue along the communications channel.

3.3 System Power Requirements

When supplied by a 5 VDC source, the maximum given current requirement

of the demodulator is 230 mA, and 168 mA for the modulator. Since there are two

modulators and two demodulators, the total power required is 796 mA. The bias–Ts

discussed in Section 4.2 are also powered by the 5 VDC power supply, however their

current requirement is negligible.

The amplifier is powered by a separate 12 VDC PSU as indicated in the part

specifications. The FPGA board included its own power supply, and only required a

120 V outlet.

3.4 Amplifiers

To help with signal demodulation, a connectorized amplifier was included in

the final design in an effort to boost the signal of interest. This was done as an attempt

12



to utilize more of the ADCs dynamic range. Had the amplifiers been excluded, the

ADCs’ resolution would have been reduced. The amplifier used was a wide bandwidth,

low noise Mini-Circuitsr ZX60-6013E-S+. At a frequency of 2000 MHz, the gain is

15.2 dB.
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Chapter 4

Implementation

4.1 Selected Parts

4.1.1 FPGA Development Board

At the centre of this system is an Alterar DE–3 development board which

includes the Stratix IIIr FPGA, and two Terasicr ADA boards [12]. The ADA boards

are where the ADCs and DACs reside. On both sides of the FPGA the signal is

broken into its I and Q components, and then passed into the FPGA. After any signal

processing has taken place, the signal is transmitted out of the FPGA, recombined

and continues along the communications channel.

The ADCs have a maximum sampling rate of 65 MHz [13], and the DACs have

a maximum update rate of 125 MHz [14]. This met the requirements with a wide

margin.

4.1.2 Modulators and Demodulators

The Hittiter modulators were purchased on a connectorized board to minimize

the time required for setup. The modulator used was intended to be driven by a dual–

ended signal with a 1.5 VDC offset on both ends. However, for this project, only a
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single–ended signal was required and applied; the negative side of the terminal was

not used, but instead terminated. It is important to note that without the 1.5 VDC

offset in the signal voltage on the positive terminal as well as the constant 1.5 VDC

present at the negative terminal, the modulator would not operate.

The chosen demodulator was also from Hittiter. It was selected because of

implementation knowledge that already existed, expediting implementation and test-

ing. The demodulator only required that the local oscillator be offset by 1.5 VDC.

This was taken account of when designing the bias board shown in Appendix A.1 and

described below.

4.2 Bias Board

Because the modulators and demodulators required that certain input ports

include a 1.5VDC offset, a bias board was designed and constructed. The PCB in Fig-

ure 4.1 is the signal biasing board which was designed and implemented. It consists of

a simple bias–T circuit. It was designed with both the modulators and demodulators

in mind; only the needed sections of each board were populated. Each connectorized

side of the bias board had a signal input, a signal output, and a 1.5 VDC output. The

signal output was the small signal input transposed +1.5 VDC.

Spice simulations were run to ensure proper operation in the 1900 MHz range.

The circuit diagram of the bias–T circuit can be seen in Appendix A.1. The 1.5 VDC

supplied to the circuit was provided by a voltage regulator that was built onto the

board. The board is powered by a 5 VDC power source.

The decision to use an external 5 VDC power source was made so that a com-

mon power supply unit could be used for almost all parts on the board: both the

modulators and the demodulators also require a 5 VDC power supply. Since the cur-

rent requirements described in Section 3.3 show that the current draw was not large,
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Figure 4.1: Signal biasing board.
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all parts that required 5 VDC were able to be powered using a single supply.

4.3 Frequency Selection

For the investigation of frequencies to be used for the local oscillator of the

modulators and demodulators, a MATLABr program was written for simulating the

artifact interference caused during the modulation and demodulation phases.

The final proposed design, shown in Figure 2.3, called for a LPF to remove

any signals outside of the acquisition range. Originally, the filter was to remove

any of the sampling artifacts that may be caused. After modeling the acquisition in

MATLABr, it was discovered that the signal could be cleanly acquired without any

sampling artifacts caused by harmonics. The final implemented design can be seen

in Figure C.1.

A sampling frequency of fs = 62.5 MHz was used in conjunction with the

reverse channel modulation and demodulation frequency fr = 2007 MHz, and the

forward channel modulation and demodulation frequency ff = 1930 MHz. Other

frequencies that were shown to have good performance were fr = 1893 MHz and

ff = 1993 MHz. The MATLABr code that was used to model this behaviour is

shown in Appendix D. By selecting frequencies that would ensure that the signal of

interest in both the forward and reverse communication channels were untouched by

sampling artifacts and removing the LPF, it enabled this architecture to be a general

purpose, protocol agnostic, channel interception and modification design. With this,

it becomes possible to extend the use of this project past the CDMA/EVDO research

to study other standards.

17



4.4 Clock Synchronization

Supplying a base band signal to the Hittiter modulators and demodulators

are two high–stability OCXO clock sources. To avoid any synchronization issues, the

clock sources, FPGA and base station were locked to a common 10 MHz reference

signal supplied by one of the OCXO clock sources.

4.5 RF Isolation

To isolate the mobile from any other corporate network that is being used,

and to ensure that the implemented system did not interfere with any legitimate

businesses, the mobile was placed inside a metal anechoic chamber. It was found

that an empty chamber caused the mobile to not connect, and it was postulated that

there were too many RF reflections on the inside of the chamber. Special absorptive

RF insulation barriers were added to the chamber to reduce the interior reflections.

Also, holes that were present in the chamber were discovered and were sealed using

metal tape. A special cable and adapter which plugged into the back of the mobile

and bypassed its antenna was purchased in an attempt to have a more managable

size system. This provided limited success, as the mobile was not purchased new and

the antenna bypass was suspected of having an intermittent connection. For all tests

performed for this thesis, the anechoic chamber was used.
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Chapter 5

Testing

Throughout the development of this architecture, testing had been considered

of paramount importance. In Harriman’s thesis [15] it was found that the parts

selected did not always conform to their associated specification sheet. Because this

project and Harriman’s shared a few common parts, it was important to ensure proper

testing was done at every stage.

5.1 Bias Boards

A prototype board was first commissioned, thoroughly tested, and performed

as expected with no errors or unexpected behaviours present. Testing was conducted

using a signal source and an oscilloscope. A signal was presented at the input port, and

the oscilloscope which was connected to the output port displayed a signal identical

to the input with the required VDC offset.

5.2 Modulator

The initial tests of the modulator were done using the system layout in Fig-

ure 5.1. Testing both the I and Q channels were done on the setup shown in Figure 5.2.
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Figure 5.1: Test setup for testing the Inphase.
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-19 dBFigure 5.2: Test setup for fully testing the modulator.

A mathematical model was used to show the expected output as seen by the oscillo-

scope, and was extended later to include the expected output when both the I and Q

channels were used.

The spectral output is shown in Figure 5.3 from the tests done using the setup

in Figure 5.2, which matched expectations.

5.3 Demodulator

Testing of the demodulator required that the modulator first be successfully

implemented. Once the modulator was successfully implemented, the output of the

modulator was connected to the input of the demodulator. Using the same clock

source for the demodulator as the modulator, it was possible to recover the original

signals that were fed into the modulator. This was verified for both the I and Q
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Figure 5.3: Spectral output from the modulator.
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Figure 5.4: FPGA test setup.

channels independently, and finally concurrently. The power level received was not

exactly matched to the power transmitted, but some loss was expected. This could

be attributed to using the demodulators in single–ended mode, which was found to

cause a small amount of power loss.

5.4 FPGA

Several tests were conducted on the FPGA and ADA daughter boards to ensure

proper operation. Each test built on the previous one, until the test setup shown in

Figure 5.4 was reached. Using this setup, it is possible to show that the signal

captured on any ADC channel was able to be regenerated using the DAC channel on

the opposite board. This setup closely relates to the final setup that was used in the

final implementation.

A 10 MHz sinusoidal signal was fed into an ADC port on the FPGA at 0 dBm,
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Figure 5.5: Resulting spectrum of a 10 MHz signal passing through the FPGA.

sampled and regenerated at 62.5 Msps, then fed directly into a spectrum analyzer.

The resulting frequency graph shown in Figure 5.5 is a waveform capture showing the

output signal is approximately 10 dBm below the input signal.

Also shown in Figure 5.5 is that the noise floor has been increased. For ref-

erence, see Figure 5.6, which shows the 10 MHz sine wave that was output from the

signal source and fed directly into the spectrum analyzer. The extra spikes in Fig-

ure 5.5 that are above the expected 10 MHz signal are artifacts that occur because

of the sampling performed by the ADCs.
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Figure 5.6: A 10 MHz input signal directly from the clock source used without passing
through the architecture.
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Figure 5.7: Data being transmitted during an FTAP test through the system.

5.5 CDMA/EVDO Transparency

To show that the system was able to appear transparent to both the mobile and

the base station, tests were conducted showing that data was able to be transmitted

and received. This was done by using a power splitter/combiner between the FPGA

and the mobile phone and allowing a spectrum analyzer to observe the transactions

taking place. Figure 5.7 is a spectral plot showing the data being sent from the mobile

to the base station at 1903.75 MHz; marker 1 is positioned at the channel in use. The

other obvious peak at 1930 MHz in Figure 5.7 is a result of the modulation that was

performed to transpose the signal from IF to the required 1903.75 MHz.

Figure 5.8 shows that the system put forward is successfully able to pass

through commands from the base station to the mobile regarding power–control.

The top and bottom lines are power limits which move in time. The middle line
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is the actual power output. The test shown was a “power–up” command: the base

station signaled the mobile to increase the cell power by 20 dBm. As can be seen in

the Figure, the mobile passed the test, showing that the system in place between the

mobile and the base station did not adversely affect the communication between the

two.

Figure 5.8: A successful power–control test.
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Chapter 6

Non-Uniform Sampling

The ability to implement non-uniform sampling on this project was in no small

part because of the reconfigurable nature of the architecture; having easy access to

both the forward and reverse channels allowed for new manipulations within the

FPGA. To implement non–uniform sampling, the uniformly sampled signal was fed

from the ADC into a shift register, and a PN generator was used to select which

register the output should be tied to. Because the goal was non–uniform sampling,

the register selection needed to be random. The randomization was accomplished by

implementing PN generator to select which register in the shift register was to be

used for output. This has the effect of randomizing the sampling, and also does not

guarantee sample order.

Randomization caused by implementing this style of non-uniform sampling is

analogous to multipath effects—delays caused in time and noise generated by the

signal not arriving in the correct order due to various reflective surfaces in the envi-

ronment. In this implementation, the clock for the PN generator is much higher than

the signal frequency, and the number of buffers were chosen to ensure that samples

were being taken within a confined region of the signal period.
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6.1 Mathematical Model

In an effort to model the expected variance of non–uniform sampling, mathe-

matical analysis was done. Starting with a sinusoidal signal s(t) described in equa-

tion 6.1,

s(t) = cos(2πf1t) (6.1)

where f1 is the frequency of the signal, and t represents time. For uniform sampling,

all samples are taken at equal discrete intervals shown in equations 6.2 and 6.3,

sn = s(t)|t=nT (6.2)

= cos(2πf1nT ) (6.3)

where n is the index number, T is the time between samples, and sn is the indexed

discrete signal. However, in non–uniform sampling the discrete intervals that the

samples are taken at are not equally spaced leading to the equation

Vn = s(t)|t=nT+∆n

= cos(2πf1(nT + ∆n))

= cos(2πf1nT + 2πf1∆n)

(6.4)

Vn is the indexed discrete non–uniformly sampled signal, and ∆n is the difference in

n. To demonstrate non–uniform sampling, an input signal of y = cos(θ) was used

where θ is distributed as a uniform continuous random variable in the range 0 → π.

Also, ∆ is distributed as a normal random variable with the range of 0→ σ2
n, where

σ2
n is the variance. These are described in equations 6.5 and 6.6.

θ1 ∼ U(0, π) (6.5)

∆ ∼ N(0, σ2
n) (6.6)
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Given Y in equation 6.7,

Y = cos(θ) (6.7)

equations 6.5 and 6.6 can be inserted into 6.7 to get equation 6.8.

Y = cos(θ1 + ∆) (6.8)

The formula to find the variance of the non-uniformly sampled signal is shown in

equation 6.9.

σ2
Y = E[Y 2]− E2[Y ] (6.9)

Starting with the variance in equation 6.10, equations 6.5 and 6.6 are inserted to

obtain equation 6.11, which leads to equation 6.12.

Eθ1,∆[Y 2] =

∫∫ +∞

−∞
g(x)fx,y(x, y)dxdy (6.10)

=

∫∫ +∞

−∞
cos2(θ1 + δ)fθ1,∆(θ1, δ)dθ1dδ (6.11)

=

∫∫ +∞

−∞
cos2(θ1 + δ)fΘ1(θ1)f∆(δ)dθ1dδ (6.12)

The range of equations 6.5 and 6.6 are then used when determining what range the in-

tegrals will cover and also inserted into equation 6.12 which is shown in equation 6.13,

which leads to equation 6.14.

E[Y 2] =

∫ +∞

−∞

∫ π

0

cos2(θ1 + σ)

(
1

π

)(
1√

2πσn
e
− δ2

2σ2
n

)
dθ1dδ (6.13)

=
1

π

∫ +∞

−∞

1√
2πσn

e
− δ2

2σ2
n

(∫ π

0

cos(δ + θ1)dθ1

)
dδ (6.14)

To solve equation 6.14, a cos integration identity is used. It is shown in equation 6.15.

∫
cos(a+ x)dx =

a+ x

2
+

1

4
sin(2(a+ x)) (6.15)

29



Using equation 6.15 it is possible to continue solving equation 6.12 to get equa-

tion 6.16.

E[Y 2] =

∫ +∞

−∞

1√
2πσn

e
− δ2

2σ2
n

(
δ + θ1

2
+

1

4
(sin(δ + θ1))

) ∣∣∣∣π
θ1=0

dδ (6.16)

Solving the inner part of equation 6.16 produces equation 6.17.

δ + θ1

2
+

1

4
(sin(δ + θ1))

∣∣∣∣π
θ1=0

=
δ + π

2
+

1

4
sin(2δ + 2π)−

[
δ

2
+

1

4
sin(2δ)

]
=
π

2
+

1

4
[sin(2δ + 2π)− sin(2δ)]

∵ sin(2δ + 2π) = sin(2δ)

∴ =
π

2
+

1

4
[sin(2δ)− sin(2δ)]

=
π

2

(6.17)

Inserting equation 6.17 into equation 6.16, produces equation 6.18.

E[Y 2] =
1

π

∫ +∞

−∞

1√
2πσn

e
− δ2

2σ2
n

(π
2

)
dδ

=
1

π

π

2

1√
2πσn

∫ +∞

−∞
e
− δ2

2σ2
n dδ

=
1

2
√

2πσn

[√
π

2
σnerf

(
δ

2σn

)] ∣∣∣∣+∞
δ=−∞

(6.18)

The integration in equation 6.19 was used in equation 6.18.

∫
e
− δ2

2σ2
n dσ =

[√
π

2
σnerf

(
δ

2σn

)]
(6.19)

Variable substitution is performed, shown in equation 6.20.

x =
δ

2σn
(6.20)
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and is used in solving equation 6.18, which is continued in equation 6.21

E[Y 2] =
1

2
√

2πσn

[√
π

2
σn

(
lim
x→∞

erf(x)− lim
x→∞

erf(−x)
)]

=
1

2
√

2πσn

[√
π

2
σn (1− (−1))

]
=

1

2
√

2πσn

[
2

√
π

2
σn

]
=

√
π√
2√

2
√
π

=
1

2

(6.21)

Where erf(x) is the error function of x. Now, solving the E2[Y ] term in equation 6.9

is shown below in equation 6.22.

Eθ,∆ =

∫∫
cos(θ1 + δ)fΘ(θ1)f∆(δ)dθ1 dδ

=

∫∫
cos(θ1 + δ)

(
1

π

)(
1√

2πσn
e
− δ2

2σ)n2

)
dθ1 dδ

=
1

π

∫ +∞

−∞

1√
2πσn

e
− δ2

2σ2
n

∫ θ1=π

θ1=0

cos(θ1 + δ)dθ1 dδ

=
1

π

∫ +∞

−∞

1√
2πσn

e
− δ2

2σ2
n [sin(θ1 + δ)]

∣∣π
θ1=0

dδ

=
1

π

∫ +∞

−∞

1√
2πσn

e
− δ2

2σ2
n [sin(δ − π)− sin(δ)] dδ

=
1

π

∫ +∞

−∞

1√
2πσn

e
− δ2

2σ2
n [−2 sin(δ)] dδ

= − 2

π

∫ +∞

−∞

1√
2πσn

e
− δ2

2σ2
n sin(δ)dδ

= − 2

π
√

2πσn

[
−1

2
e−

σ2
n
2

√
π

2
σn

(
erfi

(
σ2
n − iδ√

2σn

)
+ erfi

(
σ2
n + iδ√

2σn

))] ∣∣∣∣+∞
δ=−∞

(6.22)

The erfi(x) used in equation 6.22 is the imaginary error function of x, and is defined

in equation 6.23. As δ → ∞, the other terms inside the erfi(x) function in equation

6.22 do not affect the term that is tending toward infinity, they can be considered
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insignificant in this case.

erfi(x) ≡ −ierf(ix) (6.23)

The erfi(x) function has the following properties:

lim
x→∞

erfi(x) =∞

lim
x→∞

erfi(−x) = −∞

lim
x→∞

erfi(ix) = i

lim
x→∞

erfi(−ix) = −i

Using the last two properties, equation 6.22 becomes

Eθ,∆ = − 2

π
√

2πσn

[
−1

2
e−

σ2
n
2

√
π

2
σn(0)

]
= 0

(6.24)

Inserting the results from equation 6.18 and equation 6.24 into the variance equation

6.9, gives equation 6.25.

σ2
Y = Eθ1,δ[Y

2]− E2
θ1,δ

[Y ]

=
1

2
− 0

=
1

2

(6.25)

For this test case with a sinusoidal wave of unity amplitude, the variance in the

readings will be half. This makes sense, as the distribution used for this mathematical

model was normalized, as well as the randomness of the intervals between readings

was uniformly distributed. This result means that if readings are taken using non-

uniform sampling, and no effort is put in to compensate for the varying time intervals,

there will be noise present. As stated, this derivation shows the variance present will

be half of the signal introduced.
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Figure 6.1: Non-uniform sampling implementation.

6.2 Implementation

The non-uniform sampling was implemented using a type of shift register sys-

tem seen in Figure 6.1. The input was captured by the ADC and appeared as din.

When new data was introduced, the initial value was shifted into the shift register

and the new data appeared as din.

Using a linear recursive sequence generator with the equation P (x) = x5+x2+1

to implement a PN generator, registers were chosen at random and their outputs were

connected to the module outputs. Because P (x) is a primitive prime polynomial, the

maximum sequence length of 31 states was achieved. The rate at which registers

were chosen is controlled by the clock that the PN generator uses to advance its

own internal registers. A relationship appeared between aliasing in the noise and

the clock speed. When the clock was set to choose a different register at 125 MHz,

there were double peaks around every 2.016 MHz. However, while running the PN

generator clock at a higher frequency—at 200 MHz—there are only single peaks with

less separation. A possible explanation to this phenomenon is the period that the

PN sequence repeats. At 125 MHz, P (x) repeated every 248 ns, while running at

200 MHz it repeated every 155 ns.

The noise introduced using this method was noted as appearing as an ordered

noise; there appear to be many aliasing effects at discrete intervals.
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Figure 6.2: Showing the maximum value (top line), an instantaneous reading (mid-
dle line), and the minimum value (bottom line) of a 10 MHz signal using uniform
sampling.

6.3 Known Signal Tests

To show the noise that is introduced, a 10 MHz sine wave was used as an input

signal. From there, various non-uniform sampling parameters were used. For refer-

ence, Figure 6.2 shows the output of the 10 MHz signal that was sampled uniformly

through the FPGA. The tests were performed by applying the sine wave to the ADC

input, processing the signal in the FPGA, outputting the result using a DAC, which

is hooked directly to a spectrum analyzer for observation.

Input signals are sampled at 62.5 MHz by the ADCs, and output at 62.5 MHz

by the DACs. During the up–sampling that was performed internally in the FPGA

in this test, the signal was not zero padded, but repeated by reading the ADC output

register multiple times before a new reading was taken. This causes the signal to be
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Figure 6.3: A normal distribution showing how many times each register is called per
period.

repeated in the frequency domain above 62.5 MHz. Because these secondary signals

are so far out of band, they do not interfere with the tests that are being performed

at 10 MHz. The signal was then downsampled at the outputs by the DACs.

6.3.1 Test Results

Once non-uniform sampling was applied more noise was obviously present in

the system. For the first test, a PN generator with a normal distribution was used.

The module as implemented takes the input from all the registers in a normalized

distribution; the centre buffer gets chosen the majority of the time, while the far end

buffers get chosen significantly less. This can be seen in Figure 6.3, where din is the

input register, and the following registers are lettered in alphabetical order.

As can be seen in Figure 6.4, the maximum level noise has risen approximately

5 dBm near the 10 MHz range. The minimum noise has also risen 30 dBm around

10 MHz. The instantaneous reading of the signal has also risen. Also of note is the
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Figure 6.4: Showing the maximum value (top line), an instantaneous reading (middle
line), and the minimum value (bottom line) of a 10 MHz signal using non-uniform
sampling.

peak at 10 MHz is less pronounced and has slightly increased width. The 10 MHz

signal is approximately -10 dBm in both the uniform and non-uniform sampled cases.

The input signal used was at 0 dBm; the -10 dBm discrepancy was mentioned earlier

and is consistent with results found earlier.

For the next test, the distribution was modified so that the middle register in

the shift array was called more often than during the first test, and the others less.

This distribution is shown in Figure 6.5

The resulting spectrum is shown in Figure 6.6. There is almost no discernable

difference between the modified distribution and the initial distribution.

Finally, a nearly evenly distributed selection algorithm was used, and is shown

in Figure 6.7.
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Figure 6.5: Modified distribution.

As can be seen again in Figure 6.8, there is no obvious difference between the

even distribution and the previous two normalized distributions.

6.3.2 Discussion

This implementation does not guarantee order is preserved when the output

is connected to another buffer in the shift register. This could be the reason why

the output signals seem to all have similar amounts of noise present. As mentioned

earlier, the rate at which the output connection is changed seems to have more of an

effect on the output signal.

In each of the three non-uniform sampling tests performed using a 10 MHz

sine wave input signal the minimum value, or noise floor, was also increased. Looking

only in the first half of the spectrum shown and excluding the second hump, the noise

was increased to nearly a uniform value of about -70 dBm and varied by only 10 dBm,

except near the null point at 62.5 MHz.

In observing the non-uniform sampling effects on the test signal, it can be seen
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Figure 6.6: The resulting maximum value (top line), an instantaneous reading (middle
line), and the minimum value (bottom line) of the spectrum using the modified normal
distribution.
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Figure 6.7: The nearly even distribution used for register selection.

Figure 6.8: The resulting maximum value (top line), an instantaneous reading (middle
line), and the minimum value (bottom line) of the spectrum using the nearly even
distribution.
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that the maximum value of the spectrum (the top line in the Figures 6.4, 6.6, and 6.8)

had only been slightly affected. The point at 10 MHz where the signal of interest

resides has been widened in frequency, showing that noise is introduced around that

area.

Simply stated, if there is no signal there will be no noise added, and where there

is noise, the non-uniform sampling will add noise to that signal. Much research has

been done and most of it appears to be focused on acquiring a signal and reproducing

that signal free of noise, but also free of any harmonics. An example of this process is

described by Brueller et al. where a mathematical model and an iterative estimation

process is used to describe and recreate a signal [16]. Fares et al. showed a few

methods of using non-uniform sampling and regenerating the signal using uniform

methods [17]. That approach, however, requires that the order in which the signal is

sampled be guaranteed. This was not the case in this test; instead of trying to clean

the spectrum of noise, the goal was to introduce it. The notion of using non-uniform

sampling and uniform sample generation to introduce noise in a specific channel in

use is what sets this test apart from other literature.

6.4 Application to Architecture

To establish a baseline, Figure 5.7 shows the communications channel of an

FTAP test being performed and data being transfered. The first and highest peak

shown is the channel being used, the second peak situated at approximately 1930 MHz

is the frequency used by a clock source for modulation and demodulation.

During the tests using non-uniform sampling, the CDMA/EVDO system was

not able to continue to transfer data, and resulted in all packets being lost, and

eventually, the session between the phone and base station was also dropped. This

indicates a limit to the amount of noise which can be introduced before failure. Shown
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Figure 6.9: Noise dominating both forward and reverse channels.

in Figure 6.9 is the communications channel being dominated with noise during a non–

uniform sampling test. The noise pattern is nearly identical for each of the 3 different

non-uniform sampling scenarios used.

6.5 Noise Parameter Discovery

The previous tests implemented only non–uniform sampling with a signal gen-

eration rate equal to the signal acquisition rate. Also, the PN generator ran at a

much higher rate from the rest of the system. The following is an attempt to specify

which parameters could be modified to slowly introduce noise to the communication

channel.
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For these tests, the input signal was acquired at 62.5 MHz and the output

signal was generated at 125 MHz. Up–sampling to 250 MHz and downsampling

to the output frequency of 125 MHz was performed internally in the FPGA. All

modifications to the signal were performed at 250 MHz.

6.5.1 Modification to PN Generator

The period of the PN generator was modified by using a higher order poly-

nomial in the PN generator. This increased the maximum length sequence of which

registers could be chosen; a smaller order polynomial used in the PN generator de-

creased the maximum length of the sequence.

Several PN generators were created; PN generators from 10th order down to

3rd order. The polynomials describing all PN generators used for testing are as follows

[18]:

P (x) = x10 + x3 + 1 (6.26)

P (x) = x9 + x4 + 1 (6.27)

P (x) = x8 + x4 + x3 + x2 + 1 (6.28)

P (x) = x7 + x+ 1 (6.29)

P (x) = x6 + x+ 1 (6.30)

P (x) = x5 + x2 + 1 (6.31)

P (x) = x4 + x+ 1 (6.32)

P (x) = x3 + x+ 1 (6.33)

Table 6.1 shows the length of each sequence. Primitive polynomials were cho-

sen to ensure that the PN generator would have the maximum length sequence. This
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Table 6.1: Length of sequences

Equation Sequence Length
6.26 1023
6.27 511
6.28 255
6.29 127
6.30 63
6.31 31
6.32 15
6.33 7

was implemented in an effort to discover and isolate the parameter that affects the

amount of noise introduced. For this a shorter shift register, consisting only of three

registers, was introduced. Having all but two of the numbers supplied by the PN

generator choose the middle register changed the distribution based on length of the

PN sequence.

Figure 6.6 shows the basic design of the setup used for doing these tests. The

incoming signal was upsampled by a factor of 4 and zero–padded, then passed through

a sinc(x) filter which interpolated and smoothed the upsampled signal before the data

was put into the shift register. As data moved through the shift register, the PN gen-

erator selected which register to attach the output to. The PN generator was running

at the same frequency as the incoming signal to the shift register. Downsampling by

a factor of 2 was then performed to prepare the signal for generation by the DACs.

The results from these tests show that noise is only somewhat dependent on the

shape of the distribution; the noise that is generated appears in a non–random fashion.

Shown in Figure 6.11 is the average spectrum observed while testing the PN generator

described in equation 6.33, and the results of the longer PN generator described

in equation 6.26 are shown in the averaged Figure 6.12. The noise introduced by

the longer PN sequence is approximately 2 dBm higher than the shorter sequence,

however, discrete peaks of noise are clearly seen.
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Figure 6.10: An Implementation of non–uniform sampling.

Figure 6.11: Output when equation 6.33 was implemented.
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Figure 6.12: Output when equation 6.26 was implemented.
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Figure 6.13: Output for 3 registers.

6.5.2 Length of Shift Register

To test the effects changing the number of shift registers would have on the

output, a uniform distribution was used when determining what register to take out-

put from. Scenarios with 3, 5, 13 and 25 registers were tested. Varying the number

of registers did have a profound impact on the channel being used during commu-

nication. As the number of registers increased, more noise was introduced to the

channel. Figure 6.13 shows the output signal when there were 3 shift registers used,

Figure 6.14 shows the output when 5 shift registers are used, and finally, Figure 6.15

show when there were 25 shift registers being used.

As seen in Figure 6.13, the added noise in minimal. For a 10 MHz signal

sampled at 62.5 MHz, approximately half a wavelength was in the shift registers. Since

the values that were resampled were taken from a local area, the noise introduced
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Figure 6.14: Output for 5 registers.

was minimal.

Figure 6.14 represents a non–uniform sampling system with 5 shift registers.

This allows for just less than a full wavelength in the shift registers. Because of this,

the values that are written to the output have the potential to come from a slot

almost a full wavelength away, the noise added is greater than before.

In the extreme case of having 25 shift registers, the non–uniform sampling

module has the ability to hold 4 complete periods of signal in the shift registers at

any time. Because the output can be driven from anywhere in the 4 wavelengths, the

noise in the output can be seen in Figure 6.15 completely suppressing the 10 MHz

test signal.
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Figure 6.15: Output for 25 registers.
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6.5.3 Relation to Theoretical Results

To relate the theoretical results discussed in Section 6.1 to the observed results,

the cases of 3 and 5 shift registers are used. In the case of 3 input registers, the input

variance σ2
i = 2

3
. Applying the result found in equation 6.25, the output variance

becomes σ2
o = 1

3
. Moving to the case with 5 registers used in the shift register, the

input variance σ2
i = 2. Again, applying equation 6.25, the output variance becomes

σ2
o = 1. The difference between the two theoretical output values is an increase of a

factor of 3. When this difference is calculated on a logarithmic scale, the difference

is represented as 4.8 dBm.

Looking at the screen capture results from both of those cases shown in Fig-

ure 6.13 and Figure 6.14, it is seen that the difference in noise level between those

two tests was approximately 5 dBm. This matches closely with the theoretical result.

6.5.4 Effect on CDMA/EVDO Traffic

Non–uniform sampling was gradually introduced into an RTAP data–transfer

test using the same configuration as the pass–through tests performed in Section 5.5.

For the most part, the CDMA/EVDO system was able to continue transferring with

the noise introduced. Figure 6.16 shows the results of the no noise as well as the

four different noise levels at 50 second intervals introduced in Section 6.5.2. The first

section indicated, shows a normal data transfer, with no noise. When the minimum

level of noise tested, represented by 3 registers with a uniform distribution, was

suddenly introduced by toggling a switch there was no effect on the data transfer.

Increasing the number of registers to 5 resulted in a delayed sudden drop in the data

transfer, but the transfer immediately recovered and continued. When the number

of registers was increased to 13, the transfer became intermittent as shown. Finally,

when the shift register was increased to 25 registers, the transfer was immediately

cut off. After testing the maximum level of noise, if the noise was not immediately
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Figure 6.16: RTAP data transfer with non–uniform sampling noise added. Tests were
done in 50 second intervals.

removed from the system after it was introduced, the connection would have to be

reset; once the transfer had been sufficiently interrupted, the data connection was

permanently lost. During power control tests, the open–loop power control test was

repeated but was not able to respond within the envelope required. This was the case

when any level of noise was introduced.

This test shows the resilience of the CDMA/EVDO standard against sudden

increases in noise, and its ability to cope in order to continue to function. Also,

an upper limit was found where the channel was dominated with noise in which no

communication could take place. Because this noise was added in both the forward

and reverse link, it is also possible that this is a limitation of the phone’s ability to

cope with the added noise.
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Chapter 7

Summary and Future Work

7.1 Summary of Completed Work

This thesis provides a fully functioning cost–effective implementation of a

means to access a communications medium to control the signal passing through

it which is built using mostly COTS components. Tested first was the ability to

receive and send a known signal, followed by receiving and sending CDMA/EVDO

communications. This channel could be viewed using the SignalTapr facilities built

into the FPGA, or using a splitter/combiner and a spectrum analyzer. The final

implementation met all the requirements discussed in Section 2.2.

Intelligent selection of modulation and demodulation frequencies ensured that

there was no interference with the removal of the LPF. By removing the LPF, the

frequency range that can be used with this design is increased.

The discovery that the system would still work even when the communications

were demodulated down to baseband and acquired by the FPGA in a laboratory set-

ting was an interesting phenomenon. While the signal is being demodulated down to

base band, a local fade appears near the DC point where the ADCs have a documented

inability to resolve the signal. In this case, it is suspected that the ability for the base
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station and mobile to still exchange data is a result of the CDMA/EVDO standard

and the implementation by the manufacturers being robust enough to handle these

situations.

Non–uniform sampling was implemented to show that the system could intro-

duce noise to the point where the power control algorithm used in the CDMA/EVDO

implementation would fail and that the data transfer could be incrementally affected

or stopped. During this investigation, the discovery that the non–uniform sampling

would only increase the noise where a signal was present under certain conditions

was made. A method of slowly introducing noise was also discussed; this is a low

complexity method of introducing noise.

7.2 Future Work

In depth analysis of the aliasing that appeared during the non–uniform sam-

pling was outside the scope of this thesis, and was only briefly investigated. Upon

close inspection, it appeared that the noise introduced was somewhat ordered; the

noise appeared to be made up of aliasing artifacts. This endeavour was undertaken to

show that it was possible to affect the power control used in the system by introducing

noise, and could be further researched.

Since this architecture is protocol agnostic it would be possible to test other

wireless protocols. Tests do not need to be confined to verifying the power control

algorithm; this architecture makes it possible to implement any test that requires

unrestricted access to the communication channel. Similar tests could be performed

on a mobile network based on most modern mobile radio systems.
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Appendix A

Bias Board Schematic

Figure A.1: Bias board schematic.
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Appendix B

Detailed Wiring Diagram

A diagram showing the wired connections made in this project is seen in fig-

ure B.1.
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Appendix C

Final Project Functional Design
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Figure C.1: Functional design of the final project.
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Appendix D

MATLABr Code Listing

D.1 spec1.m

1 clf ;
2 clear ;
3 clear functions ;
4 pause on;
5

6 %%%%%Forward%%%%%%%
7 startf = 1870;
8 endf = 2060;
9

10 %%%%%Reverse%%%%%%
11 %startf = 1900;
12 %endf = 1960;
13

14 for loopf = startf:1:endf;
15

16 % All fs in MHz.
17

18 %fset = −2000:0.5:(−1950) ;
19 %fset = 1880:0.05:1910 ;
20 %fset = −4500:0.5:4500 ;
21 %fset = −100:0.5:100 ;
22 fset = −60:0.5:60 ;
23

24 lowpassbw = 5 ;
25

26 fc = loopf;
27

28 fs = 62.5;
29

30 Nfs = fix(4100/fs) ;
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31

32 y5 = 0 ;
33 for i = −Nfs:Nfs
34 y5 = y5 + pb2(fset+i*fs,fc) ;
35 end
36 plot(fset,y5) ;
37 grid ;
38 display(fc);
39 pause;
40

41 end
42

43 display(fs);

D.2 pb2.m

1 function y=pb2(f,fc)
2 %PB2 y = pb2(f,fc) is C2 PCS passband spectrum after an fc
3 % demodulator. f is in (MHz).
4 %
5 % Example:
6 % f = [−4500 : 0.1 : 4500 ] ; % (MHz)
7 % fc = 1995 ; % (MHz)
8 % y = pb2(f,fc) ;
9 % plot(f,y) ;

10

11 yraw = pb1(f+fc) ...
12 + pb1(f−fc) ;
13

14 % Pass 0 to 3000 (MHz) at amplitude 1.0
15 % Drop outside 3000 (MHz) to 0.1
16 lowpassmodbw = 4000 ;
17 yhititte = 0.9 * rect(f,lowpassmodbw) + 0.1 ;
18

19 y = yhititte .* yraw ;

D.3 pb1.m

1 function y=pb1(f)
2 %PB1 y = pb1(f) is C2 PCS passband spectrum. f is in (MHz).
3 % 1900−1905 1980−1985
4 % R F
5 %
6 % Example:
7 % f = [−2500 : 0.1 : 2500 ] ; % (MHz)
8 % y = pb1(f) ;
9 % plot(f,y) ;

10

11 lowpassbw = 5 ;
12
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13 % y = rect(f+1987.5,lowpassbw/2) + ...
14 % rect(f+1902.5,lowpassbw/2) + ...
15 % rect(f−1902.5,lowpassbw/2) + ...
16 % rect(f−1987.5,lowpassbw/2) ;
17

18

19 % Forward 1980−1985
20 yf = (2.5/1.75) * pulsef((−f)−1982.5) + ...
21 (2.5/1.75) * pulsef(( f)−1982.5) ;
22

23 % Reverse 1900−1905
24 % yr = rect(f+1902.5,lowpassbw/2) + ...
25 % rect(f−1902.5,lowpassbw/2) ;
26 yr = 1 * pulser((−f)−1902.5) + ...
27 1 * pulser(( f)−1902.5) ;
28

29

30 y = yf + yr ;

D.4 pulsef.m

1 function y=pulsef(f)
2 %BP PULSEF y = pulsef(f) is a pulse shape. f is in (MHz).
3 %
4 % Example:
5 % f = [−10 : 0.1 : 10 ] ; % (MHz)
6 % y = pulsef(f) ;
7 % plot(f,y) ;
8

9 lowpassbw = 5 ;
10

11 m = 0.1 ;
12 b = 1.5 ;
13

14 y = (m*f+b) .* rect(f,lowpassbw/2) ;

D.5 pulser.m

1 function y=pulser(f)
2 %PULSER y = pulser(f) is a pulse shape. f is in (MHz).
3 %
4 % Example:
5 % f = [−10 : 0.1 : 10 ] ; % (MHz)
6 % y = pulser(f) ;
7 % plot(f,y) ;
8

9 lowpassbw = 5 ;
10

11 m = 0.4 ;
12 b = 1.5 ;
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13

14 y = (m*f+b) .* rect(f,lowpassbw/2) ;

D.6 rect.m

1 function y=rect(x,c)
2 %RECT y = rect(x,c) is defined as follows (element per element):
3 % rect(x,c) = 1 , −c ≤ |x | ≤ c
4 % 0 , otherwise
5 % x is a matrix and c is a scaler.
6 %
7 % Example:
8 % x = [−10 : 0.1 : 10 ] ;
9 % c = 3 ;

10 % y = rect(x,c) ;
11 % plot(x,y) ;
12

13 % The implementation calls another function called function feeder to
14 % make is faster than using for loops.
15

16

17 y=function feeder(x,'one',(−c≤x)&(x≤c),'zero');

D.7 zero.m

1 function y=zero(x)
2 %ZERO y=zero(x) generates a matrix of zeros of the same size as x.
3 % If x has no dimensions, then y will have no dimensions.
4 %
5 % Usage example:
6 % y = zero ( [ −1 0 1 2 3 4 5 6 ] )
7

8 [m,n]=size(x);
9 if m 6=0,

10 y=zeros(m,n);
11 end

D.8 one.m

1 function y=one(x)
2 %ONE y=one(x) generates a matrix of ones of the same size as x.
3 % If x has no dimensions, then y will have no dimensions.
4 %
5 % Usage example:
6 % y = one ( [ −1 0 1 2 3 4 5 6 ] )
7

8 [m,n]=size(x);
9 if m 6=0,
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10 y=ones(m,n);
11 end

D.9 function feeder.m

1 function y=function feeder(x,Ftrue,c1,Ffalse)
2 %FUNCTION FEEDER
3 % y=function feeder(x,Ftrue,c1,Ffalse) executes the function Ftrue with
4 % the input data in x when condition c1 is true, else it executes
5 % the function Ffalse with the input data in x Ffalse. Ftrue and
6 % Ffalse are strings of function names. This function is very useful
7 % when Ftrue takes a long time to evaluate and Ffalse is quick; it
8 % can be used so that Ftrue is not called unnecessarily. It is also
9 % useful to implement a function by partitioning the cases using matrices

10 % instead of by for loops. It seems unusual to do this, but it is
11 % because matlab handles matrices more very efficiently than for loops.
12

13 % Usage example:
14 % c = 2 ;
15 % x = [−4 : 4 ]
16 % y = function feeder( x, 'one', (−c≤x)&(x≤c), 'ero' )
17

18 [m,n]=size(x);
19 if (m≥1)&(n==1),
20 x2=makerow(x);
21 [m,n]=size(x2);
22

23 i true = find(c1);
24 if length(i true) 6= 0,
25 y(1,i true) = feval(Ftrue,x2(1,i true));
26 end
27

28 i not true = find(¬c1);
29 if length(i not true) 6= 0,
30 y(1,i not true) = feval(Ffalse,x2(1,i not true));
31 end
32

33 y=y';
34 elseif (m≥1)&(n≥2),
35 for i=1:m,
36

37 i true = find(c1(i,:));
38 if length(i true) 6= 0,
39 y(i,i true) = feval(Ftrue,x(i,i true));
40 end
41

42 i not true = find(¬c1(i,:));
43 if length(i not true) 6= 0,
44 y(i,i not true) = feval(Ffalse,x(i,i not true));
45 end
46

47 end
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48 end
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Appendix E

Verilog Code and Block Diagrams

Code that was used in multiple tests is only listed once. Overlap is present for
figures of block diagrams to facilitate easier reading. The symbol ‘≤’ represents the
Verilog symbols ‘<=’.

E.1 Code Used in Section 6.3

E.1.1 jitter6BitBuff.v

1 module jitter6BitBuff( din, // data in
2 dout, // data out
3 clk, // Clock input.
4 buff select
5 // a,b,c,d,e,f//,g,h,i,j,k,l,m,n,o
6 );
7

8 parameter DATAWIDTH = 14; // Number of bits on the data bus.
9

10 input [DATAWIDTH−1:0]din;
11 input clk;
12 input [5:0]buff select;
13 output [DATAWIDTH−1:0]dout;
14 //output [DATAWIDTH−1:0]a,b,c,d,e,f;//,g,h,i,j,k,l,m,n,o;
15

16 reg [DATAWIDTH−1:0]a,b,c,d,e,f;//,g,h,i,j,k,l,m,n,o;
17 reg [DATAWIDTH−1:0]doutreg;
18

19 assign dout = doutreg;
20

21 /***************************/
22

23 always @(posedge clk) begin
24 a≤din;
25 b≤a;
26 c≤b;
27 d≤c;
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28 e≤d;
29 f≤e;
30 end
31

32

33 always @(buff select)
34 case (buff select)
35 6'b000000: doutreg ≤din;
36 6'b000001: doutreg ≤din;
37 6'b000010: doutreg ≤din;
38 6'b000011: doutreg ≤din;
39 6'b000100: doutreg ≤f;
40 6'b000101: doutreg ≤f;
41 6'b000110: doutreg ≤f;
42 6'b000111: doutreg ≤f;
43 6'b001000: doutreg ≤a;
44 6'b001001: doutreg ≤a;
45 6'b001010: doutreg ≤a;
46 6'b001011: doutreg ≤a;
47 6'b001100: doutreg ≤a;
48 6'b001101: doutreg ≤e;
49 6'b001110: doutreg ≤e;
50 6'b001111: doutreg ≤e;
51 6'b010000: doutreg ≤e;
52 6'b010001: doutreg ≤e;
53 6'b010010: doutreg ≤d;
54 6'b010011: doutreg ≤d;
55 6'b010100: doutreg ≤d;
56 6'b010101: doutreg ≤d;
57 6'b010110: doutreg ≤d;
58 6'b010111: doutreg ≤d;
59 6'b011000: doutreg ≤d;
60 6'b011001: doutreg ≤d;
61 6'b011010: doutreg ≤d;
62 6'b011011: doutreg ≤d;
63 6'b011100: doutreg ≤b;
64 6'b011101: doutreg ≤b;
65 6'b011110: doutreg ≤b;
66 6'b011111: doutreg ≤b;
67 6'b100000: doutreg ≤b;
68 6'b100001: doutreg ≤b;
69 6'b100010: doutreg ≤b;
70 6'b100011: doutreg ≤b;
71 6'b100100: doutreg ≤b;
72 6'b100101: doutreg ≤b;
73 6'b100110: doutreg ≤c;
74 6'b100111: doutreg ≤c;
75 6'b101000: doutreg ≤c;
76 6'b101001: doutreg ≤c;
77 6'b101010: doutreg ≤c;
78 6'b101011: doutreg ≤c;
79 6'b101100: doutreg ≤c;
80 6'b101101: doutreg ≤c;
81 6'b101110: doutreg ≤c;
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82 6'b101111: doutreg ≤c;
83 6'b110000: doutreg ≤c;
84 6'b110001: doutreg ≤c;
85 6'b110010: doutreg ≤c;
86 6'b110011: doutreg ≤c;
87 6'b110100: doutreg ≤c;
88 6'b110101: doutreg ≤c;
89 6'b110110: doutreg ≤c;
90 6'b110111: doutreg ≤c;
91 6'b111000: doutreg ≤c;
92 6'b111001: doutreg ≤c;
93 6'b111010: doutreg ≤c;
94 6'b111011: doutreg ≤c;
95 6'b111100: doutreg ≤c;
96 6'b111101: doutreg ≤c;
97 6'b111110: doutreg ≤c;
98 6'b111111: doutreg ≤c;
99

100 default: doutreg ≤ din;
101 endcase
102

103 endmodule

E.1.2 jitter6BitBuffEven.v

1 module jitter6BitBuffEven( din, // data in
2 dout, // data out
3 clk, // Clock input.
4 buff select
5 // a,b,c,d,e,f//,g,h,i,j,k,l,m,n,o
6 );
7

8 parameter DATAWIDTH = 14; // Number of bits on the data bus.
9

10 input [DATAWIDTH−1:0]din;
11 input clk;
12 input [5:0]buff select;
13 output [DATAWIDTH−1:0]dout;
14 //output [DATAWIDTH−1:0]a,b,c,d,e,f;//,g,h,i,j,k,l,m,n,o;
15

16 reg [DATAWIDTH−1:0]a,b,c,d,e,f;//,g,h,i,j,k,l,m,n,o;
17 reg [DATAWIDTH−1:0]doutreg;
18

19 assign dout = doutreg;
20

21 /***************************/
22

23 always @(posedge clk) begin
24 a≤din;
25 b≤a;
26 c≤b;
27 d≤c;
28 e≤d;
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29 f≤e;
30 end
31

32

33 always @(buff select)
34 case (buff select)
35 6'b000000: doutreg ≤din;
36 6'b000001: doutreg ≤din;
37 6'b000010: doutreg ≤din;
38 6'b000011: doutreg ≤din;
39 6'b000100: doutreg ≤din;
40 6'b000101: doutreg ≤din;
41 6'b000110: doutreg ≤din;
42 6'b000111: doutreg ≤din;
43 6'b001000: doutreg ≤din;
44 6'b001001: doutreg ≤a;
45 6'b001010: doutreg ≤a;
46 6'b001011: doutreg ≤a;
47 6'b001100: doutreg ≤a;
48 6'b001101: doutreg ≤a;
49 6'b001110: doutreg ≤a;
50 6'b001111: doutreg ≤a;
51 6'b010000: doutreg ≤a;
52 6'b010001: doutreg ≤a;
53 6'b010010: doutreg ≤b;
54 6'b010011: doutreg ≤b;
55 6'b010100: doutreg ≤b;
56 6'b010101: doutreg ≤b;
57 6'b010110: doutreg ≤b;
58 6'b010111: doutreg ≤b;
59 6'b011000: doutreg ≤b;
60 6'b011001: doutreg ≤b;
61 6'b011010: doutreg ≤b;
62 6'b011011: doutreg ≤c;
63 6'b011100: doutreg ≤c;
64 6'b011101: doutreg ≤c;
65 6'b011110: doutreg ≤c;
66 6'b011111: doutreg ≤c;
67 6'b100000: doutreg ≤c;
68 6'b100001: doutreg ≤c;
69 6'b100010: doutreg ≤c;
70 6'b100011: doutreg ≤c;
71 6'b100100: doutreg ≤d;
72 6'b100101: doutreg ≤d;
73 6'b100110: doutreg ≤d;
74 6'b100111: doutreg ≤d;
75 6'b101000: doutreg ≤d;
76 6'b101001: doutreg ≤d;
77 6'b101010: doutreg ≤d;
78 6'b101011: doutreg ≤d;
79 6'b101100: doutreg ≤d;
80 6'b101101: doutreg ≤e;
81 6'b101110: doutreg ≤e;
82 6'b101111: doutreg ≤e;
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83 6'b110000: doutreg ≤e;
84 6'b110001: doutreg ≤e;
85 6'b110010: doutreg ≤e;
86 6'b110011: doutreg ≤e;
87 6'b110100: doutreg ≤e;
88 6'b110101: doutreg ≤e;
89 6'b110110: doutreg ≤f;
90 6'b110111: doutreg ≤f;
91 6'b111000: doutreg ≤f;
92 6'b111001: doutreg ≤f;
93 6'b111010: doutreg ≤f;
94 6'b111011: doutreg ≤f;
95 6'b111100: doutreg ≤f;
96 6'b111101: doutreg ≤f;
97 6'b111110: doutreg ≤f;
98 6'b111111: doutreg ≤c;
99

100 default: doutreg ≤ din;
101 endcase
102

103 endmodule

E.1.3 jitter6BitBuffSingle.v

1 module jitter6BitBuffSingle( din, // data in
2 dout, // data out
3 clk, // Clock input.
4 buff select
5 // a,b,c,d,e,f//,g,h,i,j,k,l,m,n,o
6 );
7

8 parameter DATAWIDTH = 14; // Number of bits on the data bus.
9

10 input [DATAWIDTH−1:0]din;
11 input clk;
12 input [5:0]buff select;
13 output [DATAWIDTH−1:0]dout;
14 //output [DATAWIDTH−1:0]a,b,c,d,e,f;//,g,h,i,j,k,l,m,n,o;
15

16 reg [DATAWIDTH−1:0]a,b,c,d,e,f;//,g,h,i,j,k,l,m,n,o;
17 reg [DATAWIDTH−1:0]doutreg;
18

19 assign dout = doutreg;
20

21 /***************************/
22

23 always @(posedge clk) begin
24 a≤din;
25 b≤a;
26 c≤b;
27 d≤c;
28 e≤d;
29 f≤e;
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30 end
31

32

33 always @(buff select)
34 case (buff select)
35 6'b000000: doutreg ≤c;
36 6'b000001: doutreg ≤c;
37 6'b000010: doutreg ≤c;
38 6'b000011: doutreg ≤c;
39 6'b000100: doutreg ≤c;
40 6'b000101: doutreg ≤c;
41 6'b000110: doutreg ≤c;
42 6'b000111: doutreg ≤c;
43 6'b001000: doutreg ≤c;
44 6'b001001: doutreg ≤c;
45 6'b001010: doutreg ≤c;
46 6'b001011: doutreg ≤c;
47 6'b001100: doutreg ≤c;
48 6'b001101: doutreg ≤c;
49 6'b001110: doutreg ≤c;
50 6'b001111: doutreg ≤c;
51 6'b010000: doutreg ≤c;
52 6'b010001: doutreg ≤c;
53 6'b010010: doutreg ≤c;
54 6'b010011: doutreg ≤c;
55 6'b010100: doutreg ≤c;
56 6'b010101: doutreg ≤c;
57 6'b010110: doutreg ≤c;
58 6'b010111: doutreg ≤c;
59 6'b011000: doutreg ≤c;
60 6'b011001: doutreg ≤c;
61 6'b011010: doutreg ≤c;
62 6'b011011: doutreg ≤c;
63 6'b011100: doutreg ≤c;
64 6'b011101: doutreg ≤c;
65 6'b011110: doutreg ≤c;
66 6'b011111: doutreg ≤c;
67 6'b100000: doutreg ≤c;
68 6'b100001: doutreg ≤c;
69 6'b100010: doutreg ≤c;
70 6'b100011: doutreg ≤c;
71 6'b100100: doutreg ≤c;
72 6'b100101: doutreg ≤c;
73 6'b100110: doutreg ≤c;
74 6'b100111: doutreg ≤c;
75 6'b101000: doutreg ≤c;
76 6'b101001: doutreg ≤c;
77 6'b101010: doutreg ≤c;
78 6'b101011: doutreg ≤c;
79 6'b101100: doutreg ≤c;
80 6'b101101: doutreg ≤c;
81 6'b101110: doutreg ≤c;
82 6'b101111: doutreg ≤c;
83 6'b110000: doutreg ≤c;
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84 6'b110001: doutreg ≤c;
85 6'b110010: doutreg ≤c;
86 6'b110011: doutreg ≤c;
87 6'b110100: doutreg ≤c;
88 6'b110101: doutreg ≤c;
89 6'b110110: doutreg ≤c;
90 6'b110111: doutreg ≤c;
91 6'b111000: doutreg ≤c;
92 6'b111001: doutreg ≤c;
93 6'b111010: doutreg ≤c;
94 6'b111011: doutreg ≤c;
95 6'b111100: doutreg ≤c;
96 6'b111101: doutreg ≤c;
97 6'b111110: doutreg ≤c;
98 6'b111111: doutreg ≤c;
99

100 default: doutreg ≤ c;
101 endcase
102

103 endmodule

E.1.4 jitter6BitBuffTight.v

1 module jitter6BitBuffTight( din, // data in
2 dout, // data out
3 clk, // Clock input.
4 buff select
5 // a,b,c,d,e,f//,g,h,i,j,k,l,m,n,o
6 );
7

8 parameter DATAWIDTH = 14; // Number of bits on the data bus.
9

10 input [DATAWIDTH−1:0]din;
11 input clk;
12 input [5:0]buff select;
13 output [DATAWIDTH−1:0]dout;
14 //output [DATAWIDTH−1:0]a,b,c,d,e,f;//,g,h,i,j,k,l,m,n,o;
15

16 reg [DATAWIDTH−1:0]a,b,c,d,e,f;//,g,h,i,j,k,l,m,n,o;
17 reg [DATAWIDTH−1:0]doutreg;
18

19 assign dout = doutreg;
20

21 /***************************/
22

23 always @(posedge clk) begin
24 a≤din;
25 b≤a;
26 c≤b;
27 d≤c;
28 e≤d;
29 f≤e;
30 end
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31

32

33 always @(buff select)
34 case (buff select)
35 6'b000000: doutreg ≤din;
36 6'b000001: doutreg ≤din;
37 6'b000010: doutreg ≤f;
38 6'b000011: doutreg ≤f;
39 6'b000100: doutreg ≤e;
40 6'b000101: doutreg ≤e;
41 6'b000110: doutreg ≤e;
42 6'b000111: doutreg ≤e;
43 6'b001000: doutreg ≤a;
44 6'b001001: doutreg ≤a;
45 6'b001010: doutreg ≤a;
46 6'b001011: doutreg ≤a;
47 6'b001100: doutreg ≤b;
48 6'b001101: doutreg ≤b;
49 6'b001110: doutreg ≤b;
50 6'b001111: doutreg ≤b;
51 6'b010000: doutreg ≤b;
52 6'b010001: doutreg ≤d;
53 6'b010010: doutreg ≤d;
54 6'b010011: doutreg ≤d;
55 6'b010100: doutreg ≤d;
56 6'b010101: doutreg ≤d;
57 6'b010110: doutreg ≤d;
58 6'b010111: doutreg ≤d;
59 6'b011000: doutreg ≤b;
60 6'b011001: doutreg ≤b;
61 6'b011010: doutreg ≤b;
62 6'b011011: doutreg ≤d;
63 6'b011100: doutreg ≤b;
64 6'b011101: doutreg ≤d;
65 6'b011110: doutreg ≤b;
66 6'b011111: doutreg ≤d;
67 6'b100000: doutreg ≤c;
68 6'b100001: doutreg ≤c;
69 6'b100010: doutreg ≤c;
70 6'b100011: doutreg ≤c;
71 6'b100100: doutreg ≤c;
72 6'b100101: doutreg ≤c;
73 6'b100110: doutreg ≤c;
74 6'b100111: doutreg ≤c;
75 6'b101000: doutreg ≤c;
76 6'b101001: doutreg ≤c;
77 6'b101010: doutreg ≤c;
78 6'b101011: doutreg ≤c;
79 6'b101100: doutreg ≤c;
80 6'b101101: doutreg ≤c;
81 6'b101110: doutreg ≤c;
82 6'b101111: doutreg ≤c;
83 6'b110000: doutreg ≤c;
84 6'b110001: doutreg ≤c;
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85 6'b110010: doutreg ≤c;
86 6'b110011: doutreg ≤c;
87 6'b110100: doutreg ≤c;
88 6'b110101: doutreg ≤c;
89 6'b110110: doutreg ≤c;
90 6'b110111: doutreg ≤c;
91 6'b111000: doutreg ≤c;
92 6'b111001: doutreg ≤c;
93 6'b111010: doutreg ≤c;
94 6'b111011: doutreg ≤c;
95 6'b111100: doutreg ≤c;
96 6'b111101: doutreg ≤c;
97 6'b111110: doutreg ≤c;
98 6'b111111: doutreg ≤c;
99

100 default: doutreg ≤ din;
101 endcase
102

103 endmodule

E.2 Code Used in Section 6.5.1

E.2.1 jitterMultiPN.v

1 /*
2 * Author: Brandon C. Brown
3 *
4 * Date: 2009−07−25
5 *
6 * Description:
7 * This module is purpose built to take various sizes
8 * of PN generators, and select one of 3 buffers based on
9 * the number. Will chose one of 3 buffers: All but two from

10 * the middle, and once on either side.
11 *
12 *
13 */
14

15

16 module jitterMultiPN(
17 din, // data in
18 dout, // data out
19 clk, // Clock input, runs at same speed as acquisition clock.
20 buff select,
21 a,
22 b,
23 c
24 );
25

26 parameter DATAWIDTH = 14;
27 parameter BUFFSELECTWIDTH = 10;
28
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29 input [DATAWIDTH−1:0] din;
30 input clk;
31 input [BUFFSELECTWIDTH−1:0] buff select;
32 output [DATAWIDTH−1:0] dout,a,b,c;
33

34 reg [DATAWIDTH−1:0] a,b,c;
35 reg [2:0] dsel;
36 wire [DATAWIDTH−1:0] dout;
37 reg [DATAWIDTH−1:0] doutreg;
38

39 assign dout = doutreg;
40

41

42 always @(posedge clk) begin
43 a≤din;
44 b≤a;
45 c≤b;
46 end
47

48 // 1 and 2 chosen because they are in any buff select sizes...
49 always @(buff select) begin
50 case(buff select)
51 1: doutreg ≤ a;
52 2: doutreg ≤ c;
53 default: doutreg ≤ b;
54 endcase
55 end
56

57 endmodule

E.2.2 pnGenerator3bit.v

1 /*
2

3 Author: Brandon C. Brown
4

5 Date: 2009−05−19
6

7 General idea:
8

9 Circuit based on P(x) = xˆ3 + x + 1
10

11 |−−−−−−−−−−−−−−−−−−+<−−−−−−−−−
12 | ˆ |
13 | | |
14 | | |
15 −−−−−>|a|−−−−>|b|−−o−−>|c|−−−o−−−−−>dout
16

17 Seed with 1'b1
18 Period = 7 (Maximum Length Sequence)
19

20 Note: Modulus two addition is shown
21 schematically equivalent to

75



22 Exclusive−OR gates.
23

24 Designed with assistance from:
25 http://www.ee.unb.ca/cgi−bin/tervo/sequence.pl
26 Site by: Richard Tervo
27

28 */
29

30

31 module pnGenerator3bit( CLK,
32 dout,
33 pdout
34 );
35

36 input CLK;
37 output dout;
38 output [2:0]pdout;
39

40 reg a,b,c;
41 wire btoc, plustoa;
42

43 assign dout = c;
44 assign btoc = b;
45 assign pdout = {a,b,dout};
46

47 xor(plustoa,btoc,dout);
48

49 initial c = 1'b1;
50

51 always @(posedge CLK) begin
52 b ≤ a;
53 c ≤ b;
54 a ≤ plustoa;
55 end
56

57 endmodule

E.2.3 pnGenerator4bit.v

1 /*
2

3 Author: Brandon C. Brown
4

5 Date: 2009−07−24
6

7 General idea:
8

9 Circuit based on P(x) = xˆ4 + x + 1
10

11 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−+<−−−−−−−−
12 | ˆ |
13 | | |
14 | | |
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15 −−−−−>|a|−−−−−>|b|−−−−−>|c|−−o−−>|d|−−o−−>dout
16 1 0 0 1 1
17

18

19 Seed with 1'b1
20 Period = 15 (Maximum Length Sequence)
21

22 Note: Modulus two addition is shown
23 schematically equivalent to
24 Exclusive−OR gates.
25

26 Designed with assistance from:
27 http://www.ee.unb.ca/cgi−bin/tervo/sequence.pl
28 Site by: Richard Tervo
29

30 */
31

32

33 module pnGenerator4bit( CLK,
34 dout,
35 pdout
36 );
37

38 input CLK;
39 output dout;
40 output [3:0]pdout;
41

42 reg a,b,c,d;
43 wire plustoa;
44

45 assign dout = d;
46 assign pdout = {a,b,c,d};
47

48 xor(plustoa,c,dout);
49

50 initial d = 1'b1;
51

52 always @(posedge CLK) begin
53 b ≤ a;
54 c ≤ b;
55 d ≤ c;
56 a ≤ plustoa;
57 end
58

59 endmodule

E.2.4 pnGenerator5bit.v

1 /*
2

3 Author: Brandon C. Brown
4

5 Date: 2009−05−27
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6

7 General idea:
8

9 Circuit based on P(x) = xˆ5 + xˆ2 + 1
10

11 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−+<−−−−−−−−−−−−−−−−−
12 | ˆ |
13 | | |
14 | | |
15 −−−−−>|a|−−−−−>|b|−−−−−>|c|−−o−−>|d|−−−−−>|e|−−o−−>dout
16 1 0 0 1 0 1
17

18

19 Seed with 1'b1
20 Period = 31 (Maximum Length Sequence)
21

22 Note: Modulus two addition is shown
23 schematically equivalent to
24 Exclusive−OR gates.
25

26 Designed with assistance from:
27 http://www.ee.unb.ca/cgi−bin/tervo/sequence.pl
28 Site by: Richard Tervo
29

30 */
31

32

33 module pnGenerator5bit( CLK,
34 dout,
35 pdout
36 );
37

38 input CLK;
39 output dout;
40 output [4:0]pdout;
41

42 reg a,b,c,d,e;
43 wire ctod, plustoa;
44

45 assign dout = e;
46 assign ctod = c;
47 assign pdout = {a,b,c,d,e};
48

49 xor(plustoa,ctod,dout);
50

51 initial e = 1'b1;
52

53 always @(posedge CLK) begin
54 b ≤ a;
55 c ≤ b;
56 d ≤ c;
57 e ≤ d;
58 a ≤ plustoa;
59 end
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60

61 endmodule

E.2.5 pnGenerator6bit.v

1 /*
2

3 Author: Brandon C. Brown
4

5 Date: 2009−07−24
6

7 General idea:
8

9 Circuit based on P(x) = xˆ6 + x + 1
10

11 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+<−−−−−−−|
12 | | |
13 | | |
14 | | |
15 −−−−−>|a|−−−−−>|b|−−−−−>|c|−−−−−>|d|−−−−−>|e|−−o−−>|f|−−o−−>dout
16 1 0 0 0 0 1 1
17

18

19 Seed with 1'b1
20 Period = 63 (Maximum Length Sequence)
21

22 Note: Modulus two addition is shown
23 schematically equivalent to
24 Exclusive−OR gates.
25

26 Designed with assistance from:
27 http://www.ee.unb.ca/cgi−bin/tervo/sequence.pl
28 Site by: Richard Tervo
29

30 */
31

32 module pnGenerator6bit( CLK,
33 dout,
34 pdout
35 );
36

37 input CLK;
38 output dout;
39 output [5:0]pdout;
40

41 reg a,b,c,d,e,f,g;
42 wire plustoa;
43

44 assign dout = f;
45 assign pdout = {a,b,c,d,e,f};
46

47 xor(plustoa,e,dout);
48
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49 initial f = 1'b1;
50

51 always @(posedge CLK) begin
52 b ≤ a;
53 c ≤ b;
54 d ≤ c;
55 e ≤ d;
56 f ≤ e;
57 a ≤ plustoa;
58 end
59

60 endmodule

E.2.6 pnGenerator7bit.v

1 /*
2

3 Author: Brandon C. Brown
4

5 Date: 2009−07−24
6

7 General idea:
8

9 Circuit based on P(x) = xˆ7 + x + 1
10

11 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+<−−−−−−−|
12 | | |
13 | | |
14 | | |
15 −−−>|a|−−−>|b|−−−>|c|−−−>|d|−−−>|e|−−−>|f|−−o−−>|g|−−o−−>dout
16 1 0 0 0 0 0 1 1
17

18

19 Seed with 1'b1
20 Period = 127 (Maximum Length Sequence)
21

22 Note: Modulus two addition is shown
23 schematically equivalent to
24 Exclusive−OR gates.
25

26 Designed with assistance from:
27 http://www.ee.unb.ca/cgi−bin/tervo/sequence.pl
28 Site by: Richard Tervo
29

30 */
31

32 module pnGenerator7bit( CLK,
33 dout,
34 pdout
35 );
36

37 input CLK;
38 output dout;
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39 output [6:0]pdout;
40

41 reg a,b,c,d,e,f,g;
42 wire plustoa;
43

44 assign dout = g;
45 assign pdout = {a,b,c,d,e,f,g};
46

47 xor(plustoa,f,dout);
48

49 initial g = 1'b1;
50

51 always @(posedge CLK) begin
52 b ≤ a;
53 c ≤ b;
54 d ≤ c;
55 e ≤ d;
56 f ≤ e;
57 g ≤ f;
58 a ≤ plustoa;
59 end
60

61 endmodule

E.2.7 pnGenerator8bit.v

1 /*
2

3 Author: Brandon C. Brown
4

5 Date: 2009−07−24
6

7 General idea:
8

9 Circuit based on P(x) = xˆ8 + xˆ4 + xˆ3 + xˆ2 + 1
10

11 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−+<−−−−−+<−−−−−+<−−−−−−−−−−−−−−−−|
12 | | | | |
13 | | | | |
14 | | | | |
15 −−−>|a|−−−>|b|−−−>|c|−−−>|d|−o−>|e|−o−>|f|−o−>|g|−−−>|h|−o−>dout
16 1 0 0 0 1 1 1 0 1
17

18

19 Seed with 1'b1
20 Period = 255 (Maximum Length Sequence)
21

22 Note: Modulus two addition is shown
23 schematically equivalent to
24 Exclusive−OR gates.
25

26 Designed with assistance from:
27 http://www.ee.unb.ca/cgi−bin/tervo/sequence.pl
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28 Site by: Richard Tervo
29

30 */
31

32 module pnGenerator8bit( CLK,
33 dout,
34 pdout
35 );
36

37 input CLK;
38 output dout;
39 output [7:0]pdout;
40

41 reg a,b,c,d,e,f,g,h;
42 wire plustoa;
43 wire plus2, plus1;
44

45 assign dout = h;
46 assign pdout = {a,b,c,d,e,f,g,h};
47

48 xor(plustoa,d,plus2);
49 xor(plus2,e,plus1);
50 xor(plus1,f,dout);
51

52 initial h = 1'b1;
53

54 always @(posedge CLK) begin
55 b ≤ a;
56 c ≤ b;
57 d ≤ c;
58 e ≤ d;
59 f ≤ e;
60 g ≤ f;
61 h ≤ g;
62 a ≤ plustoa;
63 end
64

65 endmodule

E.2.8 pnGenerator9bit.v

1 /*
2

3 Author: Brandon C. Brown
4

5 Date: 2009−07−24
6

7 General idea:
8

9 Circuit based on P(x) = xˆ9 + xˆ4 + 1
10

11 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+<−−−−−−−−−−−−−−−−−−−−−−−−−−|
12 | | |
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13 | | |
14 | | |
15 −−−>|a|−−−>|b|−−−>|c|−−−>|d|−−−>|e|−o−>|f|−−−>|g|−−−>|h|−−−>|i|−o−>dout
16 1 0 0 0 0 1 0 0 0 1
17

18

19 Seed with 1'b1
20 Period = 511 (Maximum Length Sequence)
21

22 Note: Modulus two addition is shown
23 schematically equivalent to
24 Exclusive−OR gates.
25

26 Designed with assistance from:
27 http://www.ee.unb.ca/cgi−bin/tervo/sequence.pl
28 Site by: Richard Tervo
29

30 */
31

32

33 module pnGenerator9bit( CLK,
34 dout,
35 pdout
36 );
37

38 input CLK;
39 output dout;
40 output [8:0]pdout;
41

42 reg a,b,c,d,e,f,g,h,i,j;
43 wire etof;
44 wire plustoa;
45

46 assign dout = i;
47 //assign etof = e;
48 assign pdout = {a,b,c,d,e,f,g,h,i};
49

50 xor(plustoa,e,dout);
51

52 initial i = 1'b1;
53

54 always @(posedge CLK) begin
55 b ≤ a;
56 c ≤ b;
57 d ≤ c;
58 e ≤ d;
59 f ≤ e;
60 g ≤ f;
61 h ≤ g;
62 i ≤ h;
63 a ≤ plustoa;
64 end
65

66 endmodule
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E.2.9 pnGenerator10bit.v

1 /*
2

3 Author: Brandon C. Brown
4

5 Date: 2009−07−08
6

7 General idea:
8

9 Circuit based on P(x) = xˆ10 + xˆ3 + 1
10

11 |−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+<−−−−−−−−−−−−−−−−−−−−−|
12 | | |
13 | | |
14 | | |
15 −−>|a|−−>|b|−−>|c|−−>|d|−−>|e|−−>|f|−−>|g|−o−>|h|−−>|i|−−>|j|−o−>dout
16 1 0 0 0 0 0 0 1 0 0 1
17

18

19 Seed with 1'b1
20 Period = 1023 (Maximum Length Sequence)
21

22 Note: Modulus two addition is shown
23 schematically equivalent to
24 Exclusive−OR gates.
25

26 Designed with assistance from:
27 http://www.ee.unb.ca/cgi−bin/tervo/sequence.pl
28 Site by: Richard Tervo
29

30 */
31

32

33 module pnGenerator10bit( CLK,
34 dout,
35 pdout
36 );
37

38 input CLK;
39 output dout;
40 output [9:0]pdout;
41

42 reg a,b,c,d,e,f,g,h,i,j;
43 wire gtoh, plustoa;
44

45 assign dout = j;
46 assign gtoh = g;
47 assign pdout = {a,b,c,d,e,f,g,h,i,j};
48

49 xor(plustoa,gtoh,dout);
50
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51 initial j = 1'b1;
52

53 always @(posedge CLK) begin
54 b ≤ a;
55 c ≤ b;
56 d ≤ c;
57 e ≤ d;
58 f ≤ e;
59 g ≤ f;
60 h ≤ g;
61 i ≤ h;
62 j ≤ i;
63 a ≤ plustoa;
64 end
65

66 endmodule

E.2.10 DE3.v

1

2 //=======================================================
3 // This code is generated by Terasic System Builder
4 //=======================================================
5 module DE3(
6

7 ////////// CLOCK //////////
8 OSC BA,
9 OSC BB,

10 OSC BC,
11 OSC BD,
12 OSC1 50,
13 OSC2 50,
14 CLK OUT,
15 EXT CLK,
16

17 ////////// LED //////////
18 LEDR,
19 LEDG,
20 LEDB,
21

22 ////////// SEG7 //////////
23 HEX0,
24 HEX0 DP,
25 HEX1,
26 HEX1 DP,
27

28 ////////// BUTTON //////////
29 Button,
30

31 ////////// SW (SLIDE SWITCH) //////////
32 SW,
33

34 ////////// SDCARD //////////
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35 SD CMD,
36 SD CLK,
37 SD DAT,
38 SD WPn,
39

40 ////////// HSTCC (J5 HSTC−C TOP/J6, HSTC−C BOTTOM) //////////
41 HSTCC AD OTRA,
42 HSTCC PLL OUT ADC,
43 HSTCC AD OTRB,
44 HSTCC AD DB,
45 HSTCC AD DA,
46 HSTCC ADC OEB B,
47 HSTCC ADC OEB A,
48 HSTCC SMA DAC4,
49 HSTCC PLL OUT DAC,
50 HSTCC OSC SMA ADC4,
51 HSTCC DA MODE,
52 HSTCC DA WRTA,
53 HSTCC DA WRTB,
54 HSTCC DA DA,
55 HSTCC DA DB,
56 HSTCC SDA,
57 HSTCC SCL,
58

59 ////////// HSTCD (J7, HSTC−D TOP/J8, JSTC−D BOTTOM) //////////
60 HSTCD AD OTRA,
61 HSTCD PLL OUT ADC,
62 HSTCD AD OTRB,
63 HSTCD AD DB,
64 HSTCD AD DA,
65 HSTCD ADC OEB B,
66 HSTCD ADC OEB A,
67 HSTCD SMA DAC4,
68 HSTCD PLL OUT DAC,
69 HSTCD OSC SMA ADC4,
70 HSTCD DA MODE,
71 HSTCD DA WRTA,
72 HSTCD DA WRTB,
73 HSTCD DA DA,
74 HSTCD DA DB,
75 HSTCD SDA,
76 HSTCD SCL,
77

78 ////////// REGULATOR //////////
79 JVC CLK,
80 JVC CS,
81 JVC DATAOUT,
82 JVC DATAIN
83

84 );
85

86 //=======================================================
87 // PARAMETER declarations
88 //=======================================================
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89

90 //=======================================================
91 // PORT declarations
92 //=======================================================
93 ////////// CLOCK //////////
94 input OSC BA;
95 input OSC BB;
96 input OSC BC;
97 input OSC BD;
98 input OSC1 50;
99 input OSC2 50;

100 output CLK OUT;
101 input EXT CLK;
102

103 ////////// LED //////////
104 output [7:0] LEDR;
105 output [7:0] LEDG;
106 output [7:0] LEDB;
107

108 ////////// SEG7 //////////
109 output [6:0] HEX0;
110 output HEX0 DP;
111 output [6:0] HEX1;
112 output HEX1 DP;
113

114 ////////// BUTTON //////////
115 input [3:0] Button;
116

117 ////////// SW (SLIDE SWITCH) //////////
118 input [3:0] SW;
119

120 ////////// SDCARD //////////
121 inout SD CMD;
122 output SD CLK;
123 inout SD DAT;
124 input SD WPn;
125

126 / HSTCC (J5 HSTC−C TOP/J6, HSTC−C BOTTOM), connect to CELL(ADA Board) //
127 output [1:0] HSTCC PLL OUT ADC;
128 input HSTCC AD OTRA;
129 input HSTCC AD OTRB;
130 input [13:0] HSTCC AD DB;
131 input [13:0] HSTCC AD DA;
132 output HSTCC ADC OEB B;
133 output HSTCC ADC OEB A;
134 output [1:0] HSTCC PLL OUT DAC;
135 input HSTCC SMA DAC4;
136 input HSTCC OSC SMA ADC4;
137 output HSTCC DA MODE;
138 output HSTCC DA WRTA;
139 output HSTCC DA WRTB;
140 output [13:0] HSTCC DA DA;
141 output [13:0] HSTCC DA DB;
142 inout HSTCC SDA;
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143 output HSTCC SCL;
144

145 // HSTCD (J7, HSTC−D TOP/J8, JSTC−D BOTTOM), connect to BASE(ADA Board) //
146 output [1:0] HSTCD PLL OUT ADC;
147 input HSTCD AD OTRA;
148 input HSTCD AD OTRB;
149 input [13:0] HSTCD AD DB;
150 input [13:0] HSTCD AD DA;
151 output HSTCD ADC OEB B;
152 output HSTCD ADC OEB A;
153 output [1:0] HSTCD PLL OUT DAC;
154 input HSTCD SMA DAC4;
155 input HSTCD OSC SMA ADC4;
156 output HSTCD DA MODE;
157 output HSTCD DA WRTA;
158 output HSTCD DA WRTB;
159 output [13:0] HSTCD DA DA;
160 output [13:0] HSTCD DA DB;
161 inout HSTCD SDA;
162 output HSTCD SCL;
163

164 ////////// REGULATOR //////////
165 output JVC CLK;
166 output JVC CS;
167 output JVC DATAOUT;
168 input JVC DATAIN;
169

170

171 //=======================================================
172 // REG/WIRE declarations
173 //=======================================================
174 wire [13:0] data out wire;
175 reg [13:0] dataOut;
176 wire CLK 125;
177 wire CLK OUT;
178 wire [31:0] phaseinc;
179

180 wire g = 0;
181 wire v = 1;
182

183 wire [3:0] Button;
184

185 wire [13:0] cell i;
186 wire [13:0] cell q;
187 wire [13:0] base i;
188 wire [13:0] base q;
189

190 wire [13:0] base i out;
191 wire [13:0] cell i out;
192

193

194 wire SIGNAL TAP CLOCK;
195 wire CLK 65;
196 wire CLK 200;

88



197 wire CLK 500;
198 wire CLK 250;
199 wire pllLock;
200

201

202 wire [13:0] jitter base i;
203 wire [13:0] jitter base q;
204 wire [13:0] jitter cell i;
205 wire [13:0] jitter cell q;
206

207

208

209

210 //=======================================================
211 // IO Group Voltage Configuration (Do not modify it)
212 //=======================================================
213 IOV A3V3 B3V3 C3V3 D3V3 IOV Instance(
214 .iCLK(OSC2 50),
215 .iRST n(1'b1),
216 .iENABLE(1'b0),
217 .oREADY(),
218 .oERR(),
219 .oERRCODE(),
220 .oJVC CLK(JVC CLK),
221 .oJVC CS(JVC CS),
222 .oJVC DATAOUT(JVC DATAOUT),
223 .iJVC DATAIN(JVC DATAIN)
224 );
225

226 //=======================================================
227 // Structural coding
228 //=======================================================
229

230

231 assign HSTCC DA WRTB = CLK 125; //Input write signal for PORT B
232 assign HSTCC DA WRTA = CLK 125; //Input write signal for PORT A
233 assign HSTCD DA WRTA = CLK 125;
234 assign HSTCD DA WRTB = CLK 125;
235

236

237 assign HSTCC DA MODE = 1; //Mode Select. 1=dual port, 0=interleaved.
238 assign HSTCD DA MODE = 1;
239

240 assign HSTCC PLL OUT DAC[0] = CLK 125; //PLL Clock to DAC B
241 assign HSTCC PLL OUT DAC[1] = CLK 125; //PLL Clock to DAC A
242 assign HSTCD PLL OUT DAC[0] = CLK 125;
243 assign HSTCD PLL OUT DAC[1] = CLK 125;
244

245 assign HSTCC PLL OUT ADC[0] = CLK 65; //PLL Clock to ADC B
246 assign HSTCC PLL OUT ADC[1] = CLK 65; //PLL Clock to ADC A
247 assign HSTCD PLL OUT ADC[0] = CLK 65;
248 assign HSTCD PLL OUT ADC[1] = CLK 65;
249

250 assign HSTCC ADC OEB B = 0;
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251 assign HSTCC ADC OEB A = 0;
252 assign HSTCD ADC OEB B = 0;
253 assign HSTCD ADC OEB A = 0;
254

255 //ADC out of range indicators.
256 assign LEDR = {EXT CLK,v,v,v,pllLock,v,¬HSTCD AD OTRA,¬HSTCC AD OTRA};
257 assign LEDB = {EXT CLK,v,v,v,pllLock,v,¬HSTCD AD OTRB,¬HSTCC AD OTRB};
258 assign LEDG = {¬SIGNAL TAP CLOCK,v,v,v,v,v,v,v};
259

260 decode bside (
261 .bcd input({HSTCD AD OTRA,g,g,HSTCD AD OTRB}),
262 .seven seg output(HEX1)
263 );
264

265 decode cside (
266 .bcd input({HSTCC AD OTRA,g,g,HSTCC AD OTRB}),
267 .seven seg output(HEX0)
268 );
269 assign HEX0 DP = v;
270 assign HEX1 DP = v;
271

272

273 /***************************************
274 * Taking input I and Q and outputting them on the other ADA Board.
275 * HSTCC = cell side, HSTCD = base station side */
276

277 // cell side
278

279 assign cell i = HSTCC AD DA;
280 assign cell q = HSTCC AD DB;
281 assign HSTCC DA DA = base i out;
282

283 //base side
284 assign base i = HSTCD AD DA;
285 assign base q = HSTCD AD DB;
286 assign HSTCD DA DA = cell i out;
287

288 /*****************************************/
289

290 /************Enable both lines*******************/
291

292 assign base i out = (SW[3]) ? jitter base i : base i;
293 assign cell i out = (SW[3]) ? jitter cell i : cell i;
294

295 /**********************************************/
296

297

298 /***********Clock Sources using OSC1 50*******/
299 assign CLK OUT = CLK 65;
300 assign SIGNAL TAP CLOCK = CLK 250;
301

302 pll5clks pll 125 ( .inclk0(OSC1 50),
303 .areset(¬Button[2]), //Reset the PLL
304 .locked(pllLock), //Vcc if locked, GND if not
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305 .c0(CLK 65), //65MHz −> really 62.5 MHz
306 .c1(CLK 125), //125 MHz
307 .c2(CLK 250), //250 MHz
308 .c3(CLK 200),
309 );
310 /*******************************************/
311

312 /*********************************************/
313

314

315

316

317

318 jitterUniformDist udist cell(
319 .sin(cell i),
320 .CLK 62(CLK 65),
321 .CLK 500(CLK 250),
322 .jitter sel(SW[1:0]),
323 .dout(jitter cell i)
324 );
325 jitterUniformDist udist base(
326 .sin(base i),
327 .CLK 62(CLK 65),
328 .CLK 500(CLK 250),
329 .jitter sel(SW[1:0]),
330 .dout(jitter base i)
331 );
332

333 endmodule
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E.2.11 Block Diagram

For readability, the block diagram on the following pages has been split into
multiple sections, which includes some overlap.
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Figure E.1: Part 1 of 4: block diagram of the Verilog implementation used.
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Figure E.2: Part 2 of 4: block diagram of the Verilog implementation used.
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Figure E.3: Part 3 of 4: block diagram of the Verilog implementation used.
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Figure E.4: Part 4 of 4: block diagram of the Verilog implementation used.
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E.3 Code Used in Section 6.5.2

E.3.1 DE3.v

1

2 //=======================================================
3 // This code is generated by Terasic System Builder
4 //=======================================================
5 module DE3(
6

7 ////////// CLOCK //////////
8 OSC BA,
9 OSC BB,

10 OSC BC,
11 OSC BD,
12 OSC1 50,
13 OSC2 50,
14 CLK OUT,
15 EXT CLK,
16

17 ////////// LED //////////
18 LEDR,
19 LEDG,
20 LEDB,
21

22 ////////// SEG7 //////////
23 HEX0,
24 HEX0 DP,
25 HEX1,
26 HEX1 DP,
27

28 ////////// BUTTON //////////
29 Button,
30

31 ////////// SW (SLIDE SWITCH) //////////
32 SW,
33

34 ////////// SDCARD //////////
35 SD CMD,
36 SD CLK,
37 SD DAT,
38 SD WPn,
39

40 ////////// HSTCC (J5 HSTC−C TOP/J6, HSTC−C BOTTOM) //////////
41 HSTCC AD OTRA,
42 HSTCC PLL OUT ADC,
43 HSTCC AD OTRB,
44 HSTCC AD DB,
45 HSTCC AD DA,
46 HSTCC ADC OEB B,
47 HSTCC ADC OEB A,
48 HSTCC SMA DAC4,

97



49 HSTCC PLL OUT DAC,
50 HSTCC OSC SMA ADC4,
51 HSTCC DA MODE,
52 HSTCC DA WRTA,
53 HSTCC DA WRTB,
54 HSTCC DA DA,
55 HSTCC DA DB,
56 HSTCC SDA,
57 HSTCC SCL,
58

59 ////////// HSTCD (J7, HSTC−D TOP/J8, JSTC−D BOTTOM) //////////
60 HSTCD AD OTRA,
61 HSTCD PLL OUT ADC,
62 HSTCD AD OTRB,
63 HSTCD AD DB,
64 HSTCD AD DA,
65 HSTCD ADC OEB B,
66 HSTCD ADC OEB A,
67 HSTCD SMA DAC4,
68 HSTCD PLL OUT DAC,
69 HSTCD OSC SMA ADC4,
70 HSTCD DA MODE,
71 HSTCD DA WRTA,
72 HSTCD DA WRTB,
73 HSTCD DA DA,
74 HSTCD DA DB,
75 HSTCD SDA,
76 HSTCD SCL,
77

78 ////////// REGULATOR //////////
79 JVC CLK,
80 JVC CS,
81 JVC DATAOUT,
82 JVC DATAIN
83

84 );
85

86 //=======================================================
87 // PARAMETER declarations
88 //=======================================================
89

90 //=======================================================
91 // PORT declarations
92 //=======================================================
93 ////////// CLOCK //////////
94 input OSC BA;
95 input OSC BB;
96 input OSC BC;
97 input OSC BD;
98 input OSC1 50;
99 input OSC2 50;

100 output CLK OUT;
101 input EXT CLK;
102
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103 ////////// LED //////////
104 output [7:0] LEDR;
105 output [7:0] LEDG;
106 output [7:0] LEDB;
107

108 ////////// SEG7 //////////
109 output [6:0] HEX0;
110 output HEX0 DP;
111 output [6:0] HEX1;
112 output HEX1 DP;
113

114 ////////// BUTTON //////////
115 input [3:0] Button;
116

117 ////////// SW (SLIDE SWITCH) //////////
118 input [3:0] SW;
119

120 ////////// SDCARD //////////
121 inout SD CMD;
122 output SD CLK;
123 inout SD DAT;
124 input SD WPn;
125

126 / HSTCC (J5 HSTC−C TOP/J6, HSTC−C BOTTOM), connect to CELL(ADA Board) //
127 output [1:0] HSTCC PLL OUT ADC;
128 input HSTCC AD OTRA;
129 input HSTCC AD OTRB;
130 input [13:0] HSTCC AD DB;
131 input [13:0] HSTCC AD DA;
132 output HSTCC ADC OEB B;
133 output HSTCC ADC OEB A;
134 output [1:0] HSTCC PLL OUT DAC;
135 input HSTCC SMA DAC4;
136 input HSTCC OSC SMA ADC4;
137 output HSTCC DA MODE;
138 output HSTCC DA WRTA;
139 output HSTCC DA WRTB;
140 output [13:0] HSTCC DA DA;
141 output [13:0] HSTCC DA DB;
142 inout HSTCC SDA;
143 output HSTCC SCL;
144

145 // HSTCD (J7, HSTC−D TOP/J8, JSTC−D BOTTOM), connect to BASE(ADA Board) //
146 output [1:0] HSTCD PLL OUT ADC;
147 input HSTCD AD OTRA;
148 input HSTCD AD OTRB;
149 input [13:0] HSTCD AD DB;
150 input [13:0] HSTCD AD DA;
151 output HSTCD ADC OEB B;
152 output HSTCD ADC OEB A;
153 output [1:0] HSTCD PLL OUT DAC;
154 input HSTCD SMA DAC4;
155 input HSTCD OSC SMA ADC4;
156 output HSTCD DA MODE;
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157 output HSTCD DA WRTA;
158 output HSTCD DA WRTB;
159 output [13:0] HSTCD DA DA;
160 output [13:0] HSTCD DA DB;
161 inout HSTCD SDA;
162 output HSTCD SCL;
163

164 ////////// REGULATOR //////////
165 output JVC CLK;
166 output JVC CS;
167 output JVC DATAOUT;
168 input JVC DATAIN;
169

170

171 //=======================================================
172 // REG/WIRE declarations
173 //=======================================================
174 wire [13:0] data out wire;
175 reg [13:0] dataOut;
176 wire CLK 125;
177 wire CLK OUT;
178 wire [31:0] phaseinc;
179

180 wire g = 0;
181 wire v = 1;
182

183 wire [3:0] Button;
184

185 wire [13:0] cell i;
186 wire [13:0] cell q;
187 wire [13:0] base i;
188 wire [13:0] base q;
189

190 wire [13:0] base i out;
191 wire [13:0] cell i out;
192

193

194 wire SIGNAL TAP CLOCK;
195 wire CLK 65;
196 wire CLK 200;
197 wire CLK 500;
198 wire CLK 250;
199 wire pllLock;
200

201

202 wire [13:0] jitter base i;
203 wire [13:0] jitter base q;
204 wire [13:0] jitter cell i;
205 wire [13:0] jitter cell q;
206

207

208

209

210 //=======================================================
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211 // IO Group Voltage Configuration (Do not modify it)
212 //=======================================================
213 IOV A3V3 B3V3 C3V3 D3V3 IOV Instance(
214 .iCLK(OSC2 50),
215 .iRST n(1'b1),
216 .iENABLE(1'b0),
217 .oREADY(),
218 .oERR(),
219 .oERRCODE(),
220 .oJVC CLK(JVC CLK),
221 .oJVC CS(JVC CS),
222 .oJVC DATAOUT(JVC DATAOUT),
223 .iJVC DATAIN(JVC DATAIN)
224 );
225

226 //=======================================================
227 // Structural coding
228 //=======================================================
229

230

231 assign HSTCC DA WRTB = CLK 125; //Input write signal for PORT B
232 assign HSTCC DA WRTA = CLK 125; //Input write signal for PORT A
233 assign HSTCD DA WRTA = CLK 125;
234 assign HSTCD DA WRTB = CLK 125;
235

236

237 assign HSTCC DA MODE = 1; //Mode Select. 1=dual port, 0=interleaved.
238 assign HSTCD DA MODE = 1;
239

240 assign HSTCC PLL OUT DAC[0] = CLK 125; //PLL Clock to DAC B
241 assign HSTCC PLL OUT DAC[1] = CLK 125; //PLL Clock to DAC A
242 assign HSTCD PLL OUT DAC[0] = CLK 125;
243 assign HSTCD PLL OUT DAC[1] = CLK 125;
244

245 assign HSTCC PLL OUT ADC[0] = CLK 65; //PLL Clock to ADC B
246 assign HSTCC PLL OUT ADC[1] = CLK 65; //PLL Clock to ADC A
247 assign HSTCD PLL OUT ADC[0] = CLK 65;
248 assign HSTCD PLL OUT ADC[1] = CLK 65;
249

250 assign HSTCC ADC OEB B = 0;
251 assign HSTCC ADC OEB A = 0;
252 assign HSTCD ADC OEB B = 0;
253 assign HSTCD ADC OEB A = 0;
254

255 //ADC out of range indicators.
256 assign LEDR = {EXT CLK,v,v,v,pllLock,v,¬HSTCD AD OTRA,¬HSTCC AD OTRA};
257 assign LEDB = {EXT CLK,v,v,v,pllLock,v,¬HSTCD AD OTRB,¬HSTCC AD OTRB};
258 assign LEDG = {¬SIGNAL TAP CLOCK,v,v,v,v,v,v,v};
259

260 decode bside (
261 .bcd input({HSTCD AD OTRA,g,g,HSTCD AD OTRB}),
262 .seven seg output(HEX1)
263 );
264
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265 decode cside (
266 .bcd input({HSTCC AD OTRA,g,g,HSTCC AD OTRB}),
267 .seven seg output(HEX0)
268 );
269 assign HEX0 DP = v;
270 assign HEX1 DP = v;
271

272

273 /***************************************
274 * Taking input I and Q and outputting them on the other ADA Board.
275 * HSTCC = cell side, HSTCD = base station side */
276

277 // cell side
278

279 assign cell i = HSTCC AD DA;
280 assign cell q = HSTCC AD DB;
281 assign HSTCC DA DA = base i out;
282

283 //base side
284 assign base i = HSTCD AD DA;
285 assign base q = HSTCD AD DB;
286 assign HSTCD DA DA = cell i out;
287

288 /*****************************************/
289

290 /************Enable both lines*******************/
291

292 assign base i out = (SW[3]) ? jitter base i : base i;
293 assign cell i out = (SW[3]) ? jitter cell i : cell i;
294

295 /**********************************************/
296

297

298 /***********Clock Sources using OSC1 50*******/
299 assign CLK OUT = CLK 65;
300 assign SIGNAL TAP CLOCK = CLK 250;
301

302 pll5clks pll 125 ( .inclk0(OSC1 50),
303 .areset(¬Button[2]), //Reset the PLL
304 .locked(pllLock), //Vcc if locked, GND if not
305 .c0(CLK 65), //65MHz −> really 62.5 MHz
306 .c1(CLK 125), //125 MHz
307 .c2(CLK 250), //250 MHz
308 .c3(CLK 200),
309 );
310 /*******************************************/
311

312 /*********************************************/
313

314

315

316

317

318 jitterUniformDist udist cell(
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319 .sin(cell i),
320 .CLK 62(CLK 65),
321 .CLK 500(CLK 250),
322 .jitter sel(SW[1:0]),
323 .dout(jitter cell i)
324 );
325 jitterUniformDist udist base(
326 .sin(base i),
327 .CLK 62(CLK 65),
328 .CLK 500(CLK 250),
329 .jitter sel(SW[1:0]),
330 .dout(jitter base i)
331 );
332

333 endmodule

E.3.2 jitterUniform3Regs.v

1 /*
2 * Author: Brandon C. Brown
3 *
4 * Date: 2009−07−30
5 *
6 * Description:
7 * This module accepts a PN Generator which has 511 unique
8 * states (1−511) and outputs a uniformly selected register.
9 * See file name for number of registers.

10 *
11 */
12

13 module jitterUniform3Regs(
14 din, //Data input
15 dout, //Data output
16 clk, //Clock input
17 buff select //Input from PN Generator
18 );
19

20 parameter DATAWIDTH = 14;
21

22 input [DATAWIDTH−1:0] din;
23 input clk;
24 input [8:0] buff select;
25 output [DATAWIDTH−1:0] dout;
26

27 reg [DATAWIDTH−1:0] a,b,c;
28 reg [DATAWIDTH−1:0] doutreg;
29

30 wire [DATAWIDTH−1:0] dout;
31

32 assign dout = doutreg;
33

34 always @(buff select) begin
35 if(buff select < 171) doutreg ≤ a; //1−170 (170 #'s)
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36 else if(buff select < 342) doutreg ≤ c; //341−511 (170 #'s)
37 else doutreg ≤ b; //171−340 (171 #'s)
38 end
39

40 always @(posedge clk) begin
41 a≤din;
42 b≤a;
43 c≤b;
44 end
45

46 endmodule

E.3.3 jitterUniform5Regs.v

1 /*
2 * Author: Brandon C. Brown
3 *
4 * Date: 2009−07−30
5 *
6 * Description:
7 * This module accepts a PN Generator which has 511 unique
8 * states (1−511) and outputs a uniformly selected register.
9 * See file name for number of registers.

10 *
11 */
12

13 module jitterUniform5Regs(
14 din, //Data input
15 dout, //Data output
16 clk, //Clock input
17 buff select //Input from PN Generator
18 );
19

20 parameter DATAWIDTH = 14;
21

22 input [DATAWIDTH−1:0] din;
23 input clk;
24 input [8:0] buff select;
25 output [DATAWIDTH−1:0] dout;
26

27 reg [DATAWIDTH−1:0] a,b,c,d,e;
28 reg [DATAWIDTH−1:0] doutreg;
29

30 wire [DATAWIDTH−1:0] dout;
31

32 assign dout = doutreg;
33

34 always @(buff select) begin
35 if(buff select ≤ 102) doutreg ≤ a;
36 else if(buff select ≤ 204) doutreg ≤ b;
37 else if(buff select ≤ 307) doutreg ≤ c; //1 extra here
38 else if(buff select ≤ 409) doutreg ≤ d;
39 else if(buff select ≤ 511) doutreg ≤ e;

104



40 else doutreg ≤ c; //Should never get here.
41 end
42

43 always @(posedge clk) begin
44 a≤din;
45 b≤a;
46 c≤b;
47 d≤c;
48 e≤d;
49 end
50

51 endmodule

E.3.4 downsample.v

1 /* A Down−Sampling module.
2 *
3 * Author: Brandon C. Brown
4 * Date: 2009−07−15
5 * Description:
6 * Counts the set number of clock cycles and changes output
7 * once the counter hits the value.
8 * Uses a counter which pulses at the LENGTH
9 * value. SIZE is the number of registers required

10 * to reach LENGTH, so set accordingly. In the
11 * counter circuit, 4'b1 is used to add one. Possibly
12 * consider changing the 4 to match SIZE.
13 *
14 */
15

16 module downsample(
17

18 CLK fast,
19 // CLK slow,
20 din,
21 dout
22 );
23

24 //=======================================================
25 // PARAMETER declarations
26 //=======================================================
27 parameter DATAWIDTH = 14;
28 parameter SIZE = 4;
29 parameter LENGTH = 8;
30

31 //=======================================================
32 // PORT declarations
33 //=======================================================
34 ////////// CLOCK //////////
35 input CLK fast;
36 //input CLK slow;
37 ////////// DATA ///////////
38 input [DATAWIDTH−1:0] din;
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39 output [DATAWIDTH−1:0] dout;
40

41 //=======================================================
42 // REG/WIRE declarations
43 //=======================================================
44 reg [DATAWIDTH−1:0] value;
45 reg [SIZE−1:0] count;
46 wire pulse;
47 wire g = 0;
48 wire v = 1;
49

50

51 //=======================================================
52 // Structural coding
53 //=======================================================
54

55 assign dout = value;
56

57 always @(posedge pulse)
58 begin
59 value ≤ din;
60 end
61

62 /******
63 * Pulser − A block that creates the pulses for pulsing the output
64 *
65 */
66 assign pulse = (count == LENGTH−1);
67

68 always @(negedge CLK fast)
69 begin
70 if(count == LENGTH−1)
71 count ≤ 4'b0;
72 else
73 count ≤ count + 4'b1;
74 end
75

76 endmodule

E.3.5 jitterUniform25Regs.v

1 /*
2 * Author: Brandon C. Brown
3 *
4 * Date: 2009−07−30
5 *
6 * Description:
7 * This module accepts a PN Generator which has 511 unique states
8 * (1−511) and outputs a uniformly selected register. See file name
9 * for number of registers.

10 *
11 */
12
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13 module jitterUniform25Regs(
14 din, //Data input
15 dout, //Data output
16 clk, //Clock input
17 buff select //Input from PN Generator
18 );
19

20 parameter DATAWIDTH = 14;
21

22 input [DATAWIDTH−1:0] din;
23 input clk;
24 input [8:0] buff select;
25 output [DATAWIDTH−1:0] dout;
26

27 reg [DATAWIDTH−1:0] a,b,c,d,e,f,g,h,i,j,k,l,m,n;
28 reg [DATAWIDTH−1:0] o,p,q,r,s,t,u,v,w,x,y;
29 reg [DATAWIDTH−1:0] doutreg;
30

31 wire [DATAWIDTH−1:0] dout;
32

33 assign dout = doutreg;
34

35 always @(posedge clk) begin
36 a≤din;
37 b≤a;
38 c≤b;
39 d≤c;
40 e≤d;
41 f≤e;
42 g≤f;
43 h≤g;
44 i≤h;
45 j≤i;
46 k≤j;
47 l≤k;
48 m≤l;
49 n≤m;
50 o≤n;
51 p≤o;
52 q≤p;
53 r≤q;
54 s≤r;
55 t≤s;
56 u≤t;
57 v≤u;
58 w≤v;
59 x≤w;
60 y≤x;
61 end
62

63

64 always @(buff select) begin
65 //21's
66 if (buff select ≤ 21) doutreg ≤ h;
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67 else if (buff select ≤ 42) doutreg ≤ i;
68 else if (buff select ≤ 63) doutreg ≤ j;
69 else if (buff select ≤ 84) doutreg ≤ k;
70 else if (buff select ≤ 105) doutreg ≤ l;
71 else if (buff select ≤ 126) doutreg ≤ m;
72 else if (buff select ≤ 147) doutreg ≤ n;
73 else if (buff select ≤ 168) doutreg ≤ o;
74 else if (buff select ≤ 189) doutreg ≤ p;
75 else if (buff select ≤ 210) doutreg ≤ q;
76 else if (buff select ≤ 231) doutreg ≤ r;
77 //20's
78 else if (buff select ≤ 251) doutreg ≤ a;
79 else if (buff select ≤ 271) doutreg ≤ b;
80 else if (buff select ≤ 291) doutreg ≤ c;
81 else if (buff select ≤ 311) doutreg ≤ d;
82 else if (buff select ≤ 331) doutreg ≤ e;
83 else if (buff select ≤ 351) doutreg ≤ f;
84 else if (buff select ≤ 371) doutreg ≤ g;
85 else if (buff select ≤ 391) doutreg ≤ s;
86 else if (buff select ≤ 411) doutreg ≤ t;
87 else if (buff select ≤ 431) doutreg ≤ u;
88 else if (buff select ≤ 451) doutreg ≤ v;
89 else if (buff select ≤ 471) doutreg ≤ w;
90 else if (buff select ≤ 491) doutreg ≤ x;
91 else if (buff select ≤ 511) doutreg ≤ y;
92 //Default to middle register.
93 else doutreg ≤ m;
94

95 end
96

97 endmodule

E.3.6 jitterUniform13Regs.v

1 /*
2 * Author: Brandon C. Brown
3 *
4 * Date: 2009−07−30
5 *
6 * Description:
7 * This module accepts a PN Generator which has 511 unique states
8 * (1−511) and outputs a uniformly selected register. See file name
9 * for number of registers.

10 *
11 */
12

13 module jitterUniform13Regs(
14 din, //Data input
15 dout, //Data output
16 clk, //Clock input
17 buff select //Input from PN Generator
18 );
19
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20 parameter DATAWIDTH = 14;
21

22 input [DATAWIDTH−1:0] din;
23 input clk;
24 input [8:0] buff select;
25 output [DATAWIDTH−1:0] dout;
26

27 reg [DATAWIDTH−1:0] a,b,c,d,e,f,g,h,i,j,k,l,m;
28 reg [DATAWIDTH−1:0] doutreg;
29

30 wire [DATAWIDTH−1:0] dout;
31

32 assign dout = doutreg;
33

34 always @(posedge clk) begin
35 a≤din;
36 b≤a;
37 c≤b;
38 d≤c;
39 e≤d;
40 f≤e;
41 g≤f;
42 h≤g;
43 i≤h;
44 j≤i;
45 k≤j;
46 l≤k;
47 m≤l;
48 end
49

50 always @(buff select) begin
51

52 if(buff select ≤ 39) doutreg≤ a ;
53 else if(buff select ≤ 78) doutreg≤ b ;
54 else if(buff select ≤ 117) doutreg≤ c ;
55 else if(buff select ≤ 156) doutreg≤ d ;
56 else if(buff select ≤ 191) doutreg≤ e ; //Extra reg. here
57 else if(buff select ≤ 236) doutreg≤ f ; //Extra reg. here
58 else if(buff select ≤ 275) doutreg≤ g ; //Middle!!
59 else if(buff select ≤ 315) doutreg≤ h ; //Extra reg. here
60 else if(buff select ≤ 355) doutreg≤ i ; //Extra reg. here
61 else if(buff select ≤ 394) doutreg≤ j ;
62 else if(buff select ≤ 433) doutreg≤ k ;
63 else if(buff select ≤ 472) doutreg≤ l ;
64 else if(buff select ≤ 511) doutreg≤ m ;
65 else doutreg ≤ g; //should never ge here, only for completeness.
66 end
67

68 endmodule
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E.3.7 Block Diagram

For readability, the block diagram on the following pages has been split into
multiple sections, which includes some overlap.
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Figure E.5: Part 1 of 2: block diagram of the Verilog implementation used.
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Figure E.6: Part 2 of 2: block diagram of the Verilog implementation used.
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