
A Reconfigurable Four-Channel Transceiver

Testbed with Signalling-Wavelength-Spaced

Antennas

by

J. Andy Harriman

B.Sc.E., University of New Brunswick, 2004

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Master of Science in Engineering

In the Graduate Academic Unit of Electrical Engineering

Supervisor(s): Mary E. Kaye, B.Sc.E., M.Eng.
Brent R. Petersen, B.Eng., M.A.Sc., Ph.D.

Examining Board: Yevgen Biletskiy, M.Sc.C.S., Ph.D.
Dennis Lovely, B.Sc., Ph.D., Chair
Julian Meng, B.Sc.E., M.Sc.E., Ph.D.

External Examiner: Kenneth Kent, B.Sc., M.Sc., Ph.D.

This thesis is accepted

Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

September, 2006

c© J. Andy Harriman, 2006

To Nana and Grampy.

ii

Abstract

We propose a novel software-defined radio implementation of a four-channel

transceiver testbed with signalling-wavelength-spaced antennas. The radio frequency

side of the system is implemented using commercial off-the-shelf products, whereas the

baseband processing portion of the system is implemented on a pair of Alterar Stratixr

II EP2S180 development boards with high-speed Analog Devices analog-to-digital

converter daughter boards. The Alterar field programmable gate array is used to

implement digital signal processing algorithms and to affect centralized control over

the entire system. A goal was to create a testbed for algorithms and radio channel

measurements.

iii

Acknowledgements

I would like to thank my supervisors Brent Petersen and Mary Kaye for their

generous support and guidance throughout my research work.

I would like to thank the ECE technical staff for their help with various tech-

nical issues throughout the course of the project. Specifically, I would like to thank

Bruce Miller for his routing of my seemingly never ending supply of circuit boards,

Blair Allen for his technical assistance as well as creation of many purchase orders,

and Kevin Hanscom for his selfless loaning of equipment and his technical assistance

with coaxial cable connectorization. Special thanks to Troy Lavigne, who on numer-

ous occasions provided excellent support and knowledge of FPGA technology and

software as well as debugging ideas.

I would like to thank Ian Veach for his technical expertise and support in the

electronics area and the development of various interface boards, Peter Jacobs for his

guidance in the area of cabling and RS-232 communications, and Denise Burke, Karen

Annett, and Shelley Cormier from the ECE office for their kindness and support.

My thanks also go out to the staff at LyrTech for their support and their

selfless loan of a SignalMaster system for my evaluation.

This research was supported by the Atlantic Innovation Fund from the Atlantic

Canada Opportunities Agency, and by Aliant, our industrial partner. In particular,

I would like to thank David M. Brown from Aliant for all his support. We thank

CMC Microsystems for providing the FPGA software development tools via their

iv

System-on-Chip Research Network Canadian Foundation for Innovation grant.

v

Table of Contents

Dedication ii

Abstract iii

Acknowledgments iv

Table of Contents vi

List of Tables x

List of Figures xi

Abbreviations xiii

1 Introduction 1

1.1 Background and Literature Review 1

1.2 Thesis Contribution . 2

1.3 Thesis Structure . 4

2 System Design Process 5

2.1 Requirements Analysis . 5

2.1.1 Design Decisions . 5

2.2 System Architecture Design and Hardware

Selection . 11

vi

2.2.1 FPGA Development Platform 11

2.2.2 Transmit Side . 15

2.2.3 Receive Side . 20

2.2.4 Baseband Processing . 24

2.2.5 Centralized Control . 24

2.2.6 Testing and Debugging Equipment 28

3 System Implementation 30

3.1 Transmit Side . 30

3.1.1 Data Generation . 30

3.1.2 FPGA Interfacing to the Hittite Modulator

Board . 32

3.1.3 Data Rate Calculation . 37

3.2 Receive Side . 37

3.2.1 Clock Distribution . 37

3.2.2 Sampling the Data . 40

3.3 Baseband Processing . 42

3.3.1 Data Recovery and Demodulation 44

3.3.2 Carrier Recovery . 50

3.3.3 LMS Adaptive Filtering . 52

3.4 Centralized Control . 54

3.4.1 Black Boxr RS-232 Control 56

3.5 System Configuration . 57

4 System Development and Testing 58

4.1 Component Testing and Integration 59

4.2 Interfacing SignalTapr and MATLABr 64

4.3 Implementation Issues . 65

vii

5 Summary and Future Work 67

5.1 Summary of Work Completed . 67

5.2 Future Work . 68

Bibliography 69

Appendices 73

A System Specifications 73

A.1 Alterar Pinouts to AD6645 ADC Boards 73

A.2 Cabling and System Interconnections 73

A.3 Black Boxr COS Configuration . 77

A.4 System Test Setup . 77

B MATLABr Simulation and Debugging Source Code 79

B.1 LMS Adaptive Filter Array . 79

B.2 Constellation Plotter . 88

B.3 QAM Synchronizer . 90

B.4 SignalTapr to MATLABr Example 93

B.4.1 Binary-to-Decimal Conversion Scripts 94

C Design Source Code 98

C.1 PN Generators . 98

D Custom PCB Board Designs 101

D.1 FPGA to Hittite Signal Conditioning Circuit 101

D.2 Hittite Bias Circuit . 101

D.3 Clock Signal Level Translator . 101

D.4 GPIO-to-SMA Testpoint Board . 108

E Modifications to the Power Supply 110

viii

Vita 112

ix

List of Tables

1.1 Testbed Features Comparison . 4

2.1 FPGA vs. Microprocessor [1] . 10

3.1 Primitive Prime Generating Polynomials [2] 31

3.2 Required Gain for Radio PLL Lock 40

3.3 RS-232 Communication Parameters [3] 56

A.1 ADC Board to Alterar FPGA Board Connector J5 Pinout [2] 74

A.2 ADC Board to Alterar FPGA Board Connector J6 Pinout [2] 74

A.3 Testbed Cable Inventory . 76

A.4 RS-232 Connector Wiring . 77

A.5 COS DIP Switch Positions . 78

E.1 Power Supply Wiring . 110

x

List of Figures

2.1 AOR AR5000AC Wideband Radio 7

2.2 AOR AR5000AC Wideband Radio Schematic [4] 8

2.3 Hittite HMC497LP4 Direct Quadrature Modulator Evaluation Board 9

2.4 Alterar Stratixr II EP2S180 DSP Development Kit [5] 16

2.5 Raised Cosine Curves [6] . 18

2.6 Aeroflex 2025 AM/FM Signal Generator 19

2.7 Simplified Transmitter Structure . 20

2.8 Analog Devices AD6645/PCB Evaluation Board 21

2.9 Simplified Receiver Structure . 22

2.10 Antenna Factory F02400-8 Antenna 24

2.11 Space-Time Receiver Structure . 25

2.12 Black Boxr SWE-854A-R2 8-Port COS 26

2.13 Central Control Structure . 27

2.14 Testbed Topology . 29

3.1 LRS Generator Circuit Architecture 32

3.2 FPGA to Hittite Signal Conditioning Circuit 33

3.3 FPGA to Hittite Signal Conditioning PCB 35

3.4 Hittite Bias Circuit Board . 36

3.5 Clock Signal Level Translator PCB 39

3.6 System Clock Interconnection Architecture 41

xi

3.7 Mounted Baseband Processing Hardware 43

3.8 Spectrum of the Sampled IF Data . 44

3.9 Spectrum of Mixed Inphase Data . 46

3.10 Spectrum of Digital Down Converted Inphase Signal 47

3.11 Implemented Demodulator Architecture 48

3.12 Demodulated I and Q Constellation 49

3.13 Demodulated I and Q Constellation with Phase Corrected 51

3.14 QAM Synchronizer Circuit [6] . 52

3.15 MATLABr Simulation Results for Carrier Recovery Loop 53

3.16 MATLABr Simulation Results for LMS Adaptive Filter Array 55

D.1 Hittite Signal Conditioning Circuit Schematic, Page 1/2 102

D.2 Hittite Signal Conditioning Circuit Schematic, Page 2/2 103

D.3 Hittite Signal Conditioning Circuit PCB Layout 104

D.4 Hittite Signal Conditioning Circuit Simulation 105

D.5 Hittite Bias Circuit Schematic . 106

D.6 Clock Level Translator Circuit Schematic 106

D.7 Clock Level Translator Circuit Layout 107

D.8 GPIO-to-SMA Testpoint Board Schematic 108

D.9 GPIO-to-SMA Testpoint Board Layout 109

E.1 Power Supply Wiring Modifications 111

xii

List of Symbols, Nomenclature or

Abbreviations

ADC Analog-to-Digital Converter

AGC Automatic Gain Control

BPSK Binary Phase Shift Keying

CNSR Communication Networks and Services Research

COS Code Operated Switch

COTS Commercial Off-The-Shelf

cPCI Compact PCI

DAC Digital-to-Analog Converter

dB DeciBels

dBi DeciBels relative to isotropic

dBm DeciBels relative to one milliwatt

DCE Data Communications Equipment

DR Dynamic Range

DSP Digital Signal Processing

DTE Data Terminal Equipment

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

xiii

GiB Gibibyte, 230 bytes, 1073741824 bytes

GPIO General Purpose Input/Output

GSPS Giga-Samples Per Second

HDL Hardware Description Language

I Inphase

IF Intermediate Frequency

ISI Intersymbol Interference

ISM Industrial, Scientific, and Medical

LO Local Oscillator

LOS Line of Sight

LMS Least Mean Square

LRS Linear Recursive Sequence

LVTTL Low-Voltage Transistor-Transistor Logic

MiB Mebibyte, 220 bytes, 1048576 bytes

MIMO Multiple-Input-Multiple-Output

MSym/s Mega-Symbols Per Second

MSPS Mega-Samples Per Second

PCB Printed Circuit Board

PG Processing Gain

PLL Phase Locked Loop

PN Pseudorandom Noise

Q Quadrature

QAM Quadrature Amplitude Modulation

RF Radio Frequency

RSS Radio Standards Specification

SDR Software Defined Radio

SNR Signal-to-Noise Ratio

xiv

ST Space-Time

SWAP Signalling Wavelength Antenna Placement

TI Texas Instruments

VDC Volt Direct Current

VHDL Very-High-Speed Integrated Circuit Hardware Description Language

Vpp Volt Peak-to-Peak

VSWR Voltage Standing-Wave Ratio

xv

Chapter 1

Introduction

In the area of multiple-input-multiple-output (MIMO) antenna arrays, it is of-

ten difficult to define mathematically or model all factors in a real-world environment.

Thus, the reliability of simulations are limited by the accuracy of the models used [7].

This thesis is part of a larger project called Communication Networks and Services

Research (CNSR). The goal of this thesis is to develop a centrally controlled, recon-

figurable, four-channel radio testbed which takes advantage of space-time techniques

as well as new antenna spacing theories. This testbed will be used for experimental

research in the areas of antenna system, algorithms, and radio channel estimation,

to name a few. Furthermore, it will enable researchers to take advantage of the

rapid prototyping capabilities of field programmable gate array (FPGA) technology,

in order to better investigate their hypotheses.

1.1 Background and Literature Review

Currently, there is a great deal of academic and industrial interest in the area

of MIMO radio systems. This movement stems from the throughput gains achieved

through the use of multiple transmit and receive antennas, first demonstrated by

Telatar [8]. Since that time, there have been many testbeds, and commercial systems

1

alike, which make use of MIMO technology to increase throughput and reliability [7, 9,

10]. Three testbeds in particular highlight the different types of testbeds currently in

existence. The first is a four transmitter, four receiver testbed from the University of

California, Los Angeles (2005) which is designed for indoor use, has a LEGOr robotic

rail system to move the antennas along a fixed track, and is remotely controllable

via the internet [7]. The second system was built at Virginia Polytechnic in 2005.

It consists of one transmitter and one receiver, and is designed for ultra wideband

communication algorithm testing with sampling rates up to 8 giga-samples per second

(GSPS) [11]. The third system, developed at McGill University in 2003, supports up

to twelve transmitters and tweleve receivers and is built from COTS components

which reside in a rack mount system.

Recent findings by Zhu et al. [12] and Yanikomeroglu et al. [13] suggest that

receive antennas should be separated by at least one signalling wavelength rather than

some multiple of the carrier wavelength, in near line-of-sight (LOS) environments.

According to Zhu, this leads to signalling wavelength antenna placement (SWAP)

gain; Yanikomeroglu and Sousa called this the chiplength [13].

1.2 Thesis Contribution

The goal of this thesis is to develop a centrally controlled, highly reconfig-

urable, four-channel radio testbed which takes advantage of space-time techniques

as well as new antenna spacing theories. This testbed will be used to receive sig-

nals from commercial radio systems, to make radio channel measurements, and to

enable researchers to take advantage of the rapid prototyping capabilities of FPGA

technology, in order to better investigate their hypotheses.

The system is comprised of four transmitters and four receivers. A space-time

(ST) receiver has been designed in order to distinguish amongst users and provide

2

diversity gain. The receive antennas are separated by one signalling wavelength, in

order to take advantage of SWAP gain. We used the 2.4 GHz industrial, scientific,

and medical (ISM) band for this thesis with a 10 Mbps data rate, and a symbol rate

of 5 Mega-Symbols Per Second (MSym/s). Based on signalling-wavelength-spaced

antennas, this corresponds to receiver inter-antenna spacing of 60 meters (with 100%

excess bandwidth),

λg =
c

fg

=
3× 108

5× 106

= 60 m.

(1.1)

In order to allow for more flexibility and to avoid having to create our own

radio frequency (RF) front end, we have chosen suitable high-end radio receivers with

10.7 MHz intermediate frequency (IF) outputs, automatic gain control (AGC), and

phase locking capabilities to interface to the system.

The MIMO testbed, developed in this thesis, will provide researchers with a

rapid prototyping platform for algorithm analysis and radio channel measurements.

The use of signalling-wavelength-spaced antennas affords the capability to explore the

real-world effects of SWAP gain. However, this is merely one potential application of

the testbed. The functionality of the testbed allows most, if not all, parameters to be

modified. The antennas are physically repositionable, while many other parameters

such as the carrier frequency, baseband processing, and RF front-end configuration

are under centralized software control. Furthermore, the current hardware platform

supports up to eight receive channels which could be useful for future work with

Aliant’s base station in the 1900 MHz range.

Table 1.1 compares some of the main features of the testbed developed in this

3

Table 1.1: Testbed Features Comparison
Feature UCLA VAP McGill UNB

Repositionable antennas X X
SWAP Gain X

Central Control X X X X
FPGA Based X X X X

Portable X
Num. of Channels 4 1 12 4*

thesis to those of the existing testbeds outlined above.

*Note: The system has been designed for seamless expansion with the addition of

more FPGA boards and ADC boards.

1.3 Thesis Structure

The remainder of this document is broken down into four chapters. Chapter 2

describes the system requirements analysis, high-level design decisions, and the sub-

sequent architecture design and hardware selection process. Chapter 3 outlines the

details of the system implementation, and Chapter 4 describes the development pro-

cess along with the testing procedures used during the implementation of the system.

Chapter 5 summarizes the work completed in the thesis and outlines potential future

work for the project.

4

Chapter 2

System Design Process

2.1 Requirements Analysis

In order to begin to design a testbed for wireless channel measurements, as with

any other engineering endeavour, it is crucial to first understand the requirements for

the final product. In this case, we were interested in building a radio testbed which

would not only meet our requirement for a receiver implementation, but which would

also provide a useful tool for future researchers to receive signals from commercial

systems as well as test new theories and algorithms in an easily reconfigurable real-

world environment. At the onset of system design, the best frequency band for

experimental communication was chosen to be the 2.4 GHz ISM band due to the

fact that it is freely available to use, provided that the requirements outlined in the

Canadian Radio Standards Specification (RSS) RSS-210 are satisfied [14].

2.1.1 Design Decisions

Based on the general objectives outlined above, some high-level design deci-

sions were necessary in order to proceed with the hardware selection and system design

stages. It was decided that it would be best to build the system from mostly com-

5

mercial off-the-shelf (COTS) components in order to make the minimize the design

time and reduce cost. Moreover, a modular system constructed of COTS components

would allow a much greater degree of reconfigurability and interoperability than an

application specific design. By selecting reconfigurable general purpose components,

with standardized interfaces to interconnect to the rest of system, the system was

made capable of supporting many different applications, including those using many

frequency bands.

In order to enable the system to take advantage of SWAP gain, as well as the

diversity gain and interference rejection capabilities of spatially multiplexed systems,

it was decided that our testbed would be implemented as a MIMO system. To

take advantage of ST techniques, without reaching the point of diminishing returns

in terms of the number of antenna elements versus signal-to-noise ratio (SNR), and

without exceeding our budget limitations, it was decided that our MIMO architecture

would consist of four transmitters and four receivers (4x4).

Based on this decision it became clear that we would require the hardware to

generate, as well as receive, four channels of data simultaneously. In keeping with

the desire to conserve both time and financial resources, some components of the

system were selected because they were already available in the department and had

been used for previous work on the CNSR project. Two items purchased by a previ-

ous graduate student for his thesis work were of particular interest; specifically, two

AOR AR5000AC wideband radio receivers and a Hittite direct quadrature modula-

tor evaluation board. The AOR radio receiver was chosen to act as our RF receiver

front-end partially to avoid having to create our own RF front-end. However, the

main reason for choosing to use the AOR radio was due to its excellent features. The

most important features for our application being: wideband frequency coverage from

10 kHz to 2600 MHz with no blocking of the cell band frequencies, selectable AGC

function before the IF output, frequency locking capabilities to an external signal,

6

RS-232 remote control of radio functions, and a relatively low second stage IF output

at 10.7 MHz ± 5 MHz available before any processing is done on the data inside the

radio; the first IF stage is at 622 MHz [4]. The relatively low frequency IF output of

the second stage is helpful because it greatly reduces the sampling rate required to

digitize the received signal. Figure 2.1 shows the front panel of the AOR AR5000AC

radio, while Figure 2.2 shows the internal architecture of the radio.

Figure 2.1: AOR AR5000AC Wideband Radio

The second available component, was a Hittite HMC497LP4 direct quadrature

modulator evaluation board. This board, shown in Figure 2.3, performs a quadrature

amplitude modulation (QAM) on a pair of input signals, inphase (I) and quadrature

(Q). This board is capable of modulating (sine/cosine) incoming digital signals from

7

Figure 2.2: AOR AR5000AC Wideband Radio Schematic [4]

8

DC to 700 MHz onto a carrier sinusoid ranging from 100 to 4000 MHz with a typical

gain of 5 deciBels (dB) relative to one milliwatt (dBm) or approximately 3.16 mW

at 2.4 GHz [15]. Due to the excellent capabilities of the Hittite evaluation board this

is the choice for our RF transmitter front-end.

Figure 2.3: Hittite HMC497LP4 Direct Quadrature Modulator Evaluation Board

Once the selection of the RF transmit and receive front-ends was complete,

the remainder of the system was designed around them. The choice of RF hardware

imposed several design restrictions which were taken into account. The choice of radio

receiver forced our work to be done at frequencies under 2.6 GHz, with a bandwidth

no greater than 10 MHz, and analog-to-digital converters (ADCs) with sampling rates

capable of digitizing the radios’ IF output. Furthermore, the Hittite evaluation board

9

Table 2.1: FPGA vs. Microprocessor [1]
Itanium 2 Virtex 2VP100

Technology 0.13 Micron 0.13 Micron
Clock Speed 1.6 GHz 180 MHz

Internal Memory Bandwidth 102 GB/s 7.5 TB/s
Power Consumption 130 W 15 W
Peak Performance 8 GFLOPS 38 GFLOPS

Sustained Performance 2 GFLOPS 19 GFLOPS
I/O External Memory Bandwidth 6.4 GB/s 67 GB/s

limits the baseband inputs to less than 700 MHz and the carrier frequency to less than

4000 MHz. However, due to the radio bandwidth of 10 MHz, and tunable frequency

range of 10 kHz up to 2.6 GHz, both of these factors are not of any consequence.

Thus, there is no effective limitation due to the modulator.

In order to maximize the reconfigurability and usefulness of the testbed, the

decision was made, from the onset, that the core of the design would be FPGA-

based using software defined radio (SDR) techniques to process the signals in digital

form at baseband. Moreover, we wanted the generation and later processing of the

signals to both take place within the FPGA, in order to have the greatest degree

of both control and configurability over the system. Table 2.1 shows an up-to-date

comparison between an FPGA device and a microprocessor. This highlights many of

the excellent features of FPGA technology for DSP applications, which include much

higher memory bandwidths, and data throughput, with a significantly lower clock

speed. These results are possible due to the parallel capabilities of FPGA technology

as compared to the sequential operation of a microprocessor. Do to the often parallel

and high speed nature of many DSP applications, an FPGA architecture was chosen

for this thesis.

Another useful feature we wanted to have for our system, was the ability to

remotely control all parts of the system from a central FPGA. Thus, any further com-

ponents selected needed some mechanism for remotely controlling them, preferably

10

RS-232 due to the fact that the AOR radios have this built in, as well as the relative

simplicity and widespread availability of RS-232 hardware.

To sum up the high-level design requirements, we wanted to build a 4x4 MIMO

radio testbed from COTS components which is centrally controlled using FPGA tech-

nology to generate and process the signals. The system was required to be easily

expandable and reconfigurable, while meeting our budget limitations. Furthermore,

the system was required to take advantage of SWAP gain by separating the antennas

on the scale of one signalling wavelength.

2.2 System Architecture Design and Hardware

Selection

With the goals previously outlined, the system architecture design along with

the associated hardware selections necessary to meet the design goals, commenced.

The following subsections describe the design of each of the subsystems along with

explanations regarding any additional hardware selections.

2.2.1 FPGA Development Platform

The selection of FPGA hardware involves many choices. Currently, there

are two main competitors in the mainstream FPGA chip manufacturing market,

Alterar and Xilinxr (listed alphabetically), with countless other companies develop-

ing FPGA development platforms based on their FPGAs. The challenge is not only

to choose which FPGA chip manufacturer is best for your application, but also to try

and locate a development platform which suits your needs. This can be extremely

tedious because each company describes their FPGA chip features using their own

proprietary architectures and their associated terminology which does not directly

translate for easy comparison with that of their competitors.

11

Based on the requirements of this thesis, and the best efforts of the author,

two systems were found to have the most potential for use in the testbed design: an

Alterar Digital Signal Processing (DSP) Development Board, and a LyrTech Signal-

Master based system. At the core of the LyrTech system is the SignalMaster board

which contains a Xilinxr Virtex-II FPGA (up to XC2V8000), a Texas Instruments

(TI) TMS320C6701 32-bit DSP which operates at 167 MHz, and up to 128 MiB of

RAM to name but a few of its features. The SignalMaster board sits within a rack

mount system and is connected to a central Compact PCI (cPCI) bus. Within the

rack itself, there is a Pentiumr 4 processor, a 20 GiB hard disk, and an Ethernet

connection. The SignalMaster board itself does not have any analog inputs or out-

puts. To add these features additional boards are required, such as the VHS-ADC

and VHS-DAC boards which respectively add up to sixteen 14-bit analog inputs (105

mega-samples per second (MSPS)) or outputs and connect to the system via the cPCI

bus. On each of the VHS-ADC and VHS-DAC there is a Xilinxr Virtex-II FPGA

(Virtex-4 available on VHS-ADC at time of publishing), along with some onboard

SDRAM [16, 17]. Indeed the LyrTech system has an incredible amount of processing

power available to the user [18].

The second potential solution is the Alterar Stratixr II EP2S180 DSP Devel-

opment Board. This board is a more general purpose FPGA board which contains

the largest available Stratixr II device from Alterar, 180 million logic elements. As

well, the Alterar development board has a variety of external switches, LEDs, and

interfaces for additional components. The board features two 12-bit 125 MSPS ADCs

and two 14-bit 165 MSPS digital-to-analog converters (DACs). The Alterar FPGA

development board provides 32 MiB of onboard SDRAM, a Compact Flash card slot

which can be used to store user data, an Ethernet port, an RS-232 interface, and

a minimum of 82 general purpose input/output (GPIO) pins which are user pro-

grammable. Furthermore, the Alterar board provides two dedicated connectors for

12

connecting Analog Devices ADC evaluation boards, and a dedicated connector for

interfacing a TI DSP evaluation board [5].

As one might expect, the LyrTech system is more expensive than the Alterar eval-

uation board, but also contains more processing power. It has the ability to support

many more transmitters and receivers and is organized in a modular fashion which

is consistent with the design objectives. It also has large amounts of disk space

for recording data which could be useful for real-time applications as well as post-

processing of data in an academic environment. To investigate the trade-off between

the added complexity of the LyrTech system and the associated learning curve, the

author arranged to borrow an evaluation system from LyrTech in order to give the

system a trial run. Based on the two-week trial evaluation of the LyrTech system, as

well as the previous generation of the Alterar system (DSP Development Kit, Stratix

Professional Edition), available in the lab, a number of important points were noted.

At the time, the added features of the LyrTech system only added to the com-

plexity of using it, especially at a low level. The system is meant to be used with

the MATLABr Simulinkr package. Development using the standard Xilinxr develop-

ment environment required that the user try to control the many different interactions

among the various I/O standards, buses, and devices in the system. LyrTech did pro-

vide drivers for these tasks, however a substantial amount of work would be required

in order to fully understand and take advantage of the many different modules. In the

case of the Alterar development board, there was only one FPGA device, albeit very

large, which limited the design possibilities but which also kept the degree of com-

plexity to a minimum. The development environment for the Alterar development

board is the developers choice of either Simulinkr or Quartusr II, Altera’sr propri-

etary development environment. Through the testing experience, the author found

that the Simulinkr software package was indeed a very powerful tool for designing

and simulating at a high level, but not without a cost. Simulinkr basically acts as

13

a modelling environment in which the designer can create a design and simply tell

the software to generate code for the design. The code created by Simulinkr is more

like machine code and not easily readable, which leads one to wonder how difficult

it would be to uncover a bug in the design at a low level. The Simulinkr tools add

another layer of complexity on top of the already growing stack of new knowledge for

a beginner to learn in a short period of time. Having said that, it is the opinion of

the author that a user who is well acquainted with using Simulinkr might have the

upper hand, in terms of time spent developing, on a user who is designing at a lower

level.

Based on the experience gained through the trial evaluations of the two FPGA

development systems, the following conclusions were made. For a new user and for

the purposes of the work in this thesis, the inherent complexity of the LyrTech sys-

tem along with the need to work with Simulinkr, created a learning curve above and

beyond the initial time involved with learning FPGA design and hardware design lan-

guage implementation. The LyrTech system provided eight ADCs and eight DACs

in the default configuration, whereas the Alterar system only provided two of each.

However, due to the fact that the Alterar system was available for a lower cost than

the LyrTech system, coupled with its many available GPIO pins, two Alterar FPGA

boards can easily be doubled up at a lower cost than a single LyrTech system. That

is, two Alterar FPGA development boards can be interconnected to provide a system

with two large FPGAs, four ADCs, and four DACs. The DACs on the Alterar board

are faster than those on the LyrTech VHS-DAC board, however the ADCs are only 12-

bits, compared to the 14-bit ADCs on the LyrTech VHS-ADC board. In any software

defined radio system, the ADCs and DACs play a crucial role and are of paramount

importance because they effectively govern the overall system performance [19]. Fur-

thermore, the LyrTech system has an onboard DSP processor which could be useful

for baseband algorithms and control functions. The Alterar system can counteract

14

both of these factors thanks to its dedicated connectors for two ADCs and a DSP.

By coupling two Alterar boards, four external Analog Devices AD6645 evaluation

boards, the same ADC as on the SignalMaster, and a TI DSP evaluation board,

the Alterar board overcomes the most crucial hardware differences between the two

systems. Moreover, the size of the LyrTech system (rack mount) severely limits its

mobility, which is a crucial point given that radio channel measurements will likely

have to be taken outdoors given the large antenna separations required for SWAP

gain and the desire for LOS testing.

For the aforementioned reasons as well as the fact that the Alterar system

meets the design requirements and was available at a lower cost than the LyrTech

system, the decision was made that we would purchase the Alterar hardware for

the thesis. Another factor which contributed to this decision was that several other

students in the department were also working with similar Alterar hardware and

the Quartusr II software package. The LyrTech system, which is Xilinxr based, is

an excellent product, but in the opinion of the author would be more suitable for a

dedicated non-mobile application requiring large amounts of processing power such

as a base station.

Figure 2.4 illustrates the Alterar Stratixr II EPS2180 DSP Development Kit

along with many of its main hardware features. Note that the connector for the TI

DSP is on the bottom side of the board.

2.2.2 Transmit Side

To meet the requirements of a 4x4 MIMO array, the system must be able to

produce four signals to transmit. Each transmitter represents a single user in the

system, enabling our system to simulate up to four simultaneous users at a time. As

mentioned earlier, the signal generation is done within the FPGA board. Note that

since the Hittite direct quadrature modulator board accepts inphase and quadrature

15

Figure 2.4: Alterar Stratixr II EP2S180 DSP Development Kit [5]

16

signals for each user, it is necessary to generate two signals for each of the four users;

that is, four pairs of I and Q signals. For testing purposes, it is useful to know

exactly what the transmitted signal was, in order to facilitate the recovery of the

received signals through demodulation and equalization. To meet this need, eight

linear recursive sequence (LRS) generators with different tap configurations can be

used to generate a known distinct pair of I and Q signals for each user. Circuits to

generate LRS sequences are relatively straightforward to implement in the FPGA,

and the resulting bit streams can be output to the Hittite modulator boards using

eight GPIO pins on the development board.

Ideally, the generated signals would be output from the FPGA boards to the

Hittite modulator board using the onboard DACs. This would allow digital pulse

shaping filters, such as a raised cosine, to be applied to the data stream inside the

FPGA before transmission. However, due to the fact that we only have four DACs

(two per Alterar board), we are forced to output the signals as purely digital wave-

forms in order to meet the goal of a 4x4 MIMO array. The advantage of using a

rectangular pulse shape is that there is no intersymbol interference (ISI) since the

pulse does not extend beyond its own interval. However, the Fourier transform of

a square, or rectangular, function in time is a sinc pulse of infinite bandwidth in

frequency, and as a result the rectangular pulse is not a particularly good choice for

a communication system because it wastes bandwidth. A raised cosine pulse, in the

frequency domain, on the other hand, has the advantage of limiting bandwidth while

decaying quickly and having zeros crossing at the sampling instants [20]. To generate

a raised cosine pulse, a damped sinc function is used in the time domain as shown in

Equation 2.1 [6],

x(t) =

(
sin πt

T
πt
T

)(
cos βπt

T

1− 4β2t2

T 2

)
. (2.1)

17

The variable β, 0 ≤ β ≤ 1, is called the rolloff parameter or damping coefficient. As

β increases, the time-domain response decays more rapidly, however the frequency

domain raised cosine response bandwidth increases [20]. Figure 2.5 illustrates this

tradeoff.

Figure 2.5: Raised Cosine Curves [6]

Due to the modular design of the system, the ability to use pulse shaping filters

can be added at a later time by either adding two additional ADCs, or performing

the modulation within the FPGA and then mixing it with the carrier externally. The

latter would require only one DAC per user signal, both I and Q. With the current

hardware we can support up to four users using this technique.

18

Once the digital signals have been created and output from the FPGA, all that

is left is to modulate the data onto a 2.4 GHz carrier waveform and radiate it via the

transmit antennas. As mentioned earlier, the Hittite HMC497LP4 direct quadrature

modulator boards are used to modulate the data stream onto the carrier. To provide a

carrier signal in the 2.4 GHz ISM band, such as 2.45 GHz, the Aeroflex 2025 AM/FM

signal generator shown in Figure 2.6 was chosen, and purchased, based on its rich

feature set and relatively low cost. As per the system requirements, it can generate

signals from 9 kHz up to 2.51 GHz, covering the 2.4 GHz ISM band, and also provides

RS-232 remote control functionality for all features, excluding the power button. As

well, the signal generator provides a high stability 10 MHz frequency standard output

which is used to synchronize the entire system [21].

Figure 2.6: Aeroflex 2025 AM/FM Signal Generator

Thus, modulation of the transmit signal can be achieved by applying the digital

data streams generated within the FPGA board, along with the 2.4 GHz carrier

sinusoid from the signal generator to the appropriate inputs of the Hittite modulator

board. However, in order to interface the eight FPGA GPIO pins to the Hittite

vector modulators, some voltage translation is required. Specifically, the FPGA board

output uses the low voltage transistor-transistor logic (LVTTL) standard 0-3.3 V [5],

whereas the Hittite vector modulator requires a 1.6 Volt peak-to-peak (Vpp) input

19

with a 1.5 Volt direct current (VDC) offset [15]. To achieve the required translation, a

custom printed circuit board (PCB) was necessary. The design and fabrication of this

board is described in the implementation section in Chapter 3. A simplified block

diagram of an individual transmitter is shown in Figure 2.7. Note that since only one

Hittite modulator board was available, it was necessary to purchase three additional

units.

FPGA GPIO
Pins

Custom Level
Translator

Board
Hittite Vector

Modulator

Aeroflex
Signal

Generator

I I

Q Q

2.4 GHz Carrier

Transmitted RF

Figure 2.7: Simplified Transmitter Structure

Note that each of the I and Q signals are effectively a pair of binary phase

shift keying (BPSK) signals which, when modulated, produce a 4-QAM constellation

with I on the horizontal axis and Q on the vertical axis. The location of each of the

transmit antennas is midway between each of the receive antennas, approximately

60 meters away from the centre of the array.

2.2.3 Receive Side

As with the transmit side, the receive side of the system consists of four iden-

tical circuits for receiving data. These receivers provide four channels of incoming

RF data to be processed by the system. In order to simplify the RF front-end design

of our receivers, we are using four AOR AR5000AC wide band all-mode receivers.

20

This required that two additional radio receivers be purchased for the thesis, to sup-

plement the two that were already in our possession. The RF signals which arrive

at each of the four receive antennas are down-converted to 10.7 MHz using the AOR

radios, which provide a 10 MHz bandwidth IF output centered at 10.7 MHz.

Sampling of the IF signals is performed using four Analog Devices AD6645/

PCB daughter boards, shown in Figure 2.8, which have special headers allocated to

them on the Alterar Stratixr II DSP Development Board. This allows two channels

of incoming data to be received by each Alterar Development Board. The sampling

rate of the ADCs is greater than 31.4 MHz in order to satisfy the Nyquist criterion.

The conversion clock is provided by the FPGAs.

Figure 2.8: Analog Devices AD6645/PCB Evaluation Board

21

To avoid synchronization issues, each of the four AOR radios as well as the

two Alterar FPGA boards are locked to a common 10 MHz reference. The common

reference signal for the entire system comes from the Aeroflex signal generator and

is provided in order to frequency lock each of the four radios as well as the FPGA

circuitry. AGC is provided by the AOR radios. Figure 2.9 illustrates the basic

structure of each of the four receivers.

Analog Devices
AD6645/PCB
ADC Board

AOR
AR5000A+3

Receiver

10 MHz
Reference
Oscillator

Received RF

10.7 MHz IF
 OutputAltera Stratix

II FPGA
Board

Figure 2.9: Simplified Receiver Structure

The SNR, or dynamic range (DR), of a digital receiver can be calculated as

shown in Equation 2.2, where N is the number of bits in the ADC. Note that fs is

the sampling frequency of our ADCs and B is the passband bandwidth, 10 MHz in

this case. Ten times the log of the ratio of fs/2 over B is called the processing gain

(PG), in dB. From this relationship, it is clear that as fs is increased beyond twice the

passband bandwidth of 2B, the SNR increases. This is due to the effect of spreading

the quantization noise power over the bandwidth [22, 23].

SNRdB = DRdB = 6.02N + 1.76 + 10 log10

(
fs

2B

)
(2.2)

Ignoring the processing gain portion for the time being, the SNR for our re-

ceiver can be roughly approximated to 86.04 dB, above the quantization noise, as

22

shown in Equation 2.3. By oversampling the data the quantization noise is spread

over a greater frequency range, resulting in a processing gain of 6.02 dB as shown in

Equation 2.4. Thus, the total estimated dynamic range of the system is 92.06 dB.

SNRdB = DRdB = 6.02N + 1.76

= 6.02× 14 + 1.76

= 86.04 dB

(2.3)

PGdB = 10 log10

(
fs

2B

)
= 10 log10

(
80

2× 10

)
= 6.02 dB

(2.4)

Although this is a rough theoretical approximation of the best case scenario,

our ADCs coupled with the AGC capabilities of the AOR radio receivers should

provide more than enough dynamic range.

Identical antennas were chosen for both of the transmitters and receivers. For

this we selected Antenna Factory FO2400-8 vertical antennas with a gain of 8 dB

relative to isotropic (dBi) and 83 MHz of bandwidth from 2.4-2.483 GHz, covering

the 2.4 GHz ISM band [24]. As well, four Antenna Factory FO1710-8 vertical antennas

with a gain of 8 dBi and frequency coverage from 1710-1990 MHz were purchased for

receiving signals from commercial systems in the 1900 MHz range, although they are

not used in this design [25]. Figure 2.10 shows the antennas which are used in this

design for signalling in the ISM band, they are 0.6 m long. Note that the receive

antennas are spaced 60 m apart from one another, and are connected to the central

hub using coaxial cable, in order to take advantage of SWAP gain.

23

Figure 2.10: Antenna Factory F02400-8 Antenna

2.2.4 Baseband Processing

Once the IF signal has been sampled, processing within the FPGA can begin.

A 5.7-15.7 MHz bandpass finite impulse response (FIR) filter removes any unwanted

spectrum, followed by a demodulator circuit and a ST receiver, using the least mean

square (LMS) adaptive algorithm to equalize the channel, reduce interference, and

recover each user’s transmission. In order to achieve this, the ST array design consists

of four groups of four adaptive filters. Each of the four filters, within a single group,

connects to a different receive antenna input, and each particular group is trained

to isolate the signal of only one user in the system. The outputs of each of the four

adaptive filters, in a particular group, are then combined to average the signals from

the four antennas. This limits the number of users in the system to four, but provides

diversity gain over the single antenna case. The ST receiver structure design which

is implemented for this system is described by Paulraj et al. [26], and is illustrated

in Figure 2.11.

2.2.5 Centralized Control

The addition of a TI 6416 1 GHz fixed point DSP is intended to facilitate

control algorithms and perhaps some low speed signal processing at baseband.

In order to achieve central control over the entire functionality of the sys-

tem, the FPGAs need to be able to communicate with each of the individual COTS

24

Altera FPGA

LMS Adaptive
Filter

Tx 1
LMS Adaptive

Filter

LMS Adaptive
Filter

LMS Adaptive
Filter

LMS Adaptive
Filter

LMS Adaptive
Filter

LMS Adaptive
Filter

LMS Adaptive
Filter

Tx 4

Rx 1

Rx 2

Rx 3

Rx 4

Figure 2.11: Space-Time Receiver Structure

25

components in the design. The first step in designing this control system was to

select components which can be remotely controlled via RS-232. The Alterar FP-

GAs each have one RS-232 port, however there is a need to control at least five

different devices simultaneously – four radios and the signal generator. To meet this

need, a Black Boxr SWE-854A-R2 (COS-8P) 8-port Code Operated Switch (COS),

as shown in Figure 2.12, was selected. This device allows one master to control up

to eight slaves by controlling which slave is connected at any particular time. To

control the switching between slaves, the master transmits a code word, which will

not appear in the data stream, followed by a number indicating to which slave it

would like to communicate. As such, it is possible to uniquely address each of the

components, which enables remote control access to all the features of the radios and

the signal generator. Unfortunately, the ability to broadcast the same message to

multiple slaves is not available. Instead, each slave has to be addressed and signalled

separately. The average time required to switch between slaves has been quoted by

Black Boxr technical support to be no greater than 10 ms [27]. The details regarding

the configuration of the switch are provided in the implementation section.

Figure 2.12: Black Boxr SWE-854A-R2 8-Port COS

Since we also control the baseband transmit and receive functions directly

via the FPGA, this provides complete control over the system. Advanced testing

techniques such as swept frequency, for instance, can be achieved by simply sweeping

26

the tuned frequency of the radio receivers across the frequency spectrum of interest.

Figure 2.13 illustrates the baseband side of the system and how it interacts with and

controls the rest of the hardware in the system.

Stratix II
FPGA BoardAeroflex 2025

Signal
Generator

3.3V , +/-5V
Power Supply

Custom PCB
(Level

Translation +
DC Offset)

Analog
Devices

AD6645/PCB

Analog
Devices

AD6645/PCB

Stratix II
FPGA Board

Analog
Devices

AD6645/PCB

Analog
Devices

AD6645/PCB

ADC Conversion Clock

4 I and Q
channels

BlackBox
RS-232

8-ChannelCOS RS-232 Control

IF Output
(Radio 1)

IF Output
(Radio 2)

IF Output
(Radio 3)

IF Output
(Radio 4)

4 I and Q
Channels

to be
Transmitted

10 MHz
Ref. to
Sync.

Radios

2.4 GHz
Sinusoid

for
Transmitters

Control
Signals

for Radios

10 MHz
Ref.

Figure 2.13: Central Control Structure

Due to the fact that our antenna array is spread over such a large area, several

issues arise. Firstly, the location of each of the components becomes important. Since

the incoming data rate to both the receive and transmit antennas is 2.4 GHz, there

would be a significant amount of attenuation over 60 meters of coaxial cable. To

avoid this problem, both the AOR radios and the Hittite vector modulator boards

are situated close to their respective receive and transmit antennas. Thus, the signals

27

travelling through the 60 meter run of coaxial cable will be at the IF frequency of

10.7 MHz which, coupled with low loss cabling, is acceptable. The tradeoff of this

decision is that the RF equipment must now be situated remotely at each of the eight

antennas.

The second issue derives from the solution to the first issue, and our desire to

control the array centrally. In order to synchronize all the AOR radios, a 10 MHz

reference signal must be shared amongst them. Furthermore, centralized control over

these radios requires that each have an RS-232 connection to the central hub. This

translates to two 60 m runs of coaxial cable, plus one 60 m run of RS-232 cable per

receive antenna. Combined with the I and Q, and 2.4 GHz reference signals sent to

each transmit antenna, three 60 m runs of coaxial cable, the grand total comes to

1200 m of coaxial cable plus 240 m of RS-232 cabling. Figure 2.14 shows the topology

of the array along with the signals which are sent amongst the various components.

Note that this figure is not to scale.

2.2.6 Testing and Debugging Equipment

To facilitate the testing and debugging process, a Lecroy WaveSurfer 424

200 MHz 2 GSPS oscilloscope was borrowed from another lab. As well, an AOR

SDU 5600 fast Fourier transform (FFT) spectrum display unit which is designed to

interface to and be controllable by the AOR AR5000AC radios, was purchased. This

device can also work as a standalone unit.

28

Hu
b

(F
PG

As
, S

ign
al

Ge
ne

ra
tor

,
etc

...)

AO
R

AR
50

00
AC

Ra
dio

AO
R

AR
50

00
AC

Ra
dio

AO
R

AR
50

00
AC

Ra
dio

AO
R

AR
50

00
AC

Ra
dio

Tr
an

sm
itte

r
(H

ittit
e

Mo
du

lat
or)

Tr
an

sm
itte

r
(H

ittit
e

Mo
du

lat
or)

Tr
an

sm
itte

r
(H

ittit
e

Mo
du

lat
or)

Tr
an

sm
itte

r
(H

ittit
e

Mo
du

lat
or)

(I a
nd

Q
Si

gn
als

,
2.4

GH
zR

ef.
)

(I a
nd

Q
Si

gn
als

,
2.4

GH
zR

ef.
)

(IF
 O

utp
ut,

10
 M

Hz
Re

f,
RS

-2
32

 C
on

tro
l)

(IF
 O

utp
ut,

10
 M

Hz
Re

f,
RS

-2
32

 C
on

tro
l)

(IF
 O

utp
ut,

10
 M

Hz
R

ef,
RS

-2
32

 C
on

tro
l)

(IF
 O

utp
ut,

10
 M

Hz
R

ef,
RS

-2
32

 C
on

tro
l)

(I a
nd

Q
Si

gn
als

,
2.4

GH
zR

ef.
)

(I a
nd

Q
Si

gn
als

,
2.4

GH
zR

ef.
)

60
m

60
m

Figure 2.14: Testbed Topology

29

Chapter 3

System Implementation

This chapter describes the implementation specific details of the system design

described in Chapter 2, and as such, it is broken down in a similar fashion. The

system was developed using the Verilog hardware description language (HDL) using

the Alterar Quartusr II (version 5.1 service pack 1) development environment. The

choice of Verilog was based solely on the fact that the author had prior experience

with that language. It should be noted that this choice is not in any way a tradeoff,

and that any future additions to the system can be written in either Verilog or Very-

High-Speed Integrated Circuit HDL, more commonly known as VHDL.

3.1 Transmit Side

3.1.1 Data Generation

The first stage of development for the system was to be able to generate signals

for transmission. As mentioned earlier, LRS generators are used to create predeter-

mined random bit streams, otherwise known as pseudorandom noise (PN) sequences.

Such circuits can be easily constructed using a shift register constructed of D flip-

flops with configurable feedback taps. As implied by the name, the sequences in fact

30

appear to be random and have the same basic properties, but are fixed in both bit

sequence and length. The bit sequence is determined by both the feedback tap con-

nections and the length of the shift register. The bit sequence is not infinitely long

however, it repeats at predefined intervals. In the ideal PN generator, the sequence is

of length 2N −1, where N is the number of flip-flops in the shift register. In this case,

the sequence is called a maximal length sequence. A maximal length sequence can

only be created by using a feedback tap polynomial which is a primitive prime [28].

The following definition holds of primitive prime polynomials, “For a prime P (x)

to give a maximum length sequence of length L, P (x) must be a factor of xL + 1

(and of no other smaller L). Such a prime is called primitive” [28]. In order to en-

sure that the ST receiver would have enough time to train properly, we chose to use

tenth order primitive prime polynomials which result in a maximal length sequence of

210−1 = 1023 bits. Table 3.1 lists the primitive prime generating polynomials used in

the system design, although any can be used. Note that this is not an exhaustive list.

A complete table of irreducible polynomials over Galois fields GF(2), the binary case,

through GF(5) up to order eleven can be found in Church’s “Tables of Irreducible

Polynomials for the First Four Prime Moduli” [2].

Table 3.1: Primitive Prime Generating Polynomials [2]
Polynomial Tap Configuration

x10 + x3 + 1 (10,3,0)
x10 + x4 + x3 + x + 1 (10,4,3,1,0)
x10 + x5 + x2 + x + 1 (10,5,2,1,0)
x10 + x5 + x3 + x2 + 1 (10,5,3,2,0)
x10 + x6 + x5 + x2 + 1 (10,6,5,2,0)

x10 + x6 + x5 + x3 + x2 + x + 1 (10,6,5,3,2,1,0)
x10 + x7 + 1 (10,7,0)

x10 + x7 + x3 + x + 1 (10,7,3,1,0)

Based on these generating polynomials, it is relatively straightforward to de-

31

velop an LRS generator circuit in Verilog. Figure 3.1 shows the basic architecture

of the circuit for the generating polynomial x10 + x3 + 1. The source code for this

module can be found in Appendix C and on the enclosed CD-ROM.

D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q
> > > > > > > > > >

T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

CLK
OUT

P(x) = x10+x3+1

Figure 3.1: LRS Generator Circuit Architecture

3.1.2 FPGA Interfacing to the Hittite Modulator

Board

Once the user signals have been generated within the FPGA, they are output

using GPIO pins to the Hittite modulator board. However, in order to interface the

LVTTL, 0-3.3 V output from the FPGA, to the requirements of the Hittite modulator

board of 1.5 VDC +1.6 VAC , a custom interface board was needed. Since the modulator

board is situated near the transit antennas, at the far end of 91.4 m, or 300 feet, of

cable, the signal conditioning circuitry does not only have to meet the level translation

requirements, but also handle the drive current requirements. The design choice of

300 foot cable lengths is discussed in Section A.2. Based on these requirements, a

simple resistive network was selected and designed such that it would provide the

necessary voltage translation and also appear as a 50 Ω input looking inward at the

cable. Figure 3.2 illustrates the final resistive network design, along with the DC bias

point simulation numbers. The circuit was simulated using PSpicer.

32

Figure 3.2: FPGA to Hittite Signal Conditioning Circuit

33

The input to the resistive divider circuit is driven through a TI SN74ALB-

16244 16-bit buffer/driver which provides up to 25 mA source and sink currents [29].

This easily meets the circuit requirements of 7.3 mA sink and 0.8 mA source (see

Appendix D for details). As well, the voltage output of the buffer chip was measured,

under real-world operating conditions, to be 0.3 V for logic low and 2.3 V for logic

high. This was accounted for in the circuit design in order to ensure that the output

met the specifications needed. The PSpicer simulation output, GPIO pins used, PCB

schematic, and board layout are located in Appendix D. Figure 3.3 shows the finished

circuit board mounted atop the GPIO header on the Alterar FPGA board. The eight

SMA connectors situated at the top of the figure are the inphase and quadrature signal

outputs, while the four SMA connectors on the right side of the board are the clock

output signal to the external AD6645 ADC boards.

MATLABr analysis of the Hittite modulator board, revealed that the inphase

and quadrature components of the received signal were only 45 degrees out of phase

rather than 90 degrees. Debugging efforts along with communications with Hittite

technical support, showed that the setup of the board was incorrectly performed by

previous users of the hardware. In fact, the 1.5 VDC signal should be a common mode

signal shared between both the negative and positive differential baseband I and Q

inputs, as opposed to the single ended use in previous work – although this is not at all

apparent from reading the board datasheet. To accommodate for this inconsistency,

a second PCB board was constructed which provides a 1.5 VDC output along with

1 µF terminating capacitors to ground for driving the In and Qn negative inputs. As

well, the negative RF input, RFn, requires a large terminating capacitor based on the

local oscillator (LO) frequency. In this case our LO is 2.4 GHz and as such, Hittite

technical support recommended using a 100 pF terminating capacitor [30]. The bias

circuit schematic can be found in Appendix D. Figure 3.4 shows the finished board.

In order to provide the bias signals to each of the Hittite boards, four such circuits are

34

Figure 3.3: FPGA to Hittite Signal Conditioning PCB

35

needed in total. At the present time, only one has been completed, however they are

relatively simple to replicate on a copper prototyping board. Note that the 2.4 GHz

carrier signal will be sent to each of the Hittite modulator boards using coaxial cables.

At this frequency there would be a great deal of attenuation of the signal. This was

overcome by using a Mini− Circuitsr ZX10-4A-27+ 4-way power divider and simply

increasing the gain at the signal generator end.

Figure 3.4: Hittite Bias Circuit Board

Testing of the Hittite board, after the addition of the bias circuit, confirmed

that the problem was solved and that the inphase and quadrature signals were now

being correctly modulated onto the carrier.

36

3.1.3 Data Rate Calculation

Recall that β represents the rolloff factor for a raised cosine response. From

Equation 2.1, note that when β is one, the equation reduces down to that of a square

wave [31], which is the case for this design. This leads to another important factor in

communications systems – the excess bandwidth. The excess bandwidth is a measure

of the amount of bandwidth, above the Nyquist bandwidth, which is being used to

transmit the data. The amount of bandwidth used for transmitting data can be

calculated as shown in Equation 3.1, where W0 is the utilized bandwidth, and Rs is

the symbol rate. The excess bandwidth is simply β × 100% [31]

W0 = (1 + β)Rs. (3.1)

Given that β=1, for a square wave, and that W0 cannot exceed 10 MHz, the

symbol rate is found to be 5 MSPS. Using 4-QAM modulation, each symbol represents

two bits, 2 bits/symbol, which corresponds to 10 Mbps at a symbol rate of 5 MSym/s,

5 Mbps on I and Q channels, and 100% excess bandwidth. In the ideal case where sinc

functions were transmitted as data, β would be 0, which corresponds to 0% excess

bandwidth. In this idealized case, the maximum throughput rate of the system would

be 10 MSym/s, or 20 Mbps.

3.2 Receive Side

3.2.1 Clock Distribution

The implementation of the receive hardware is intricately related to the dis-

tribution and synchronization of clocks throughout the system. In order to simplify

the signal recovery process, it was decided that a single clock source would be used

to trigger the entire system – transmit, receive, and baseband processing subsystems.

37

To achieve this goal, the 10 MHz reference signal from the Aeroflex signal generator

is divided amongst the FPGA boards and the four radios in the system. Note that

the FPGA outputs clock signals, corresponding to the sample rate clock, to the ADC

boards, using the four dedicated SMA outputs on the Hittite signal conditioning cir-

cuit, and thus providing user programmable sampling rates; see Section 3.3 for details.

The reference signal from the signal generator has a range of ±1 Vpp into 50 Ω [21].

By direct observation, it was found that this signal level was acceptable to drive the

frequency standard inputs of the AOR radios sufficiently enough to allow the internal

phase locked loop (PLL) to lock. However, in the case of the FPGA board, the clock

input pin uses the LVTLL standard which certainly cannot handle a negative input.

As such, another custom PCB interface board was designed. In this case the design

consists of a single chip, a TI TLV3501 high-speed comparator, which performs level

translation on the incoming clock signal from the signal generator so that it can be

input into the FPGA. This device basically compares the incoming signal to a ref-

erence signal, 0 V in this case, and outputs the value provided for logic high, 3.3 V

in this case, if the incoming signal exceeds the reference, otherwise it outputs a logic

low, 0 V in this case. For this application, the reference voltage was set to 0 V, the

upper voltage reference was set to 3.3 V, and the lower reference was set to 0 V. Thus,

when the ±1 Vpp input clock signal exceeds 0 V, the TLV3501 outputs 3.3 V, and

when the clock signal is less than 0 V, it outputs 0 V. This device was specifically

chosen for its low rail-to-rail propagation delay of 4.5 ns which easily meets the needs

of the 10 MHz clock signal with a corresponding period of 10 µs [32]. The comparator

circuit schematic and board layout can be found in Appendix D. Figure 3.5 shows

the finished clock signal level translator board.

As the number of radios connected to the output of the signal generator fre-

quency standard increases, the signal becomes more and more attenuated, at a the-

oretical rate of 3 dB per split. As it turns out, after the FPGA and two radios are

38

Figure 3.5: Clock Signal Level Translator PCB

39

connected, the signal attenuates to the point that the radios lose their PLL lock. To

overcome this issue, a variable gain amplifier is required to boost the signal strength.

This component has not been purchased yet, but the amplifier requirements have

been evaluated by using a fixed gain amplifier which is prescaled by a variable atten-

uator in order to achieve the correct output gain. The attenuator is a Kay Electric

model 30-0, and the amplifier is a Mini− Circuitsr ZHL-6A with a typical fixed gain

of 25 dB [33]. Table 3.2 lists the observed gains required as each additional radio was

added to the system; the FPGA is always connected.

Table 3.2: Required Gain for Radio PLL Lock
Number of Radios Attenuation (dB) Gain (dB) Effective Gain (dB)

1 25 25 0
2 20 25 5
3 17 25 8
4 15 25 10

It should be noted that the AOR radios do not have 50 Ω frequency standard

inputs. Although not mentioned in the AOR documentation, they are actually high

impedance which results in significant reflections when the cables are not terminated.

As such, the above discussion assumes that the clock input to each radio passes though

a 50 Ω feed-through terminator. For the purposes of testing this portion of the system,

borrowed terminators were used. In the future, four such terminations will have to

be purchased. Figure 3.6 illustrates the clock distribution scheme, external to the

FPGA, for the system.

3.2.2 Sampling the Data

To meet the Nyquist criterion for sampling the incoming IF data, the sampling

rate must be greater than 31.4 MHz. However, it is in our interest to have a high

40

Aeroflex
Signal

Generator

Altera
FPGA

Represents a standard coaxial tee splitter

300' of Coax

300' of Coax

AOR
Radio

AOR
Radio

300' of Coax

300' of Coax

AOR
Radio

AOR
Radio

AD6645AD6645 AD6645AD6645

Figure 3.6: System Clock Interconnection Architecture

41

sampling rate in order to take advantage of processing gain and then to later decimate

the signal. Based on this concept, a sampling rate of 80 MHz was selected during the

system design. Note that this value is configurable and is not permanently fixed at

80 MHz.

Within the FPGA, the 10 MHz reference frequency is multiplied by eight using

a PLL to generate an 80 MHz sample clock for the ADCs. The sampled data from

each ADC is passed through a ribbon cable back to the FPGA – two ADCs per

FPGA.

3.3 Baseband Processing

The baseband processing portion of the system comprises the two FPGAs,

and four ADC boards. In order to make the system more portable and safe to

use outdoors, the baseband components were mounted onto a wooden board using

standoffs. Figure 3.7 shows the mounted FPGA and ADC boards.

The ADC boards require +3.3 V, +5 V, -5 V, and GND power connections.

The power for these boards is provided using a PC power supply which was modified

for this design to operate as a standalone power supply. The power supply connects

to the wooden mounting boards via the “banana connectors” located at the top of

the board. The power connections are run as a bus, underneath the mounting board

using a routed out groove, and then pass through holes to the top of the board where

they connect to each of the ADC boards. The list of modifications made to the power

supply can be found in Appendix E.

The basic goal of this thesis was to build a testbed system. The baseband

processing portion of this design implements the demodulation of the incoming data

stream, but leaves all future additions up to the developer. That is, the system is

responsible for generating the data and recovering it back on the receive side.

42

Figure 3.7: Mounted Baseband Processing Hardware

43

3.3.1 Data Recovery and Demodulation

The spectrum of the sampled data from the ADCs, shown in Figure 3.8, shows

that the recovered signal is very well contained within the passband and that there

is no need to bandpass filter the data. From this figure, we can also see the effect

of digitizing a data stream, in that the spectrum repeats at integer multiples of the

sampling frequency. Hence the signal is situated at 0+10.7 MHz and 80-10.7 MHz,

which is what one would expect from digitizing a 10.7 MHz signal at a sampling rate

of 80 MHz. Note that frequency components at 0-10.7 MHz and 80+10.7 MHz are

not shown.

Figure 3.8: Spectrum of the Sampled IF Data

Instead, the data is passed directly on to the demodulator circuitry which at-

tempts to undo the operations performed by the modulator in order to recover the

44

transmitted signal. To achieve this goal, the data stream is split into two nearly iden-

tical paths – one for the inphase portion of the signal and another for the quadrature

portion. Then, the inphase stream is multiplied by a cosine wave which is matched to

the carrier frequency of 10.7 MHz, while the quadrature data stream is multiplied by

a sine wave of the same frequency. Based on the well known trigonometric identities,

cos A cos B =
1

2
[cos (A + B) + cos (A−B)]

sin A sin B =
1

2
[sin (A + B) + sin (A−B)] ,

and noting that the frequencies A and B are identical between the modulator and

the demodulator, we are left with the spectrum located at the sum and difference

frequencies. In this case, the sum frequency is 21.4 MHz and the difference is 0 MHz,

or baseband, as shown for the inphase channel in Figure 3.9. The same situation

applies for the quadrature data.

Now that the signals have been moved back to baseband, the double frequency

component at 21.4 MHz must be removed. This is accomplished in the FPGA using a

single stage digital down conversion architecture. First the signal is low pass filtered

to remove the unwanted double frequency components from the spectrum. Then, the

signal is downsampled, or decimated, by a factor of four in order to reduce the data

rate, and thus the processing requirements for the remainder of the hardware. Note

that in order to satisfy Nyquist’s criterion in the passband it is necessary to sample

the data above 31.4 MHz. However, now that the signal has been returned to base-

band, it only occupies 5 MHz bandwidth. By decimating the signal, the sampling

frequency is effectively being changed from Fs to Fs/N , where N is the decimation

factor. In this case, the new sampling frequency after decimation is 20 MHz, more

than enough to fully represent the 5 MHz baseband bandwidth, while reducing the

processing speed of the remainder of the hardware by 75%. However, by decimating

45

Figure 3.9: Spectrum of Mixed Inphase Data

46

the signal, the spectrum is essentially being compressed inward. As such, it is very

important to ensure that there are no unwanted signals outside the baseband region

before downsampling is performed – this is why we low pass filter first. Otherwise, the

higher frequency components will end up folding back into the signal of interest [34].

Figure 3.10 depicts the spectrum of the inphase signal after low pass filtering and dec-

imation by four. From this figure, the output SNR of the implemented demodulator

circuit can be estimated to be approximately 38.33 dB.

Figure 3.10: Spectrum of Digital Down Converted Inphase Signal

At this point, a simple linear decision making block is inserted in each of the

data paths in order to decide whether the incoming bit is a one or a zero. Using

the digitized inphase and quadrature streams the next step would be to add a sym-

bol mapper which would return the inphase and quadrature streams back to raw

47

data. This however, was not done in this case because the data is only comprised

of square waves. Figure 3.11 illustrates the demodulator design for this thesis. Note

that this hardware has to be repeated once per incoming IF signal, a total of four

times. Furthermore, it should be noted that the inphase and quadrature sides of the

demodulator must be identical in order to preserve the phase relationship between

the two data streams.

ADC NCO

LPF ↓4

LPF ↓4

IF
cos(2πft)

sin (2πft)
10.7 MHz

Fs=80 MHz

Fs
1=20 MHz

Inphase

Quadrature

Altera FPGA

Figure 3.11: Implemented Demodulator Architecture

Unfortunately, the recovery of the content of the inphase and quadrature bit

streams is very much reliant on matching the exact frequency and phase of the modu-

lated data. Figure 3.12 shows the demodulated constellation output from the FPGA.

Note that the final source code (Quartusr II project) for the hardware baseband im-

plementation can be found on the enclosed CD-ROM along with several other versions

which represent various stages of development and debugging.

From this output it can clearly be seen that there is a phase difference be-

tween the modulator and the demodulator which is causing the constellation to be

rotated slightly. However, it also demonstrates that the system is completely fre-

quency locked since the constellation is not rotating. To determine what the phase

48

Figure 3.12: Demodulated I and Q Constellation

49

difference is between the modulator and demodulator, a MATLABr script was writ-

ten which gradually increments a phase offset onto the demodulator output signal;

see Appendix B for code. Using this tool, the phase difference was found to be ap-

proximately 122.4 degrees. Figure 3.13 shows the result of adding the 122.4 degree

offset to the demodulator LO sinusoids. Note that the constellation is now upright,

and the inphase and quadrature bit streams are now clearly visible – I = 100 kHz

and Q = 250 kHz square waves.

3.3.2 Carrier Recovery

For the reason discussed above, most if not all real-world demodulators use

a carrier recovery loop which is responsible for extracting the carrier frequency and

phase, then using that information to drive the demodulator sinusoids. In so doing,

the demodulator tries to get an exact copy of the modulator LO signal in order to

achieve proper demodulation. A MATLABr simulation of the QAM synchronizer

circuit described in [6], shown below in Figure 3.14, has been implemented (see Ap-

pendix B for code).

The output of the MATLABr simulation of the synchronizer circuit is shown

in Figure 3.15. The square law devices are simply squaring multipliers, and the FIR

filters were simulated using 256 taps and a 2 kHz passband bandwidth. Furthermore,

for this system, 1/(2T) = 10.7 MHz and 1/T = 21.4 MHz. From the simulation

results, one can clearly see the 10.7 MHz carrier signal component. Using this circuit

to recover the modulator LO frequency and phase, the recovered sinusoid can then

be used to demodulate the inphase and quadrature data streams.

Another possibility is to continue to use the NCO and simply calculate the

phase error between its output and the recovered carrier. The resulting error could

then be used to update the NCO phase modulation input. Note that a constant

value to the phase increment input of the Alterar NCO megacore function produces

50

Figure 3.13: Demodulated I and Q Constellation with Phase Corrected

51

Figure 3.14: QAM Synchronizer Circuit [6]

a constant phase offset between 0 and 2π according to the relationship defined in

Equation 3.2. As well, the phase increment input is unsigned binary whereas the

cosine and sine outputs are signed binary. Note that none of these details regarding

the NCO inputs and outputs are documented in the Alterar documentation; they were

elicited through various communications with Alterar technical support staff [35].

The number of bits of resolution for the phase modulation input is Nbits, φpm is the

desired phase offset in radians, and N is the required input to the phase modulation

port in order to achieve this offset,

φpm =
2πN

2Nbits
. (3.2)

3.3.3 LMS Adaptive Filtering

Aside from the obvious phase offset in the recovered signal, there is also some

distortion and warping of the constellation. This is due to non-linearities in the system

and the channel itself. In order to compensate for these non-linearities, the most

common approach is to implement some form of equalizer circuit which effectively

52

Figure 3.15: MATLABr Simulation Results for Carrier Recovery Loop

53

tries to invert the channels’ frequency response.

In the case of this system, a 4x4 array of LMS filters was designed not only to

overcome radio channel irregularities but also to isolate and recover each individual

user’s transmitted signals. This is accomplished by first training the filters using a

predetermined data stream for each user. As the data stream is transmitted, the error

signal, en, is calculated based on the received signal and the known transmitted data.

During this training process, the filter taps are updated based on the error and the

adaptation constant, µ, as shown in Equations 3.3, 3.4, and 3.5 [36],

Wn+1 = Wn + µenrn (3.3)

en = dn − d̂n (3.4)

rn = dn + ηn. (3.5)

Figure 3.16 shows the simulation output for the adaptive filter array. Based on

this output, it is clear that the filter is stabilizing using the 1024-bit training sequence.

The MATLABr source code for the simulation can be found in Appendix B. This

filter design will have to be implemented in the future in order to differentiate between

the users in the system and minimize any non-linearities in the system and/or channel.

However, this simulation is an excellent starting block for physically implementing

the filtering design in hardware.

3.4 Centralized Control

The centralized control algorithm is mainly an application specific task. How-

ever, this design provides the underlying infrastructure in terms of cabling and inter-

facing all the RS-232 devices in the system.

54

Figure 3.16: MATLABr Simulation Results for LMS Adaptive Filter Array

55

3.4.1 Black Boxr RS-232 Control

The Black Boxr COS is responsible for interconnecting all the COTS devices in

the system. The communications settings used for this system are imposed by the RS-

232 configuration of the AOR radios, since they are only capable of selecting between

data rates of 4800, 9600, and 19200 bps, and cannot change other parameters such as

the number of data bits, number of stop bits, or the parity [4]. The Aeroflex signal

generator is capable of changing all of the common RS-232 communication parameters

in order to match those used by the AOR radios. Table 3.3 lists the communications

parameters which are required to be used for the system. This information does not

appear in the AOR Radio manual, it can be found on the last page of the AR5000

RS-232C Command List manual.

Table 3.3: RS-232 Communication Parameters [3]
Parameter Value

Data rate 9600 bps
Data bits 8
Stop bits 2
Parity None

Flow Control Xon

Based on these settings, the Black Boxr COS was configured for each of the

devices. The radios act as data terminal equipment (DTE), the signal generator acts

as data communications equipment (DCE), and the FPGA has been selected to act

as a DTE. The DIP switch settings which were established to internally configure

the COS to meet the communication requirements of the system devices are listed in

Appendix A. The remainder of the details for configuring the system are specific to

the test scenario being developed, and thus are left up to the developer. Note that

all the RS-232 cables created for interconnecting the hardware are straight though

cables, not null modems. Any switching between DTE and DCE is done using the

56

Black Boxr COS.

3.5 System Configuration

A complete description of the cabling used in this design is provided in Ap-

pendix A. A list of all cables created for this design as well as information on how the

system should be interconnected for use in a 1x1 or 4x4 configuration can be found

there. Appendix A also contains a section describing the proper configuration of the

COTS hardware to achieve correct system operation.

57

Chapter 4

System Development and Testing

The design methodology for this thesis involved breaking the system down

into small subsystems which could easily be debugged and verified. The primary

simulation and debugging tool used for this thesis was MATLABr version 7. Initially,

the design for each of the subcomponents was written using MATLABr scripts which

were then subsequently simulated to verify the desired operation. Once the particular

algorithm was well understood, it was implemented in the FPGA using an iterative

approach. After the component was developed in Verilog and programmed into the

FPGA, the Alterar SignalTapr software was used to record the system variables over

a defined peropd of time (number of samples). Then, the recorded real-world signals

were exported from SignalTapr into the MATLABr workspace. This method allows

the developer to examine the recorded variables off-line to try and determine what

or where any problems might lie in the design. Furthermore, since the initial design

was created in MATLABr, the real-world variables can be compared to the simulated

values to help the debugging process.

The author would absolutely recommend the use of MATLABr for design, sim-

ulation, and debugging, coupled with SignalTapr. By first simulating the design, the

developer gains a more in-depth understanding of what they are trying to implement

58

in hardware, which cuts down on the number of iterations required to achieve the

desired goal. When dealing with FPGA designs, the time required for the software

package to synthesize the hardware and generate a programmable bit file is orders

of magnitude greater than the time required to compile a design in a software based

environment. Thus, by using MATLABr, a demodulator design simulation might

take a couple of seconds to run, whereas when implementing the actual hardware on

the FPGA, the equivalent design might take one half hour to build. Having already

developed the initial design in MATLABr, and therefore gained familiarity with it,

the developer will now likely take far fewer compiles of the hardware to achieve the

desired results than if they had not first simulated in MATLABr. Since each hard-

ware compile might take thirty minutes, for instance, a few less compiles constitutes

a significant reduction in development time. Moreover, once a MATLABr simulation

exists, it acts as an excellent debugging tool for comparing the real-world results with

the ideal case.

Aside from MATLABr and SignalTapr, no other tools were used for debug-

ging. Although the Alterar simulator tool is very useful for off-line, static types of

verification, it was not suitable for dealing with the majority of the baseband process-

ing design since the real-world signals are difficult to generate and the output difficult

to verify within the simulator. That said, the Alterar simulator tool was useful for

verification and debugging of some components such as the PN generators which do

not require external inputs.

4.1 Component Testing and Integration

Before integrating any components into the system, they were first tested inde-

pendently, starting with the FPGA board. Initially, a simple design was programmed

into the FPGA to test some of the various switches and LEDS and verify that the

59

device could be programmed correctly using the JTAG programming cable and the

Alterar Quartusr II development software. The next step was to test the ADCs and

DACs on the board. This was accomplished by generating a test signal in the FPGA,

outputting it via the DAC, and then feeding the output back into the ADC. The

resulting signal was then examined using the SignalTapr software tool as well as an

oscilloscope by outputting the sampled data via the second DAC. Both ADC and

DAC channels were verified using this process. The use of both the oscilloscope and

the SignalTapr software package demonstrated that these tools were in fact operat-

ing as expected. After the onboard ADCs were verified, the external Analog Devices

ADCs were added to the design. Again, the ADCs were tested using a DAC to ADC

loopback setup. The results were verified using the oscilloscope and SignalTapr.

The next step in the design process was to lock the FPGA internal circuitry

to an external frequency standard. As such, the external 10 MHz frequency standard

from the Aeroflex signal generator had to be passed into the FPGA external clock

input connector. To achieve this task, a PCB board with a TI TLV3501 high-speed

comparator chip was designed. This circuit performs level translation on the incoming

clock signal, from the signal generator, in order to generate a 0-3.3 V square wave to

input to the FPGA. This circuit was debugged and verified using an oscilloscope with

the input impedance set to 50 Ω to match that of the FPGA clock input connector.

Once the circuit was found to be operating as required, it was connected to the

FPGA board clock input. Then, within the FPGA, a PLL was added to lock onto

the external clock signal and generate a sample rate clock signal equal to eight times

the input clock rate. The resulting 80 MHz was the used to drive the DAC to ADC

loopback circuit, and the output was once again verified using both an oscilloscope

and SignalTapr.

After the main ADC and DAC components were tested and integrated and

frequency locked to the external 10 MHz frequency standard, that portion of the

60

design was set aside temporarily. The next step in development was to generate

the signals for transmission. This was accomplished by first developing the LRS

circuit within the FPGA as a standalone design unit. This unit was then tested

using the Alterar simulator tool, which is part of the Quartusr software package, in

order to verify that the output of the generator was in fact the correct PN sequence

for the generating polynomial being used. Once the LRS circuit was debugged in

software, it was then ready to be used to generate real world signals. The output of

the eight LRS generators were connected to a GPIO pin, and the resulting digital

waveform was observed and subsequently verified using an oscilloscope. To transmit

the signals, the PN sequence outputs of the FPGA GPIO pins must be modulated

onto the carrier via the Hittite modulator boards. Due to the difference in signal

levels between the FPGA GPIO output pins and the expected input to the Hittite

modulator board, a custom PCB board was required for this task. The board was

first designed on paper, and then subsequently simulated using PSpicer. The board

was then implemented, and tested using a signal generator to simulate the FPGA

output along with an oscilloscope to observe the resulting input which would appear

at the Hittite modulator input. The circuit board was found to provide the correct

levels for the Hittite board, along with sufficient current to drive 300 feet of the

coaxial cable used by the system. The signal conditioning PCB also accepted four

clock inputs which it buffered in order to improve the current source/sink capabilities

of the FPGA outputs. These pins are used for the sample rate clock outputs from

the FPGA board to the Analog Devices ADC boards, and are not passed through the

voltage translation network that the PN sequences destined for the Hittite modulator

board do.

At this point, the development and testing returned to the DAC to ADC

design. The signal conditioning board was mounted onto the FPGA board using an

available GPIO header. The DAC to ADC design, which was previously verified,

61

was then modified to output the sample rate clock to the external ADC boards via

the signal conditioning board. The resulting test data was recorded and analyzed

in SignalTapr and observed on the oscilloscope. This verified that the clock buffer

portion of the signal conditioning circuit was meeting the design requirements. The

next step was to shift back to the signal generation side, and determine whether or

not the signal conditioning circuit was functioning correctly for the PN sequences

from the FPGA. At this point, the testing process became more difficult due to the

high carrier frequency. That is, the output of the Hittite modulator board was at 2.4

GHz, and there was no equipment available in the lab which is capable of observing

a signal at this frequency. Therefore, the output of the modulator board was fed

into the AOR radio, tuned to the carrier frequency, and the resulting IF output was

observed. To facilitate the debugging process, the sequences transmitted from the

FPGA were changed to square waves of known frequency. Then, using the AOR

SDU5600 spectrum display unit, the IF output of the radio could be seen, along with

frequency components representative of the harmonics of the square wave.

At this point, the IF output of the radio was passed into one of the external

ADC boards and recorded using SignalTapr. The recorded IF signal from the radio

was imported into MATLABr and demodulated offline using a MATLABr script de-

signed to recover the original signal. Based on the output of this test, it was found

that the demodulated inphase and quadrature signals were only 45 degrees apart

rather than 90 apart. Due to the fact that the radio operation was outside of our

control, the Hittite modulator board was suspected of causing the problem. After

some time spent examining the literature, and conversing with Hittite technical sup-

port, it was determined that the board was not correctly set up. To fix the problem,

an additional PCB board was developed which provides the common mode voltage

along with input capacitors described in Chapter 3. The finished board was pow-

ered using a power supply, and output was verified using an oscilloscope. Using the

62

newly developed PCB board, driving the negative terminals of the Hittite modulator

board, the test was repeated and the resulting sampled IF data was processed in

MATLABr. From the data collected, it was found that the PCB board driving the

negative terminals of the Hittite board had solved the problem, and that the inphase

and quadrature signals were now 90 degress apart as expected. This test verified the

operation of both the Hittite modulator board, and the AOR radios.

Now that the system was able to generate, transmit, and receive signals, the

next stage in development was to process the received IF signal. The development

of the demodulation hardware was performed in stages, as described in Chapter 3.

First, an NCO was implemented in the FPGA which generated a sine and cosine wave

with frequency equal to the IF output of the radio. Then new design was tested inde-

pendently using SignalTapr and the recorded sinusoids were observed in MATLABr.

Based on the FFT of the collected sinusoid data, it was clear that the signals were

situated exactly at 10.7 MHz as desired. The NCO was then added to the overall sys-

tem design, and an pair of multipliers were added to mix the incoming IF data with

the sine and the cosine wave from the NCO. The output of the mixing operations was

recorded using SignalTapr and analyzed using MATLABr. The analysis found that

the mixed signals were in fact situated at baseband and 21.4 MHz as predicted. The

remaining task was to filter the double frequency component from the signal. To meet

this need, a filter was designed using the Quartusr software, and added to the design

after the mixers. Once again, the output was recorded using SignalTapr and analyzed

using MATLABr. The final analysis found that the double frequency component had

indeed been removed and that the desired signal was situated at baseband. From this

point onward, the analysis of the demodulated data was performed in MATLABr.

63

4.2 Interfacing SignalTapr and MATLABr

Unfortunately, at the present time, there does not exist a clean method through

which data recorded using Altera’sr SignalTapr hardware-in-the-loop tool can be

exported into MATLABr. As a workaround to the problem, a set of steps was used

in order to transfer the recorded data from SignalTapr into the MATLABr workspace.

The first step is to record the data in SignalTapr, and export it as a comma separated

value (.csv) file. Then, the .csv file should be opened using Microsoftr Excel, and the

lines of header information from the top of the file must be deleted, and the file saved

as an Excel spreadsheet .xls file. In MATLABr, the data can be imported from the

.xls file using the ’xlsread’ command. Once the data has been loaded into MATLABr,

it now exists as one large table variable where each column corresponds to a single

bit of data. As such, the imported data must be broken down into the individual

variables which it contains. This operation was performed using a script which acts

as an import file. By examining the sequence and size of the variables recorded in

SignalTapr, or by examining the header portion of the .csv file, the column number

for each bit of each variable can be determined. Using simple matrix manipulation

commands, the group of bits which constitute each variable can be extracted from the

imported data and converted from binary into signed and/or unsigned decimal using

a converter function which was developed. The sequence of MATLABr commands

required, along with the converter functions and a sample import file are provided

in Appendix B. Note that MATLABr has a built in ’csvread’ function for reading

in .csv files, but it does not appear to be compatible with the .csv files created by

SignalTapr.

64

4.3 Implementation Issues

This section very briefly mentions several issues which were encountered during

development of the baseband system which could be of help to future developers using

the testbed.

Firstly, it was discovered early on that the use of unsigned binary numbers

leads to large DC components in the data. This is due to the inherent nature of the

number system, and thus signed binary numbers which are naturally entered about

zero are much better suited for working with signals within the FPGA – e.g. an

8-bit signed binary value ranges from -128 to 127, whereas an unsigned 8-bit binary

value ranges from 0 to 255. The second issue, relates to the FPGA hardware itself.

Alterar recommends that all unused pins be configured as tri-stated inputs [37]. How-

ever, the Quartusr II design software defaults to grounded outputs, which the author

found to cause erratic programming behaviour. When programming the device, it of-

ten took three or four attempts before the programming file would be successfully

written to the FPGA. This issue was resolved by ensuring that the unused pins in

each new design were set to inputs tri-stated. Another issue encountered was related

to the maximum clock speed for the Alterar multiplier megacore function. Although

the author was unable to find a maximum frequency in the megacore documentation,

it was discovered that if the clock speed is increased to more than 80 MHz, there is a

substantial increase in noise at the output, which corresponds to a decrease in SNR.

It is not clear whether this issue was due to an incorrect design implementation,

either on my part or within the megacore itself, or an actual hardware limitation;

Quartusr offered no warnings or errors to this effect. This issue was resolved by

setting the multiplier clock rate to 80 MHz. The final issue occurs when creating a

design with multiple processing stages. When implementing DSP designs in FPGAs,

there is a strong tendency for the number of bits representing the data to rapidly,

and potentially unnecessarily, increase. In order to reduce the required processing

65

in the FPGA, it is important to try and minimize the number of unnecessary bits

which are carried through the design. It can be tedious to determine which bits are

relevant, and which are not. In any case, MATLABr was found to be a good tool for

determining the range of the signal of interest and thus determining which bits can

be eliminated.

66

Chapter 5

Summary and Future Work

5.1 Summary of Work Completed

This thesis provides the design and implementation of the physical layer hard-

ware for a reconfigurable MIMO SDR based wireless testbed. The design incorporates

the concept of SWAP gain as well as diversity gain, and is designed for use in inves-

tigating radio channel properties as well as the implementation of algorithms in a

real-world environment. The design process along with the implementation details of

each subcomponent is presented in detail.

A simple quadrature demodulator design was created within the FPGA and

used to verify the correct operation of the system. A MATLABr simulation of an

adaptive LMS filter array for channel equalization and recovery of user signals was de-

veloped. As well, a carrier recovery loop was developed and simulated in MATLABr.

Both components exhibit the desired functionality and are ready for future imple-

mentation.

The overall testbed system design has been completed, the hardware has been

either designed and built or selected and obtained, and the necessary interfacing

hardware and software has been developed. The system is now ready for the re-

67

maining components to be added, after which it will be ready for use in taking field

measurements for characterization of the radio channel.

5.2 Future Work

Due to the large size of this system, and the various stages of debugging that

were required, some issues were discovered late which require additional hardware

to be purchased or built before the system implementation is 100% complete. In

terms of new hardware, the following items are required: eight power supplies, or

long power cables, to power the remote transmitters and receivers, four 50 Ω feed-

through terminators for the 10 MHz clock lines to the radios, and a variable amplifier

or fixed amplifier with variable attenuator for driving the 10 MHz clock lines to the

radios. The only components left to build are three more bias circuits for the Hittite

modulators. These boards are very simple, and should be a direct reproduction of

the existing board, thus no design is required.

Future FPGA development work includes implementing the LMS adaptive

filter array as well as the carrier recovery circuit in hardware. As well, the implemen-

tation of an RS-232 transmitter would be required in order to provide RS-232 control

of the system components. The RS-232 transmitter should be simple to create as a

parallel load shift register operating at 9600 bps. From that point, the underlying

testbed system would be complete, and a user could develop their own test modules

on top of the design. Finally, before any real-world testing can be performed with the

system radiating in the 2.4 GHz ISM band, there is a need to investigate and meet

any requirements or limitations imposed by RSS-210 [14].

68

Bibliography

[1] I. Bolsens, “Keynote address: Programming modern fpgas,” Multiprocessor Sys-

tem on Chip, Estes Park, Colorado, USA, August 2006.

[2] R. Church, “Tables of irreducible polynomials for the first four prime moduli,”

The Annals of Mathematics, vol. 36, pp. 198–209, 1935.

[3] AOR, AR5000 RS-232C Command List manual. AOR, Ltd., Tokyo, Japan.

[4] AOR, AOR AR5000 Operating Manual. AOR, Ltd., Tokyo, Japan.

[5] Altera, Stratix II EP2S180 DSP Development Board Reference Manual. Altera

Corporation, San Jose, CA, USA, Aug 2005.

[6] J. G. Proakis, Digital Communications. New York, NY, USA: McGraw-Hill Book

Company, 1983.

[7] W. Zhu, D. Browne, and M. Fitz, “An open access wideband multi-antenna

wireless testbed with remote control capability,” Proceedings of the First Interna-

tional Conference on Testbeds and Research Infrastructures for the Development

of Networks and Communities, pp. 72–81, Feb 23-25 2005.

[8] I. E. Telatar, “Capacity of multi-antenna gaussian channels,” internal tech.

memo, AT&T Bell Laboratories, June 1995.

[9] J. W. Wallace, B. D. Jeffs, and M. A. Jensen, “A real-time multiple antenna

element testbed for MIMO algorithm development and assessment,” IEEE Pro-

69

ceeedings of the Antennas and Propagation Society International Symposium,

vol. 2, pp. 1716–1719, June 20-25 2004.

[10] Z. Yong and F. Zhenghe, “Smart antenna testbed for ds-cdma systems,” Cana-

dian Conference on Electrical and Computer Engineering, vol. 2, pp. 1327–1332,

May 13-16 2001.

[11] D. Agarwal, C. R. Anderson, and P. M. Athanas, “An 8 ghz ultra wideband

transceiver prototyping testbed,” IEEE Proceeedings of the 16th International

Workshop on Rapid System Prototyping, pp. 121–127, 2005.

[12] G. Zhu, B. R. Petersen, and B. G. Colpitts, “Signalling wavelength in an antenna

array for space-time wireless over LOS channels,” IEEE Proceedings of the 3rd

Annual Communications Networks Services and Research Conference (CNSR

2005), vol. 1, pp. 69–73, 2005.

[13] H. Yanikomeroglu and E. S. Sousa, “Antenna gain against interference in

cdma macrodiversity systems,” IEEE Transactions on Communications, vol. 50,

pp. 1356–1371, Aug 2002.

[14] Industry Canada, Radio Standards Specification (RSS) 210. Industry Canada,

Sept 2005.

[15] Hittite, HMC497LP4 Direct Quadrature Modulator Datasheet. Hittite Microwave

Corporation, Chelmsford, MA, USA.

[16] LyrTech, VHS-ADC Datasheet. LyrTech Signal Processing, Quebec City, QC,

Canada, July 2005.

[17] LyrTech, VHS-DAC Datasheet. LyrTech Signal Processing, Quebec City, Que-

bec, Canada, July 2005.

70

[18] LyrTech, SignalMaster Datasheet. LyrTech Signal Processing, Quebec City, Que-

bec, Canada, May 2005.

[19] ICS, “Performance of 14-bit data converters for software radio applications,”

Application Note AN-SR-2, Interactive Circuits & Systems Ltd., Ottawa, ON,

Canada.

[20] K. Gentile, “The care and feeding of digital pulse-shaping filters,” RF Design

Magazine, pp. 50–61, 2002.

[21] Aeroflex, AM/FM Signal Generator 2025 Operating Manual. Aeroflex Interna-

tional Ltd., UK, issue 10 ed., June 2005.

[22] Maxim, “Defining and testing dynamic parameters in high-speed ADCs, part 1,”

application note 728, Maxim Integrated Products, Sunnyvale, CA, USA, 2005.

[23] Maxim, “Filter basics: Anti-aliasing,” application note 928, Maxim Integrated

Products, Sunnyvale, CA, USA, 2002.

[24] Antenna Factory, F02400-8 Datasheet. Antenna Factory, Inc., Schaumburg, Illi-

nois, USA.

[25] Antenna Factory, F01710-8 Datasheet. Antenna Factory, Inc., Schaumburg, Illi-

nois, USA.

[26] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Com-

munications. Cambridge, UK: Cambridge University Press, 2003.

[27] Black Box, Code Operated Switch 8-Port (COS-8P). Black Box Network Services,

Lawrence, PA, USA, June 2000.

[28] R. Tervo, “EE4253 website and course notes fall 2003,” tech. rep., University of

New Brunswick, Fredericton, NB, Canada, 2003.

71

[29] Texas Instruments, SN74ALB16244 16-Bit Buffer/Driver With 3-State Outputs

Datasheet. Texas Instruments Inc., Dallas, Tx, USA, Jan 2001.

[30] Hittite Technical Support (private communication), 2006.

[31] C. Langton, “Intersymbol interference and raised cosine filtering,” tutorial, Loral

Space Systems, Available Online: www.complextoreal.com, 2002.

[32] Texas Instruments, TLV3501 High-Speed Comparator Datasheet. Texas Instru-

ments Inc., Dallas, Tx, USA, March 2005.

[33] Mini-Circuits, Plug-in & Coaxial Broadband, Linear Amplifiers Datasheet. Mini-

Circuits, Brooklyn, NY, USA.

[34] R. Mutagi, “Understanding the sampling process,” RF Design Magazine, pp. 38–

48, 2004.

[35] Altera Technical Support (private communication), 2006.

[36] S. Haykin, Adaptive Filter Theory. Upper Saddle River, NJ, USA: Prentice Hall,

fourth edition ed., 2002.

[37] Altera, DSP Development Kit, Stratix II Professional Edition Getting Started

User Guide. Altera Corporation, San Jose, CA, USA, Aug 2005.

[38] Belden, Belden 9201 Coax - RG-58/U Type Datasheet. Belden Wire & Cable

Company, Richmond, IN, USA, July 2005.

[39] D. K. Cheng, Field and Wave Electromagnetics. Reading, MA, USA: Addison-

Wesley Publishing Company, second edition ed., 1992.

72

Appendix A

System Specifications

A.1 Alterar Pinouts to AD6645 ADC Boards

The pinouts provided in both the Alterar and Analog Devices documentation

for the external AD6645 ADC connections to Alterar FPGA interface connector are

not correct. Tables A.1 and A.2 provide the correct interconnection information.

A.2 Cabling and System Interconnections

Two types of cabling were used for the development of this system, one coaxial

and the other RS-232 cable. Due to the large antenna separations in this system, the

choice of cabling was made in order to minimize attenuation. The RS-232 cabling

chosen was Belden model 1422A, a stranded five pair low capacitance computer cable

for RS-232. This cable, coupled with a low data rate of 9600 baud, was found to sup-

port transmission of RS-232 signals at distances of at least 300 feet. The coaxial cable

chosen was Belden model 9201, an RG-58/U type cable with a nominal attenuation

of 1.1 dB per 100 feet at a frequency of 10 MHz [38]. A slight trade-off was made

with the choice of the coaxial cable - the characteristic impedance of Belden 9201 is

51.5 Ω. In an effort to reduce cost, more than $1000, a similar cable with a charac-

73

Table A.1: ADC Board to Alterar FPGA Board Connector J5 Pinout [2]
AD6645 ADC Board Stratixr II FPGA Development Board
Pin Number Signal Connector Pin Number Signal Stratixr II Pin

33 B13 J5 33 adi D15 P2
31 B12 J5 31 adi D14 P1
29 B11 J5 29 adi D13 R3
27 B10 J5 27 adi D12 R2
25 B9 J5 25 adi D11 M2
23 B8 J5 23 adi D10 M1
21 B7 J5 21 adi D9 N3
19 B6 J5 19 adi D8 N2
17 B5 J5 17 adi D7 L2
15 B4 J5 15 adi D6 L1
13 B3 J5 13 adi D5 M4
11 B2 J5 11 adi D4 M3
9 B1 J5 9 adi D3 N5
7 B0 J5 7 adi D2 N4
5 GND J5 5 adi D1 L4
3 GND J5 3 adi D0 L3

Table A.2: ADC Board to Alterar FPGA Board Connector J6 Pinout [2]
AD6645 ADC Board Stratixr II FPGA Development Board
Pin Number Signal Connector Pin Number Signal Stratixr II Pin

33 B13 J6 33 adi D32 M8
31 B12 J6 31 adi D31 M11
29 B11 J6 29 adi D30 M10
27 B10 J6 27 adi D29 L6
25 B9 J6 25 adi D28 L5
23 B8 J6 23 adi D27 K7
21 B7 J6 21 adi D26 K6
19 B6 J6 19 adi D25 L8
17 B5 J6 17 adi D24 L7
15 B4 J6 15 adi D23 L10
13 B3 J6 13 adi D22 L9
11 B2 J6 11 adi D21 K9
9 B1 J6 9 adi D20 K8
7 B0 J6 7 adi D19 J9
5 GND J6 5 adi D18 J8
3 GND J6 3 adi D17 J7

74

teristic impedance of 50 Ω was overlooked. In exchange for the reduction in cost, the

voltage reflection coefficient, Γ becomes non-zero as shown in Equation A.1,

Γ =
ZL − Z0

ZL + Z0

=
50− 51.5

50 + 51.5
= −0.0148 [39]. (A.1)

Using the reflection coefficient, the voltage standing-wave ratio (VSWR) can

be calculated as,

VSWR =
1 + |Γ|
1− |Γ|

=
1 + 0.0148

1− 0.0148
= 1.03 [39]. (A.2)

From this result it is clear that the cable to load impedance mismatch is

negligible in this case.

To further minimize cost, the cabling was purchased in spools of 500 and 1000

feet. The cables were then cut to length and connectorized using SMA, BNC, and N-

Type connectors as required in order to avoid having to purchase converters as well as

to avoid any additional attenuation in the converters. After each cable was made, it

was tested for both continuity and length using a time domain reflectometer. A similar

procedure was performed for the RS-232 cables, where each cable was provided either

a DB9 or DB25 connector as necessary, and tested using Hyperterminal. Table A.3

provides a cable inventory of all cables created for the testbed. Note that the cable

label column corresponds to the labels attached to the cable.

In the future, in order to connect the three additional Hittite bias PCB boards,

nine more three foot coaxial cables will have to be made. As mentioned previously,

the RS-232 cables are all wired straight through. Table A.4 details the wiring of the

RS-232 cables.

75

Table A.3: Testbed Cable Inventory
Cable
Label

Cable
Type

Qty Length
(ft)

Connectors Purpose

IQ1-IQ8 Coaxial 8 300 SMA, SMA I and Q signals
from FPGA (PCB)
to Hittite

RF2-5 Coaxial 4 300 SMA, SMA Sig. Gen. to Hit-
tite

IF1-4 Coaxial 4 300 SMA, BNC AOR IF to ADC
STD4-7 Coaxial 4 300 BNC, BNC 10 MHz std. to

AOR
TX1-4 Coaxial 4 8 SMA, N-Type Hittite to Tx ant.
RX1-4 Coaxial 4 8 N-Type, N-Type Rx ant. to radio
STD2 Coaxial 1 3 SMA, BNC 10 MHz std. to clk

PCB
STD3 Coaxial 1 2 SMA, SMA Clk PCB to FPGA
STD1 Coaxial 1 2 BNC, BNC 10 MHz std. to

BNC splitter
RF1 Coaxial 1 2 N-Type, SMA Aeroflex to SMA

power divider
ENC1-4 Coaxial 4 2 SMA, SMA FPGA (PCB) En-

code to ADC
GP1 Coaxial 1 3 SMA, BNC General purpose
GP2-5 Coaxial 4 4 SMA, SMA General purpose
GP6-8 Coaxial 3 4 BNC, BNC General purpose
HIT1-3 Coaxial 3 2 SMA, SMA Hittite bias PCB to

Hittite
CON1 RS-232 1 10 DB9 M, DB25 M COS to FPGA
CON2 RS-232 1 10 DB9 F, DB25 M COS to Aeroflex
CON3-6 RS-232 4 300 DB9 M, DB25 M COS to AOR

Total number of cables: 53

76

Table A.4: RS-232 Connector Wiring
Wire Colour DB9 Connector DB25 Connector Signal

Blue 1 8 DCD
White/Orange 2 3 Rx

Orange 3 2 Tx

White/Blue 4 20 DTR
Green 5 7 GND

White/Brown 6 6 DSR
Green/White 7 4 RTS

Brown 8 5 CTS
Grey 9 22 RI

White/Grey NC NC -

A.3 Black Boxr COS Configuration

The DIP switch postions required for the RS-232 configuration used in this

design are as provided in Table A.5, where C denotes a closed switch, and O denotes

an open switch. Note that each port of the switch must operate in the opposite mode

of whatever device is connected. For example, since the FPGA acts as a DTE, the

port on the COS to which it is connected must act as a DCE. Detailed information

regarding the meaning of these settings can be found in the device manual, see [27].

A.4 System Test Setup

The design and development of this system was performed with the following

settings for the radios and signal generator. The signal generator frequency was set

to 2.45 GHz, approximately the middle of the ISM band, with a gain of 0 dBm and

all modulation disabled. The radios were also tuned to 2.45 GHz, with the AGC

enabled.

77

Table A.5: COS DIP Switch Positions
Switch Device COS Port Config. Value

SW1 FPGA DCE
A: OOOOOCCO
B: COOCCCCC

SW2 Signal Gen. DTE
A: OOOOCOOC
B: OCCOCCCC

SW3 Radio DCE
A: OOOOOCCO
B: COOCCCCC

SW4 Radio DCE
A: OOOOOCCO
B: COOCCCCC

SW5 Radio DCE
A: OOOOOCCO
B: COOCCCCC

SW6 COS Internal Setting N/A OCCOOOCO
SW7 COS Internal Setting N/A COOCOOOO
SW8 COS Internal Setting N/A CCOCCCCC
SW9 COS Internal Setting N/A COOO
SW10 COS Internal Setting N/A OOOOCOOO

SW11 Radio DCE
A: OOOOOCCO
B: COOCCCCC

SW12 Unused N/A
A: XXXXXXXX
B: XXXXXXXX

SW13 Unused N/A
A: XXXXXXXX
B: XXXXXXXX

SW14 Unused N/A
A: XXXXXXXX
B: XXXXXXXX

78

Appendix B

MATLABr Simulation and

Debugging Source Code

B.1 LMS Adaptive Filter Array

%%

% JAH_LMS This implements an 4x4 array of LMS filters of the specified order.

%

% Author: J. Andy Harriman SN: 3020639 Course: EE 6997

% Date: Feb 27, 2006

%%

clear;

clear functions;

clf;

numBits = 2^10; % The number of bits to transmit

filterOrder = 6; % The order of the filters

variance = 10^(-3); % The variance of the noise

stdDev = sqrt(variance); % The standard deviation of the noise

delay = 1; % decoding delay

sampling_phase = -4; % fractional phase at the sampler

mu = 2^(-6); % LMS adaptation constant

k = 4; %upsampling factor

dn_upsampled1 = zeros(1,numBits*k);

79

dn_upsampled2 = zeros(1,numBits*k);

dn_upsampled3 = zeros(1,numBits*k);

dn_upsampled4 = zeros(1,numBits*k);

% Generate the random data to transmit

% Note that the data transmitted is a uniformly distributed discrete RV

dn1 = 2*(rand(1,numBits)<0.5)-1;

dn2 = 2*(rand(1,numBits)<0.5)-1;

dn3 = 2*(rand(1,numBits)<0.5)-1;

dn4 = 2*(rand(1,numBits)<0.5)-1;

%upsample the data to be transmitted by k

dn_upsampled1(1) = dn1(1);

for i = 1 : numBits-1,

dn_upsampled1((i*k)+1) = dn1(i+1);

end

dn_upsampled2(1) = dn2(1);

for i = 1 : numBits-1,

dn_upsampled2((i*k)+1) = dn2(i+1);

end

dn_upsampled3(1) = dn3(1);

for i = 1 : numBits-1,

dn_upsampled3((i*k)+1) = dn3(i+1);

end

dn_upsampled4(1) = dn4(1);

for i = 1 : numBits-1,

dn_upsampled4((i*k)+1) = dn4(i+1);

end

% generate random 4-tap fir filters the 16 radio channels

channel11 = 2*rand(1,4)-1;

channel12 = 2*rand(1,4)-1;

channel13 = 2*rand(1,4)-1;

channel14 = 2*rand(1,4)-1;

channel21 = 2*rand(1,4)-1;

channel22 = 2*rand(1,4)-1;

channel23 = 2*rand(1,4)-1;

channel24 = 2*rand(1,4)-1;

channel31 = 2*rand(1,4)-1;

channel32 = 2*rand(1,4)-1;

channel33 = 2*rand(1,4)-1;

80

channel34 = 2*rand(1,4)-1;

channel41 = 2*rand(1,4)-1;

channel42 = 2*rand(1,4)-1;

channel43 = 2*rand(1,4)-1;

channel44 = 2*rand(1,4)-1;

bp_test_flag_1 = 1

if (bp_test_flag_1 == 1) ,

channel11 = 2*rand(1,4)-1;

channel12 = 0*rand(1,4)-0;

channel13 = 0*rand(1,4)-0;

channel14 = 0*rand(1,4)-0;

channel21 = 0*rand(1,4)-0;

channel22 = 2*rand(1,4)-1;

channel23 = 0*rand(1,4)-0;

channel24 = 0*rand(1,4)-0;

channel31 = 0*rand(1,4)-0;

channel32 = 0*rand(1,4)-0;

channel33 = 2*rand(1,4)-1;

channel34 = 0*rand(1,4)-0;

channel41 = 0*rand(1,4)-0;

channel42 = 0*rand(1,4)-0;

channel43 = 0*rand(1,4)-0;

channel44 = 2*rand(1,4)-1;

end

%Pass the data generated at each transmitter through each of its associated

%paths to the receivers. Each transmitted signal will be received by each

%receiver, therefore we have 4x4=16 radio channels.

rx11 = zeros(1,numBits*k);

rx12 = zeros(1,numBits*k);

rx13 = zeros(1,numBits*k);

rx14 = zeros(1,numBits*k);

rx21 = zeros(1,numBits*k);

rx22 = zeros(1,numBits*k);

rx23 = zeros(1,numBits*k);

rx24 = zeros(1,numBits*k);

rx31 = zeros(1,numBits*k);

rx32 = zeros(1,numBits*k);

rx33 = zeros(1,numBits*k);

81

rx34 = zeros(1,numBits*k);

rx41 = zeros(1,numBits*k);

rx42 = zeros(1,numBits*k);

rx43 = zeros(1,numBits*k);

rx44 = zeros(1,numBits*k);

%4 paths for transmitter 1

rx11 = jah_fir_filter(dn_upsampled1,channel11);

rx12 = jah_fir_filter(dn_upsampled1,channel12);

rx13 = jah_fir_filter(dn_upsampled1,channel13);

rx14 = jah_fir_filter(dn_upsampled1,channel14);

%4 paths for transmitter 2

rx21 = jah_fir_filter(dn_upsampled2,channel21);

rx22 = jah_fir_filter(dn_upsampled2,channel22);

rx23 = jah_fir_filter(dn_upsampled2,channel23);

rx24 = jah_fir_filter(dn_upsampled2,channel24);

%4 paths for transmitter 3

rx31 = jah_fir_filter(dn_upsampled3,channel31);

rx32 = jah_fir_filter(dn_upsampled3,channel32);

rx33 = jah_fir_filter(dn_upsampled3,channel33);

rx34 = jah_fir_filter(dn_upsampled3,channel34);

%4 paths for transmitter 4

rx41 = jah_fir_filter(dn_upsampled4,channel41);

rx42 = jah_fir_filter(dn_upsampled4,channel42);

rx43 = jah_fir_filter(dn_upsampled4,channel43);

rx44 = jah_fir_filter(dn_upsampled4,channel44);

% model the thermal noise at input to each receiver

thermal_noise1 = stdDev*randn(1,numBits*k);

thermal_noise2 = stdDev*randn(1,numBits*k);

thermal_noise3 = stdDev*randn(1,numBits*k);

thermal_noise4 = stdDev*randn(1,numBits*k);

% The received data at each receiver is the sum of each of the 4

% transmitted values which have passed through different channels...

rn1 = rx11 + rx21 + rx31 + rx41 + thermal_noise1;

rn2 = rx12 + rx22 + rx32 + rx42 + thermal_noise2;

rn3 = rx13 + rx23 + rx33 + rx43 + thermal_noise3;

rn4 = rx14 + rx24 + rx34 + rx44 + thermal_noise4;

w1 = zeros(1,filterOrder);

82

w2 = zeros(1,filterOrder);

w3 = zeros(1,filterOrder);

w4 = zeros(1,filterOrder);

error_log1 = zeros(1,numBits);

error_log2 = zeros(1,numBits);

error_log3 = zeros(1,numBits);

error_log4 = zeros(1,numBits);

delay = 0;

sampling_phase = 0;

%run simulation for receiver 1

for i = 1 : numBits*k,

if(i-(filterOrder-1)+sampling_phase>=1 & i-(0-1)+sampling_phase <= length(rn1) &

(i-1)/k-delay >= 1),

if(mod(i-1,k) == 0),

dn_hat = 0;

for j = 1 : filterOrder,

dn_hat = dn_hat + w1(j) * rn1(i-(j-1)+sampling_phase);

end

error = dn1((i-1)/k-delay) - dn_hat;

error_log1((i-1)/k) = error;

%adjust the tap coefficients

for j = 1 : filterOrder,

w1(j) = w1(j) + mu * error * rn1(i-(j-1)+sampling_phase);

end

end

end

end

wAxisCoordinates = [0:length(w1)-1];

%receiver 1

figure(1);

subplot(241);

stem(wAxisCoordinates, abs(w1).^2, ’o’);

ylabel(’|w|^2’);

xlabel(’Index, i, (-)’);

83

subplot(245);

se_db = 10 * log10(abs(error_log1)+eps);

plot(se_db)

axis([0 (numBits-1) -40 10]);

%run simulation for receiver 2

count = 0 ;

count2=1;

for i = 1 : numBits*k,

if (1 <= (i-delay) & ((i-(filterOrder-1))>0)),

dn_hat = 0;

for j = 1 : filterOrder,

dn_hat = dn_hat + w2(j) * rn2(i-(j-1));

end

count=count+1;

%only need to calculate error and update w every 4 samples

if(count==k),

error = dn_upsampled2(i-delay*k) - dn_hat;

%error_log(i-delay) = error;

error_log2(count2) = error;

%adjust the tap coefficients

for j = 1 : filterOrder,

w2(j) = w2(j) + mu * error * rn2(i-(j-1));

end

count = 0;

count2=count2+1;

end

end

end

%run simulation for receiver 3

count = 0 ;

count2=1;

for i = 1 : numBits*k,

if (1 <= (i-delay) & ((i-(filterOrder-1))>0)),

dn_hat = 0;

84

for j = 1 : filterOrder,

dn_hat = dn_hat + w3(j) * rn3(i-(j-1));

end

count=count+1;

%only need to calculate error and update w every 4 samples

if(count==k),

error = dn_upsampled3(i-delay*k) - dn_hat;

%error_log(i-delay) = error;

error_log3(count2) = error;

%adjust the tap coefficients

for j = 1 : filterOrder,

w3(j) = w3(j) + mu * error * rn3(i-(j-1));

end

count = 0;

count2=count2+1;

end

end

end

%run simulation for receiver 4

count = 0 ;

count2=1;

for i = 1 : numBits*k,

if (1 <= (i-delay) & ((i-(filterOrder-1))>0)),

dn_hat = 0;

for j = 1 : filterOrder,

dn_hat = dn_hat + w4(j) * rn4(i-(j-1));

end

count=count+1;

%only need to calculate error and update w every 4 samples

if(count==k),

error = dn_upsampled4(i-delay*k) - dn_hat;

%error_log(i-delay) = error;

error_log4(count2) = error;

%adjust the tap coefficients

for j = 1 : filterOrder,

85

w4(j) = w4(j) + mu * error * rn4(i-(j-1));

end

count = 0;

count2=count2+1;

end

end

end

wAxisCoordinates = [0:length(w1)-1];

%receiver 1

figure(1);

subplot(241);

stem(wAxisCoordinates, abs(w1).^2, ’o’);

ylabel(’|w|^2’);

xlabel(’Index, i, (-)’);

subplot(245);

se_db = 10 * log10(abs(error_log1)+eps);

plot(se_db)

axis([0 (numBits-1) -40 10]);

%receiver 2

subplot(242);

stem(wAxisCoordinates, abs(w2).^2, ’o’);

ylabel(’|w|^2’);

xlabel(’Index, i, (-)’);

subplot(246);

se_db = 10 * log10(abs(error_log2)+eps);

plot(se_db)

axis([0 (numBits-1) -40 10]);

%receiver 3

subplot(243);

stem(wAxisCoordinates, abs(w3).^2, ’o’);

ylabel(’|w|^2’);

xlabel(’Index, i, (-)’);

subplot(247);

se_db = 10 * log10(abs(error_log3)+eps);

86

plot(se_db)

axis([0 (numBits-1) -40 10]);

%receiver 4

subplot(244);

stem(wAxisCoordinates, abs(w4).^2, ’o’);

ylabel(’|w|^2’);

xlabel(’Index, i, (-)’);

subplot(248);

se_db = 10 * log10(abs(error_log4)+eps);

plot(se_db)

axis([0 (numBits-1) -40 10]);

87

B.2 Constellation Plotter

%%%

% JAH_CONSTELLATION_PLOTTER This script plots the demodulated inphase and

% quadrature signals, along with the corresponding 4-QAM constellation,

% based on the signal stored in data, over the range from 0 to 2*pi.

%

% Author: J. Andy Harriman

% Date: June 26, 2006

%%%

%data = xlsread(’data36.xls’);

%import_data36

fi = 10.7e6;

t = time/10^12;

h2=fir1(64,0.05,’low’);

%delta = 0.26; %43.2’

for i=0:0.01:2,

yc = cos(2*pi*fi*t+i*pi);

zc = adc_sDec .* (yc’);

zfc = conv(h2,zc);

ys = sin(2*pi*fi*t+i*pi);

zs = adc_sDec .* (ys’);

zfs = conv(h2,zs);

subplot(311)

plot(t,zfc(1:length(t)));legend([’i = ’ num2str(i) ’*pi = ’ num2str(i*pi*180/pi) ’deg’])

subplot(312)

plot(t,zfs(1:length(t)));legend([’q = ’ num2str(i) ’*pi = ’ num2str(i*pi*180/pi) ’deg’])

subplot(313)

plot(zfc,zfs); grid on

if i == 0.68,

%colors: blue = 0, red = 1

color = 0;

88

for j = 1:10,

if color == 0, %if(blue)

subplot(311)

plot(t,zfc(1:length(t)),’r’);legend([’i = ’ num2str(i) ’*pi = ’

num2str(i*pi*180/pi) ’deg’])

subplot(312)

plot(t,zfs(1:length(t)),’r’);legend([’q = ’ num2str(i) ’*pi = ’

num2str(i*pi*180/pi) ’deg’])

subplot(313)

plot(zfc,zfs,’r’); grid on

color = 1; %color = red

pause(0.5)

else

subplot(311)

plot(t,zfc(1:length(t)),’b’);legend([’i = ’ num2str(i) ’*pi = ’

num2str(i*pi*180/pi) ’deg’])

subplot(312)

plot(t,zfs(1:length(t)),’b’);legend([’q = ’ num2str(i) ’*pi = ’

num2str(i*pi*180/pi) ’deg’])

subplot(313)

plot(zfc,zfs,’b’); grid on

color = 0; %color = blue

pause(0.5)

end

return

end

end

pause(0.05)

%pause

end

89

B.3 QAM Synchronizer

%%%

% JAH_QAM_SYNCHRONIZER This script simulates the transmit and receive

% fuctions of a QAM transceiver. The demodulated signal is then used to

% perform carrier recovery.

%

% Author: J. Andy Harriman

% Date: June 26, 2006

%%%

clear;

nSamples = 4096; %number of samples to take

fs = 80e6; %sampling rate = 80MSPS

samplePeriod = 1/fs;

t = samplePeriod:samplePeriod:(samplePeriod*nSamples); %time in ns

f_if = 10.7e6; %IF frequency

f_i = 100e3; %100 kHz inphase signal

f_q = 250e3; %250 kHz inphase signal

i_in = square(2*pi*f_i*t);

q_in = square(2*pi*f_q*t);

%plot(t,i_in,t,q_in);legend(’i input’,’q input’);

%modulator board

%fc = 2.4e9; %2.4 GHz carrier

fc = 10.7e6;

ic = cos(2*pi*fc*t).*i_in;

qs = sin(2*pi*fc*t).*q_in;

y_tx = ic + qs;

%channel

y_rx = y_tx; %assume channel is perfect

%FPGA board

%NCO sine and cosine outputs for demodulation

phi_deg = 0;

phi_rad = phi_deg * pi/180;

yc = cos(2*pi*f_if*t + phi_rad);

90

ys = sin(2*pi*f_if*t + phi_rad);

%plot(t(1:100),yc(1:100),t(1:100),ys(1:100));legend(’cos’,’sin’);

zc = yc .* y_rx;

zs = ys .* y_rx;

%low pass filter the data

nTaps = 64; %64 tap filter

h1=fir1(nTaps,0.0625,’low’); % cutoff = 5 MHz

zfc = conv(h1,zc);

zfs = conv(h1,zs);

%plot(t,zfc(1:length(t)),t,zfs(1:length(t)));legend(’i output’,’q output’);

%plot(zfc,zfs);

%downsample by 4

%zfc_ds = decimate(zfc,4);

%zfs_ds = decimate(zfs,4);

%carrier recovery loop

h2 = fir1(512,[0.13374 0.13376],’bandpass’); %10.699-10.7001 MHz

i_sync = conv(h2,zc);

q_sync = conv(h2,zs);

test = conv(h2,zc);

N=length(test);

f = [0:(N-1)]*(fs/N);

%plot(f,abs(fft(test)))

%plot(test)

test=test.^2;

%plot(f,abs(fft(test)))

test2 = conv(h2,zs);

test2 = test2.^2;

%plot(f,abs(fft(test2)))

test3 = test+test2;

%plot(f,abs(fft(test3)))

h3 = fir1(512,[0.26749 0.26751],’bandpass’); %21.399-21.4001 MHz

test4 = conv(h3,test3);

91

N=length(test4);

f = [0:(N-1)]*(fs/N);

%plot(f,abs(fft(test4)))

subplot(211)

plot(t,test4(1:length(t)))

subplot(212)

plot(f,abs(fft(test4)))

92

B.4 SignalTapr to MATLABr Example

The script provided below demonstrates how to import data from a SignalTap

.csv file, with the header information removed, into the MATLABr workspace. The

scripts which are used to perform the binary to decimal conversion are provided in

the following section.

%%%

% JAH_IMPORT_DATA This script extracts the binary data stored in the

% variable ’data’, and converts the recovered variables back to decimal.

%

% Author: J. Andy Harriman

% Date: June 26, 2006

%%%

%Extract the data from the appropriate cells

time = data(:,1);

adc = data(:,3:16);

nco_sin = data(:,18:31);

nco_cos = data(:,33:46);

lpm_q = data(:,48:75);

lpm_i = data(:,77:104);

lpf_q = data(:,106:144);

lpf_i = data(:,146:184);

%Combine the values consisting of multiple columns (binary) into their decimal equivalent

[adc_sDec,adc_uDec] = jah_sbin2dec(adc);

[nco_sin_sDec,nco_sin_uDec] = jah_sbin2dec(nco_sin);

[nco_cos_sDec,nco_cos_uDec] = jah_sbin2dec(nco_cos);

[lpm_q_sDec,lpm_q_uDec] = jah_sbin2dec(lpm_q);

[lpm_i_sDec,lpm_i_uDec] = jah_sbin2dec(lpm_i);

[lpf_q_sDec,lpf_q_uDec] = jah_sbin2dec(lpf_q);

[lpf_i_sDec,lpf_i_uDec] = jah_sbin2dec(lpf_i);

93

B.4.1 Binary-to-Decimal Conversion Scripts

function [signedResult,unsignedResult] = jah_ubin2dec(ubin);

%%%

% JAH_UBIN2DEC This function returns the decimal equivalent, both a

% signed and an unsigned version, of the unsigned binary NxM array of

% numbers passed in.

%

% Parameters:

% ubin = the array of unsigned binary values

%

% Author: J. Andy Harriman

% Date: April 27, 2006

%%%

numBits = length(ubin(1,:));

if(numBits <=1),

disp(’Error: The number of bits must be greater than or equal to 1.’)

result = NaN;

return

end

k = 1;

for j = 1:1:size(ubin,1),

signedResult(k) = 0;

if(ubin(j,1)), %MSB is set

signedResult(k) = 0-2^(numBits);

end

for i = 2:1:numBits,

signedResult(k) = signedResult(k) + ubin(j,i) * 2^(numBits-i);

end

k = k + 1;

end

k = 1;

for j = 1:1:size(ubin,1),

unsignedResult(k) = 0;

94

for i = 1:1:numBits,

unsignedResult(k) = unsignedResult(k) + ubin(j,i) * 2^(numBits-i);

end

k = k + 1;

end

95

function [signedResult,unsignedResult] = jah_sbin2dec(sbin);

%%%

% JAH_SBIN2DEC This function returns the decimal equivalent, both a

% signed and an unsigned version, of the signed binary NxM array of

% numbers passed in.

%

% Parameters:

% sbin = the array of signed binary values

%

% Author: J. Andy Harriman

% Date: March 24, 2006

%%%

numBits = length(sbin(1,:));

if(numBits <=1),

disp(’Error: The number of bits must be greater than or equal to 1.’)

result = NaN;

return

end

k = 1;

for j = 1:1:size(sbin,1),

signedResult(k) = 0;

if(sbin(j,1)), %MSB is set

signedResult(k) = 0-2^(numBits);

end

for i = 1:1:numBits,

signedResult(k) = signedResult(k) + sbin(j,i) * 2^(numBits-i);

end

k = k + 1;

end

for j = 1:1:size(sbin,1), %invert the MSB

if(sbin(j,1)),

sbin(j,1) = 0;

else

96

sbin(j,1) = 1;

end

end

k = 1;

for j = 1:1:size(sbin,1),

unsignedResult(k) = 0;

for i = 1:1:numBits,

unsignedResult(k) = unsignedResult(k) + sbin(j,i) * 2^(numBits-i);

end

k = k + 1;

end

97

Appendix C

Design Source Code

Due to the fact that the baseband design is primarily composed of Altera’sr pro-

prietary megacore functions, and not code developed by the author, the final system

design files are included in the enclosed CD-ROM. However, the code for the PN

generator module is provided below.

C.1 PN Generators

/***

*

* This module implements a 10 register PN Generator Circuit.

*

* Author: J. Andy Harriman

* Date: June 26, 2006

*

**/

module PNGenerator(clk, enable, reset, taps, dout);

input clk;

input enable;

input reset;

input [9:1] taps;

output dout;

98

reg dout;

reg [9:0] temp;

reg [9:0] state;

always @(posedge clk or posedge reset)

begin

if(reset)

begin

dout = 1’b0;

state = 10’b0000000001;

//dout = state[0];

end

else if(enable)

begin

dout = state[0];

temp = state;

state[8:0] = temp[9:1];

state[9] = temp[0]^(taps[1]&temp[1])^(taps[2]&temp[2])^(taps[3]&temp[3])^(taps[4]&temp[4])^

(taps[5]&temp[5])^(taps[6]&temp[6])^(taps[7]&temp[7])^(taps[8]&temp[8])^(taps[9]&temp[9]);

//dout = state[0];

end

end

endmodule

99

/***

*

* This module outputs eight different tap configurations for

* the PN Generator. Each of the tap configurations produces

* a maximal length sequenc of 1023 bits.

*

* Author: J. Andy Harriman

* Date: June 26, 2006

*

**/

module TapConfigs(taps1,taps2,taps3,taps4,taps5,taps6,taps7,taps8);

output [9:1] taps1,taps2,taps3,taps4,taps5,taps6,taps7,taps8;

/*

10-bit LRS tap positions... (this is not an exhaustive list)

1. (10,3,0)

2. (10,4,3,1,0)

3. (10,5,2,1,0)

4. (10,5,3,2,0)

5. (10,6,5,2,0)

6. (10,6,5,3,2,1,0)

7. (10,7,0)

8. (10,7,3,1,0)

The PNGenerator block assumes that 10 and 0 are already set (requirement for LRS generator circuit).

Therefore, this block specifies only tap positions 9 through 1 for each configuration.

*/

assign taps1 = 9’b000000100;

assign taps2 = 9’b000001101;

assign taps3 = 9’b000010011;

assign taps4 = 9’b000010110;

assign taps5 = 9’b000110010;

assign taps6 = 9’b000110111;

assign taps7 = 9’b001000000;

assign taps8 = 9’b001000101;

endmodule

100

Appendix D

Custom PCB Board Designs

This section provides the schematics, board layouts, and simulation results for

the various PCB boards developed for this thesis.

D.1 FPGA to Hittite Signal Conditioning Circuit

Figures D.1 and D.2 show the schematic for the board, while Figure D.3 illus-

trates the PCB board layout, and Figure D.4 provides the PSpicer simulation results

for the circuit design.

D.2 Hittite Bias Circuit

Figure D.5 provides the schematic for the Hittite bias circuit design.

D.3 Clock Signal Level Translator

Figure D.6 illustrates the circuit schematic for the clock signal level translator

board design. The PCB board layout for this design is shown in Figure D.7.

101

Figure D.1: Hittite Signal Conditioning Circuit Schematic, Page 1/2

102

Figure D.2: Hittite Signal Conditioning Circuit Schematic, Page 2/2

103

Figure D.3: Hittite Signal Conditioning Circuit PCB Layout

104

D
a
t
e
/
T
i
m
e

r
u
n
:

0
6
/
2
1
/
0
6

*
*

P
r
o
f
i
l
e
:

"
S
C
H
E
M
A
T
I
C
1
-
T
F
"

[

C
:
\
D
o
c
u
m
e
n
t
s

a
n
d

S
e
t
t
i
n
g
s
\
A
n
d
y
\
D
e
s
k
t
o
p
\
M
a
s
t
e
r
s

W
o
r
k
\
H
i
t
t
i
t
e

S
i
g
n
a
l

C
o
n
.
.
.

T
e
m
p
e
r
a
t
u
r
e
:

2
7
.
0

D
a
t
e
:

J
u
n
e

2
1
,

2
0
0
6

P
a
g
e

1

T
i
m
e
:

0
7
:
5
3
:
4
6

(
A
)

T
F
.
d
a
t

(
a
c
t
i
v
e
)

T
i
m
e

0
s

0
.
2
u
s

0
.
4
u
s

0
.
6
u
s

0
.
8
u
s

1
.
0
u
s

V
(
V
f
p
g
a
:
+
)

V
(
V
o
u
t
)

0
V

0
.
4
V

0
.
8
V

1
.
2
V

1
.
6
V

2
.
0
V

2
.
4
V

Figure D.4: Hittite Signal Conditioning Circuit Simulation

105

VCC = 5 V

C1
1µF

R1
2.4 kΩ

R2
1 k Ω

P1

VCC = 5 V

C2
1µF

R3
2.4 k Ω

R4
1 kΩ

P2

C3
100pF

P3

Hittite Direct Quadrature Modulator Bias Circuit
By:J. Andy Harriman, May 31st 2006

To In or Qn To In or Qn

To LOn

Vcm = 1.5 V Vcm = 1.5 V

Figure D.5: Hittite Bias Circuit Schematic

Figure D.6: Clock Level Translator Circuit Schematic

106

Figure D.7: Clock Level Translator Circuit Layout

107

D.4 GPIO-to-SMA Testpoint Board

This board was created for use as a debugging tool. It provides eight SMA

testpoint connections to user programmable GPIO pins in the FPGA. The schmatic

and layout for this PCB board can be found in Figures D.8 and D.9 respectively.

Figure D.8: GPIO-to-SMA Testpoint Board Schematic

108

Figure D.9: GPIO-to-SMA Testpoint Board Layout

109

Appendix E

Modifications to the Power Supply

In order to make use of a PC power supply for general purpose applications, a

dummy load must be applied in order for the supply to switch on. For the purposes

of this thesis, additional features such as a power switch and status LED were added,

but are not strictly required. Table E.1 lists the internal wiring of most modern power

supplies. This information is generally provided on the label of the power supply.

Table E.1: Power Supply Wiring
Wire Colour Purpose

White -5 V
Red +5 V

Black 0 V
Yellow +12 V
Blue -12 V

Brown Sense
Orange +3.3 V
Purple +5V Standby
Grey Power is on
Green Turn DC on

Figure E.1 illustrates the wiring changes required to create the power supply

used for this thesis. Note that the +5 V standby line is disconnected, and that the

110

appropriate power lines were connected to their corresponding banana connectors.

Grey Black

Grey Black

Grey Black

330 Ω

13 Ω, 0.75 W

Brown Orange

Figure E.1: Power Supply Wiring Modifications

111

Vita

Candidate’s full name: James Andrew Harriman

University attended: University of New Brunswick, B.Sc.E., 2004

Publications:

J. Andy Harriman, Brent R. Petersen, and Mary E. Kaye, “A reconfigurable four-

channel transceiver testbed with signalling-wavelength-spaced antennas under cen-

tralized FPGA control,” IEEE Proceedings of the 4th Annual Communications Net-

works Services and Research Conference (CNSR 2006), vol. 1, pp. 311-313, 2006.

	Dedication
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Background and Literature Review
	1.2 Thesis Contribution
	1.3 Thesis Structure

	2 System Design Process
	2.1 Requirements Analysis
	2.1.1 Design Decisions

	2.2 System Architecture Design and Hardware Selection
	2.2.1 FPGA Development Platform
	2.2.2 Transmit Side
	2.2.3 Receive Side
	2.2.4 Baseband Processing
	2.2.5 Centralized Control
	2.2.6 Testing and Debugging Equipment

	3 System Implementation
	3.1 Transmit Side
	3.1.1 Data Generation
	3.1.2 FPGA Interfacing to the Hittite Modulator Board
	3.1.3 Data Rate Calculation

	3.2 Receive Side
	3.2.1 Clock Distribution
	3.2.2 Sampling the Data

	3.3 Baseband Processing
	3.3.1 Data Recovery and Demodulation
	3.3.2 Carrier Recovery
	3.3.3 LMS Adaptive Filtering

	3.4 Centralized Control
	3.4.1 Black Box® RS-232 Control

	3.5 System Configuration

	4 System Development and Testing
	4.1 Component Testing and Integration
	4.2 Interfacing SignalTap® and MATLAB®
	4.3 Implementation Issues

	5 Summary and Future Work
	5.1 Summary of Work Completed
	5.2 Future Work

	Bibliography
	Appendices
	A System Specifications
	A.1 Altera® Pinouts to AD6645 ADC Boards
	A.2 Cabling and System Interconnections
	A.3 Black Box® COS Configuration
	A.4 System Test Setup

	B MATLAB® Simulation and Debugging Source Code
	B.1 LMS Adaptive Filter Array
	B.2 Constellation Plotter
	B.3 QAM Synchronizer
	B.4 SignalTap® to MATLAB® Example
	B.4.1 Binary-to-Decimal Conversion Scripts

	C Design Source Code
	C.1 PN Generators

	D Custom PCB Board Designs
	D.1 FPGA to Hittite Signal Conditioning Circuit
	D.2 Hittite Bias Circuit
	D.3 Clock Signal Level Translator
	D.4 GPIO-to-SMA Testpoint Board

	E Modifications to the Power Supply
	Vita

