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Abstract

Techniques to reduce the effect of co-channel interference (CCI), intersymbol

interference (ISI) and noise in a time-division multiple access (TDMA) radio cellular

radio system will allow an increase in network capacity without a loss in quality of

service.

Two new analytical results have been derived and presented. The first result is

the probability of error of a method for blind maximum likelihood (ML) data and

channel estimation in the presence of noise. The second result is the mean square

error of a displaced linear equalizer with infinite length on a time-varying channel

in the presence of additive white Gaussian noise. These results provide measures of

effectiveness of the blind maximum likelihood data and channel estimation method

and the displaced linear equalizer used in the receiver.

In order to achieve good system performance in a fast time-varying environment,

a novel block adaptation with blind channel estimation strategy has been developed.

It involves combinations of channel estimation and interpolation. With this strategy,

in addition to the channel estimates obtained from known sequences in a TDMA

time slot, channel estimates are obtained using small sequences of unknown data and

the ML blind data and channel estimation method. The time-varying channel during
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a time slot can then be reconstructed by interpolating these channel estimates.

Subsequently, the equalizer coefficients can be determined by using the Wiener-

Hopf equations. A similar strategy can be applied to deal with time variations in

the CCI. The effectiveness of this novel block adaptation strategy has been proven

in the IS-136 application.
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Chapter 1

Introduction

1.1 Motivation

The global demand for wireless communications has grown rapidly over the

last decade and the growth is predicted to continue over the next decade [2–10].

The attraction of wireless networking is its ability to offer mobility and portability

which conventional wired systems lack. In addition, wireless networking provides

connectivity with minimal infrastructure requirements. With this advantage, it can

support an initially sparse subscriber base with low penetration rate. Wireless tech-

nology also provides “instant networks” in countries which lack existing copper or

fiber infrastructure, and makes telecommunication service possible for some remote

areas [6], where both time and cost to deploy a wired network are prohibitive.

For cellular phone usage only, the annual increase in cellular subscribers world

wide averaged about 40% over the past decade [8], leaping from four million in

1988 to 123 million in 1995 [2], with a projection of over 590 million by the end of

year 2001 [8]. It is anticipated that, by 2010, more than half of all communications
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will be carried by mobile cellular networks [5], and wireless technology will become

the primary source for voice communication, with a total market penetration of

50-60% [8].

The potential market for wireless communications is enormous, especially in

the developing countries. The land-line telephone densities in countries like China,

India, Pakistan and the Phillipines, are 30 times lower than in some countries in

North America and Europe. It is estimated that approximately three billion people

have no phone at home [2] and they become a huge source for potential cellular

subscribers.

As a mainstream communication medium with an enormous potential to grow,

cellular technology is poised to take on new challenges, providing high-speed data

transmission services as well as voice communication services to users on the move.

This gives rise to the third generation cellular networks with the goal of providing

personal communication services any time and anywhere. The major improvement

of the third generation cellular networks is the provision of multiple-data-rate ser-

vices. High data rate enables a broader range of services, including wireless Internet

access, video conferencing, wireless e-mail and multimedia, beyond the traditional

voice only services. According to analysts, by the year of 2003, there will be more

than one billion wireless phones with Internet access capabilities [3]. These addi-

tional high-speed data services, in turn, are fueling the demand for wireless cellular

communications.

The rapid growth of the wireless mobile community and its demand for high-

speed communications stand in contrast to the rather scarce spectrum resource

available. It is of growing interest to maximize the capacity of the network system

in the most cost-efficient manner. Therefore, it is essential to employ some feasible
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receiver schemes at the base station to achieve good system performance, and hence

high system capacity.

This research thesis investigates various receiver schemes that can potentially

provide good performance in time division multiple access (TDMA) cellular radio

transmission. The major performance limiting factors in TDMA cellular commu-

nication are the interference and the multipath fading environment. Interference

includes intersymbol interference (ISI) and co-channel interference (CCI); the effect

of interference can be reduced by the use of equalization. The multipath fading

environment where transmission is carried out causes the channel to vary with time

in an unpredictable manner. It is essential to employ some advanced techniques

to estimate the time-varying channel accurately so that the transmitted data sig-

nal can be retrieved at the receiver end with minimum error. Therefore, in this

research thesis, equalization and channel estimation techniques are studied and dis-

cussed, and various combinations of equalization and channel estimation techniques

are investigated in some practical applications. Evaluations of different techniques

are based on the system performance they offer and the complexity for receiver

implementation.

1.2 Literature Survey

In this section, a summary of some of the previous work related to the four sub-

ject areas, namely, equalization techniques, CCI suppression techniques, channel

estimation techniques and strategies dealing with time-varying channels, is pre-

sented. This is not meant to be a comprehensive literature survey. Its purpose is to

provide the readers with the background references on some of the ongoing research
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in the subject areas.

1.2.1 Equalization Techniques

1.2.1.1 Linear and Non-Linear Equalization

Depending on the linearity of the digital filter, an equalizer falls into two cate-

gories: linear equalizer (LE) and non-linear equalizer. The LE is well known for its

simplicity in implementation and analysis. However, it causes noise enhancement at

channel spectral nulls, and it is often not suitable for applications where frequency

selective fading takes place [11].

Non-linear equalizers, such as maximum likelihood sequence estimation (MLSE)

and decision feedback equalization, can more effectively deal with the frequency

selective fading problem. In fact, MLSE is the optimum equalizer in the presence of

ISI and white noise in the sense of minimizing the probability of sequence error [12,

13], given knowledge of the channel impulse response. Despite its optimality, MLSE

has two inherent limitations: the memory and computational requirement for metric

computations, and the decision delay, which makes it difficult to track the fast fading

channels in high-speed mobile communications [11,13–16]. It is suggested that the

computational burden can be eased by reducing the number of states and sequences

in the MLSE detector [17]. The decision delay problem can also be removed by

using the zero-delay tentative decisions extracted from the surviving paths instead

of the final decision at the output of the MLSE, and good tracking performance can

be offered by the adaptive MLSE [14–16,18,19].

Decision feedback equalization is a suboptimum and less complex equalization

technique, compared to MLSE. A decision feedback equalizer (DFE) consists of a
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feed forward filter which is used to minimize the effects of noise and precursors

caused by the future symbols, and a feedback filter whose task is to properly weight

the decision of the previous symbol so that the postcursors caused by the previous

symbol can be cancelled out. In this way, with the correct past decision, a DFE

can completely eliminate the ISI introduced by the selective fading channel and it is

widely used in mobile communication applications. Some of these DFEs are modi-

fied to meet the need of a specific application. Belfiore et al. proposed a distortion

predictive DFE whose feedback filter is a predictor, driven by the difference between

the outputs of the feed forward filter and the decision device [20]. As a result, the

noise and the residual ISI at the output of the feed forward filter can be predicted

by the feedback filter and subtracted from the feed forward filter output. In appli-

cations of fast fading channels, a bi-directional DFE is used to locate the deep fade

and recover data after it occurs [21]. As implied by its name, a bi-directional DFE

operates in both forward and reverse directions.

1.2.1.2 Adaptive Equalization

For the last few decades, adaptive signal processing theory has been well estab-

lished. As suggested by the word adaptive, this type of equalization can self-adjust

to the unknown environment to provide reliable performance. For more background

information, the readers are referred to the textbook by Haykin [22] and papers by

Qureshi [23] and Proakis [12].

Adaptive equalization techniques are widely used in many practical applications

due to their robustness in the sense that they do not require any prior information

of the channel and the transmitted data [11, 22]. In mobile radio communication

applications, an adaptive equalizer can adjust not only to the unknown channel,
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but also the time-varying characteristics of the channel [14, 16,24,25]. An array of

adaptive equalizers can also be used in flat fading applications to perform diversity

combining to cancel interference [25,26].

In order to obtain the gain provided by diversity combining and compensate

for ISI at the same time, Scott proposed a digital multichannel basedband filter

as an appropriate structure for receivers with both antenna diversity and adaptive

equalization capability [27]. This multichannel baseband filter can also be a DFE

with fractionally-spaced Feedforward filter [27]. This filter structure will be used in

the applications in this thesis.

1.2.1.3 Fractionally Spaced Equalization

In a fractionally spaced equalizer (FSE), the delay between taps is only a fraction

of the symbol duration. An FSE is usually used so that the fractionally spaced

sampling of the input signal to the FSE meets the Nyquist sampling criterion to

avoid aliasing [12].

The use of an FSE has other advantages compared with a conventional T -spaced

equalizer. Simulation results given in the paper by Gitlin et al. [28] have demon-

strated its effectiveness over the T -spaced equalizer. This superior performance can

be explained by the fact that it realizes the optimum linear receiver. In fact, an

FSE combines the functions of a matched filter, which reduces the effect of the

noise, and equalization, which compensates for the ISI, into one single filter struc-

ture [12, 23, 28]. Consequently, it can compensate for severe delay distortion more

effectively with less noise enhancement and its performance is insensitive to the

sampling phase [23,28].
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1.2.2 CCI Suppression Techniques

The first approach to CCI suppression is the use of diversity techniques. In

this approach, several replicas of the same information signal are transmitted over

statistically independent paths in space, time or frequency, depending on the type

of diversity. Diversity techniques were originally used to combat fading in the

multipath environment [11]. Since the same interfering signals are present in the

received signal from each diversity path, these received signals can be combined

to suppress the interfering signals. Winters first showed that the signals from Ld

receiving antennas can be combined to suppress the interfering signals, by the use

of an optimum combiner [26]. Due to its interference suppression capability, the

system performance offered by the optimum combining technique is superior to the

traditional maximal ratio combining technique where interference at each receiving

antennas is assumed to be independent [26]. Calderbank et al. in a recent paper

reported that time diversity provided by repetitive channel coding can also be used

for interference cancellation [29]. Results from both space and time diversity com-

bining techniques showed that receiver receiving signals from Ld different antennas

or time slots can completely eliminate Ld − 1 interfering signals and an Ld-fold

increase in user capacity can be achieved [29, 30]. Based on these results, Winters

et al. generalized that with Ld + Nd antennas in the receiver, Nd − 1 interfering

users can be nulled out, and each of the Nd users can also benefit from the Ld + 1

path diversity improvement [31]. Space and time diversity can also be combined in

applications of CCI cancellation [29,32].

Instead of eliminating the interfering signals, the multi-user detection techniques

in the second approach to CCI suppression, are used to demodulate all users jointly.

Verdú showed that the optimum multi-user detector consists of a bank of single-user
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matched filters followed by Viterbi algorithm (VA) for all users and its complexity

increases exponentially with the number of users [33]. While the optimum solution

may be prohibitively complex, designing and applying suboptimum solutions to

practical problems is a more attractive research area [34–37]. Suboptimum receiver

structures such as the truncated T-MLSE using only a portion of the path metric,

and T/2-MLSE are reported to offer good interference rejection capability [36].

With only one T/2-spaced noise whitening filter for each receiving antenna, a T/2-

MLSE receiver is more suitable for implementations [36]. While in these two MLSE

based receivers, perfect channel estimates are assumed to be available for all users in

the system, they can be estimated using the ML criterion with training sequences,

as shown in the paper by Ranta et al., where a joint MLSE (JMLSE) detector is

used with the Viterbi algorithm [37].

CCI cancellation can also be achieved by introducing interference cancellation

into the channel estimation process. This is accomplished by estimating and incor-

porating the impairment correlation matrix, where non-zero off-diagonal elements

allow interference to be cancelled, in channel estimation and tracking [38].

1.2.3 Channel Estimation Techniques

Depending on the availability of the training sequence, channel estimation tech-

niques can be coarsely classified into two categories: non-blind and blind techniques.

When a training sequence is available, estimation of the channel is straight

forward by using one of the criteria for optimization, such as least square estimation

(LSE), maximum likelihood estimation (MLE) or maximum a posteriori estimation

(MAP) [37,39–42]. The LSE method requires no a priori statistical information of

the noise and the channel, whereas the MLE method requires the statistics of the
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noise and it is the best linear unbiased estimator for the estimation problem [42].

When the noise is uncorrelated, both the LSE and MLE yield the same solution.

On the other hand, MAP requires both statistical information on the noise and the

channel, and it is not as robust as the LSE and MLE. The channel can also be

estimated using adaptive algorithms, such as recursive least-squares (RLS), least-

mean-square (LMS) and the Kalman filter algorithm [13, 15, 16, 22, 38, 43, 44]. The

Kalman filter algorithm is designed for applications of dynamic systems and it is

robust in estimating and tracking the time-varying channels.

For blind channel estimation techniques, there are two well known approaches

in the literature: second- and higher- order statistics-based methods and joint data

and channel estimation (JDCE) methods.

Without a training sequence, the algorithms in the first approach use second-

order cyclostationary statistics of the oversampled received signal [45,46] or higher-

order statistics of the T -spaced received signal [22, 47, 48] to identify the unknown

channel. Since these statistics convey phase information, they allow recovery of the

phase, as well as the magnitude response of the unknown, possibly non-minimum

phase channel. However, this class of algorithms exhibits slow convergence due to

the fact that large number of samples must be processed in order for the estimates of

the statistics to be accurate. Especially in the case of digital mobile communications,

these algorithms simply may not be able to track the variations of the environment.

Therefore, these blind algorithms may not be suitable for applications where rapid

acquisition is a necessary requirement.

The ML-based JDCE methods are proposed to improve the rate of convergence

in blind system identification, at the expense of computational complexity. The

straight forward, yet exhaustive solution described in the paper by Seshadri [17] in-
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volves two steps: least square channel estimation for all the possible data sequences,

and the selection of the data sequence and its corresponding channel estimate which

maximize the likelihood of the received signal. This solution is optimum yet its com-

plexity grows exponentially with the size of the data record. In his paper, Seshadri

proposed an optimum blind trellis search algorithm in which complexity increases

linearly with the size of the data record [17]. While these optimum solutions may be

prohibitively complex to implement, except for small data alphabet size and small

data record, designing for suboptimum algorithms is an active research area. The

segmental K-means algorithm and the expectation maximization (EM) algorithm

iterate between estimations of channel and data until convergence is achieved [49].

Since both algorithms rely on the quality of the initial guess of the channel, high

error rate led by a bad initial channel estimate is inevitable and global convergence

cannot be guaranteed. A suboptimum blind trellis search algorithm, in which more

than one best estimate of the transmitted data sequence will be retained into each

state, is reported to exhibit superior convergence property and offer excellent per-

formance [17]. In fact, this algorithm can deal with channels with fast fading rate

relative to the symbol rate, and provide reliable performance for the EIA Interim

Standard (IS-54) mobile communication system [14]. The JDCE method proposed

by Chen et al. uses a genetic algorithm (GA) to select populations for channel esti-

mates for each of which a VA is employed to decode data [50]. On the other hand,

the “quantized” channel approach to JDCE operates over a grid in the channel space

that could be made finer by using the ML criterion to confine the channel estimate

in the neighborhood of the unknown channel [51]. This algorithm enables efficient

parallel implementation of VA which is employed to decode data [51]. Both JDCE

methods with GA and with the quantized channel approach have demonstrated
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good convergence properties.

1.2.4 Strategies Dealing with Time-Varying Channels

In mobile communications, the fact that the unknown communication channel

also varies rapidly with time makes reliable transmission of data even more difficult

to accomplish. In the past decades, various strategies have been proposed to deal

with the fast time-varying environment. Some of these strategies are summarized

in this section.

Tracking of the variations in the fast time-varying channel using various adaptive

algorithms is an effective approach to combat fading. Since training is only available

for a very short period during a TDMA time slot, update of the channel information,

and hence the equalizer, relies on the decoded data. Therefore, tracking is usually

decision directed and the performance of a receiver employing such a tracking scheme

depends heavily on the accuracy of the past decisions. These adaptive algorithms

include the well known LMS and RLS algorithms [13,16,24,40,52]. In general, the

LMS algorithm displays better tracking behavior than the RLS algorithm since the

RLS algorithm is model dependent [24]. Haykin et al. proposed extended forms of

the RLS algorithm which demonstrate superior tracking behavior compared with

the standard RLS and LMS algorithm [24]. This can be explained by the fact

that the RLS algorithm is a special form of Kalman filter. By incorporating some

good tracking properties of the Kalman filter into the standard RLS algorithm, the

extended RLS should track better [24]. The Kalman filter is well known for its

excellent tracking capability and it is in fact the optimum linear tracking device

on the basis of second-order statistics [24]. It is also widely used in applications

of tracking fast time-varying communication media and superior performance is



1.2 Literature Survey 12

reported [15,38,44].

A simple way to deal with time-varying channel is the use of a bi-directional

equalizer. It is an equalizer which operates in both forward and reverse directions

to process signal before and after the training sequence. As simple as it is, results

showed that it is an effective strategy [21,53,54], provided that the known training

sequence occurs as often as deep fades [21].

At a moderate fading rate, both the decision-directed tracking strategies and

bi-directional equalization have proven to be effective. However, at a high fading

rate, such as 100 Hz for an application with symbol Rate of 24.3 kHz, these strate-

gies are no longer feasible due to the error propagation problem in the decision

directed strategies [55], and more than one deep fade may occur between two train-

ing sequences in bi-directional equalization. In this case, an increase in occurence

of known channel samples during a time slot is required. This can be achieved by

either increasing the frequency of training at the expense of reduction in system

throughput, or some other means. Lo et al. proposed a block adaptation strategy in

which more interpolated channel estimates are used [55]. These channel estimates

are obtained by interpolating those estimated from training sequences from several

adjacent time slots by using a raised cosine lowpass interpolator [55]. Despite the

inherent processing delay, which could be up to a few time slots, this method offers

good immunity to fast fading and hence better system performance [41,55,56].

Another approach to the fast fading problem involves the subspace expansion

of the time-varying parameters of the channel [57, 58]. By expanding the time-

varying channel coefficients onto a set of basis sequences, from which time-invariant

parameters are to be determined, the problem is transformed to a time-invariant

one [57]. The performance offered by such an approach depends on the model of
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the channel, as well as the choice of basis sequences.

1.3 Thesis Contributions

This research thesis mainly focuses on equalization and channel estimation tech-

niques and the goal is to find some combination of these techniques that can provide

good performance for TDMA systems. The contributions of this thesis consist of

practical algorithms and methods developed to achieve this goal, as well as the

theoretical analyses of some of the existing and new methods.

The first contribution is the development of an exhaustive ML blind data, chan-

nel and co-channel estimation method which is an extension of the exhaustive ML

blind data and channel estimation method described by Seshadri [17]. This method

allows the estimation of the co-channel and interfering signal, which could lead to

CCI suppression.

The second contribution is the development of a Doppler frequency estimation

technique using cross correlation of the transmitted and received signal, which allows

successful modeling of the time-varying channel. In the work of Tsatsanis et al. [57],

frequency estimation is accomplished by using the autocorrelation and the fourth-

order statistics of the received signal. By using the cross correlation, accuracy of

the frequency estimation can be improved.

The third and the fourth contributions are the two equalization techniques that

deal with time-varying channels, the displaced equalizer and the curve fitting tech-

niques. The displaced equalizer requires no interpolation like the fixed equalizer

but its performance is better. This equalizer only operates in the forward direction,

whereas the bi-directional equalizer [21] and the MLSE equalizer used in GSM op-
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erate in both forward and reverse directions. The curve fitting technique is more

complex but offers better performance. Both of these techniques are used to deal

with time-varying channels.

The novelty of this thesis is also demonstrated by the formulation of the block

adaption with blind channel estimation strategy to deal with the fast time-varying

channel within a TDMA time slot. This strategy involves combinations of channel

estimation and interpolation methods. In a TDMA time slot, there are usually

one or two known sequences and with the channel estimates obtained from these

sequences, it might be insufficient to predict the time variations between known

sequences. In this strategy, more channel estimates can be obtained together with

small sequences of unknown data by using the ML blind data and channel estimation

method. The time-varying channel during a time slot can then be reconstructed

by interpolating these channel estimates using one of the interpolation methods

and the coefficients of the equalizer can be determined by using the Wiener-Hopf

equations. A similar strategy can be applied to deal with the time variations in the

co-channel as well in order to suppress the CCI.

In addition to the development of methods and algorithms, this thesis also makes

theoretical contributions. The first theoretical contribution deals with the proba-

bility of error analysis of the effect of noise on the ML blind data and channel

estimation method. The derivation of an upper bound for the probability of select-

ing a wrong channel estimate is also presented.

The second and the most important theoretical contribution is the MSE analysis

of a displaced LE with infinite length on fading channels. An expression of the MSE

of the displaced LE on noisy fading channels is also derived.



1.4 Thesis Organization 15

1.4 Thesis Organization

The outline of the thesis is given in the table of contents. In this section, the

organization of the thesis is described in more detail.

In Chapter 1, the motivation contrasts the increasing demand for service with

limited bandwidth resource in the existing cellular market, and suggests equaliza-

tion and channel estimation techniques to improve the performance, and hence, the

capacity of a TDMA system. The previous work related to the four subject areas –

equalization techniques, channel estimation techniques, CCI suppression techniques

and strategies dealing with time-varying channels – is summarized in the litera-

ture survey section. The thesis contributions section highlights some of the novel

achievements of this thesis and this section describes how this thesis is organized to

achieve the goal.

Chapter 2 describes a model of the digital wireless communication system which

consists a transmitter, a channel and a receiver. With these models, the statistical

properties of the transmitted data, the noise and the interference are discussed.

Some commonly used models for the multipath fading channel and its variations

are presented. Two receiver types, the continuous-time infinite-length LE and DFE

are also considered.

In Chapter 3, the major contributions of this thesis, which involves algorithm

development and theoretical analysis, are described in detail. In the channel es-

timation area, an exhaustive ML blind data, channel and co-channel estimation

technique and a Doppler frequency estimation technique, both extended from the

previous work, are proposed. The sign ambiguity problem and the probability of

error associated with blind data and channel estimation are investigated. The two

proposed equalization techniques dealing with time-varying channels are the dis-
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placed equalizer and the curve fitting equalizer. In order to characterize and equal-

ize the time-varying channel accurately and efficiently, a block adaptation technique

with blind channel estimation is proposed, which involves combinations of different

channel estimation and interpolation techniques. An expression for the MSE of a

displaced LE with infinite duration under A time-varying channel is also derived at

the end of the chapter, as the result of a novel theoretical analysis.

Chapter 4 shows the application of some of the above techniques in the 800 MHz

operation of the EIA Interim Standard 136 (IS-136) TDMA cellular system. This

chapter first shows some background information and a description of the IS-136

system. The performance of three receiver types, namely the adaptive DFE, the

standard channel estimation based DFE and the DDFE are studied and compared.

The complexity associated with each receiver type is also discussed.

Chapter 5 presents the application to the IS-136 system at a carrier frequency

of 1.9 GHz. Compared to the 800 MHz case, the system in this application expe-

riences a Doppler frequency twice as high, and the faster channel variations in this

application makes predicting the time-varying channel more difficult. Performance

of various LE and DFE receivers, including bounds and partial bounds, where per-

fect channel estimation is assumed, as well as the performance with ML blind data

and channel estimation is presented and compared. In order to verify some of the

theoretical analysis performed in Chapter 3, simulation results are also presented

as a comparison, and the difference between theoretical and simulated results is ex-

plained. Complexity of receivers with different channel estimation and interpolation

techniques and different equalizer types is also studied and compared at the end of

the chapter.

Chapter 6 concludes the thesis with a summary of work accomplished in each
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chapter, followed by suggestions for possible extensions of the research topics of this

thesis.



Chapter 2

System Descriptions

The purpose of a communication system is to transmit an information-bearing

signal from one location to another. In digital communications, the digital infor-

mation is converted into analog waveforms that match the characteristics of the

communication channel before it can be transmitted over the channel. This con-

version is often performed at the transmitter. Due to its inherent limitations, the

communication channel is usually corrupted by noise and interference. The goal of

the receiver is to reproduce the original information-bearing signal which is distorted

by the impaired communication channel.

Figure 2.1 shows a baseband model of the digital wireless communication system.

The basic elements of the communication system are shown here: the transmitted

information symbol bn, the transmitter with a pulse shaping filter with impulse

response p(t), the channel with impulse response c(t), the baseband noise η(t), the

interference ν(t), the receiver and the estimated symbol b̂n at its output. A number

of basic assumptions are made in this model. It is assumed that the signal of

interest and the signals of the interferers are modulated using a linear modulation
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bn s(t)
p(t) c(t) +

r(t) bn
^

η(t)

Receiver

ν(t)

Figure 2.1: Baseband model of a digital wireless communication system

scheme and they are all transmitted at the same symbol rate 1/T Hz. Furthermore,

the discussions in this chapter are limited to baseband transmission only, and the

conversion between baseband and passband representations is detailed in the work

of Proakis [11].

2.1 Transmitter

The input to the transmitter {bn} is an encoded information-bearing symbol

which is obtained by mapping the binary bits using one of the encoding schemes.

These transmitted symbols are complex valued, in general. They are mutually

uncorrelated with unit variance and zero mean, that is,

E[bn] = 0 (2.1)

and

E[bnbm
∗] = σb

2δn−m, (2.2)

where �∗ denotes the complex conjugate of �, σb2 is the variance of the transmitted
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data and it is unity, and δn is the discrete-time impulse function defined as

δn =




0, n �= 0

1, n = 0.
(2.3)

The notation E[�] in Equations 2.1 and 2.2 denotes mathematical expectation.

The transmitter modulates the information-bearing symbol upon an analog real

signal pulse waveform p(t), which shapes the spectrum of the transmitted signal.

For each symbol, a pulse is produced. The signal at the output of the transmitter is

a sequence of pulses centered at nT , with amplitude bn, assuming linear modulation

schemes [11,59]:

s(t) =
∞∑

n=−∞

bnp(t− nT ). (2.4)

The pulse p(t) is band-limited to W , |f | ≤W , where W is the channel bandwidth.

Since the communication channel is also band-limited to W , the purpose of pulse

shape is to band-limit the transmitted signal. Therefore, the transmitted signal has

a band-limited frequency response characteristic S(f).

2.2 Channel

As shown in Figure 2.1, the communication channel is modeled by a channel

impulse response c(t), additive noise η(t) and additive interference ν(t). It is a

common practice, for convenience, to combine the pulse used in the transmitter
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with the channel impulse response to obtain an overall channel, denoted by h(t):

h(t) = p(t) 0 c(t), (2.5)

where symbol 0 denotes the continuous-time convolution operation and it is defined

as

�(t) 0 �(t) =

∫ ∞
−∞

�(τ)�(t − τ)dτ. (2.6)

The received signal r(t) consists of three components: the distorted signal at the

output of c(t), which conveys the information symbols, the noise and the interfer-

ence. It is given by the following equation:

r(t) =
∞∑

n=−∞

bnh(t− nT ) + η(t) + ν(t). (2.7)

In the following sections, the models of the noise, interference and the channel

impulse response are discussed in detail.

2.2.1 Noise

Noise in a communication system generally refers to the unwanted random pro-

cess that introduce distortion to the transmission and processing of the signal of

interest. Its presence is inevitable and it is a limiting factor on the power required

in the transmission of the information-bearing signal over the channel. Noise is

random in nature and it is usually independent of the signal of interest.

Noise may originate from the surrounding environment. Components in the com-

munication system, such as nonlinear amplifiers and quantizers, and other electrical
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devices at the receiver can also introduce noise. It is difficult to analyze, individu-

ally, these different types of noise. Therefore, the noise from different sources are

lumped together, and the net effect is modeled as an additive component to the

received signal. It is commonly referred to as channel noise or front-end receiver

noise [60].

Noise introduced at the receiver input belongs to the class of thermal noise. It

is often statistically characterized as a random Gaussian process with zero mean,

and it is uncorrelated with the transmitted data:

E[η(t)] = 0 (2.8)

E[bnη
∗(t)] = E[bn

∗η(t)] = 0 (2.9)

Here η(t) is the baseband representation of the noise and it is complex-valued.

In order to simplify the analysis of the system performance, the channel noise is

assumed to be white. This assumption can be justified in practice. This implies

that the channel noise is mutually uncorrelated in time and it has a constant power

spectral density over the entire frequency range:

E[η(t0)η
∗(t1)] = Noδ(t0 − t1), (2.10)

where t0 and t1 two different points in the time axis. The parameter No is the noise

power spectral density measured in Watts per Hertz and the power spectral density

of the noise is given by:

Φη(f) = No. (2.11)
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Figure 2.2: Model for co-channel interference

Due to the complex nature of the baseband noise, its real and imaginary parts each

have a power spectral density of No/2.

2.2.2 Interference

In TDMA transmission, the most common system-generated cellular interference

are CCI and adjacent channel interference (ACI). ACI results from the signals which

are transmitted in the frequency channel adjacent to the signal of interest. Often, it

can be minimized through proper receiver filter design and channel assignment [1]

and it is not in the scope of this thesis. Here the main focus is on CCI.

In cellular systems, CCI originates from the frequency reuse plan which allows

the frequency channel to be reused in another cell [61]. This results in signals from

co-channel cells being received in the desired cell. Unlike channel noise, CCI cannot

be overcome by raising the power level of the transmitted signal, since it would

increase the level of CCI for the co-channel cells and ACI for the neighboring cells.

One way to suppress CCI in a cellular system is to use equalization, which will be

discussed in detail in later chapters.
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Figure 2.2 shows a model of CCI [37,62]. {bik,n} is the complex-valued transmit-

ted data sequence of the kth interferer, for k = 1, 2, · · · , Ni, where Ni is the number

of interferers. The subscript i denotes “interference”. The transmitted data of the

interferers, the data of interest and the noise are assumed to be statistically inde-

pendent, and the data of the interferers have zero mean with unit variance, that

is,

E[bik,n] = 0 (2.12)

E[bik,nbiq,m
∗] = σb

2δn−mδk−q (2.13)

σb
2 = 1 (2.14)

E[bnbik,m
∗] = E[bn

∗bik,m] = 0 (2.15)

E[bik,nη
∗(t)] = E[bik,n

∗η(t)] = 0. (2.16)

pik(t) is the pulse used in the transmitter and cik(t) is the co-channel of the kth

interferer. The impulse response of the kth overall co-channel hik(t) is given by the

convolution of the pulse and the co-channel:

hik(t) = pik(t) 0 cik(t). (2.17)

The interference at the input of the desired receiver is the sum of all the individual

interference:

ν(t) =

Ni∑
k=1

∞∑
n=−∞

bnhik(t− nT ). (2.18)
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Tx antenna

Rx antenna

Figure 2.3: Transmission in the multipath environment [1]

2.2.3 Channel Impulse Response

In radio communiation, the transmission media is considered to be linear, in

terms of their influence on the signal of interest [63]. Therefore, a radio channel can

be modeled as a linear filter [1] in which the impulse response is used to model the

random attenuation and propagation delay introduced on the signal of interest by

the physical channel.

2.2.3.1 Discrete-time Multipath Channel Impulse Response

For most cellular radio transmission in urban areas with many high-rise build-

ings, there is no direct line-of-sight path between the transmitter and the receiver.

As illustrated in Figure 2.3, due to multiple reflections, diffractions and scatterings

from different objects and obstacles in the surroundings, the communication signal

propagates along different paths at different directions and time, depending on the

length of the path. The interaction between signals arriving from different paths

gives rise to multipath fading.
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There is an attenuation and propagation delay associated with each path. Both

of these parameters are time-varying due to the changes in the structure of the

transmission media and the time variations are random and often independent.

Therefore, the impulse response of the multipath channel is also time-varying in a

random manner and it can be characterized statistically.

The impulse response of the multipath channel can be described as a function

of both time t and time delay τ , and its discrete multipath continuous time model

is given by [11]

c(t; τ) =
Nm−1∑
n=0

αn(t)e
−jϑn(t)δ(τ − τn(t)) (2.19)

where αn(t)e
−jϑn(t) is the complex attenuation with envelope αn(t) and phase ϑn(t),

and τn(t) is the time delay occuring in the nth path. The complex attenuation and

the time delay are all random processes that vary with time.

Equation 2.19 implies that at any time, the snapshot of the multipath channel

is a function of τ and the snapshot is different at different time instants. Figure 2.4

gives an example of the multipath channel impulse response at different snapshots.

2.2.3.2 Statistical Models for Fading Channels

The Nm replicas of transmitted signal received are from Nm resolvable paths.

Here, resolvable is emphasized since the actual number of paths is much greater than

Nm. Let ∆τ in Figure 2.4 be the resolvable delay interval. Within this interval,

all the replicas of the transmitted signal received are summed and the sum of these

replicas is assumed to arrive from one equivalent path which is also the resolvable

path. Since the arrival of a large number of these replicas falls into one delay interval,
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Figure 2.4: Multipath channel at different snapshots [1]

the central limit theorem can be applied. Therefore, the sum of the replicas and each

resolvable channel path can be approximated as complex-valued Gaussian processes

in time with zero mean.

If each resolvable path is modeled as a complex-valued Gaussian process, by

changing the complex Gaussian random variables to polar coordinates, it is straight

forward to conclude that the envelope of the attenuation is Rayleigh and the phase

is uniformly distributed. This type of fading is referred to as Rayleigh fading.

2.2.3.3 Jakes’ Model

Jakes [64] developed a model in which the statistical properties of electromag-

netic fields of the signal received by a mobile are exploited. This model assumes a

fixed transmitter with a vertically polarized antenna. Suppose there are Niw com-

ponent waves incident on the mobile traveling at a velocity of v. For the kth wave
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incident at an angle ζk with the direction of motion, the associated Doppler shift is

fk =
v

λw
cos ζk

= fm cos ζk (2.20)

where λw is the wavelength of the incident waves and fm denotes maximum Doppler

shift. The electric field component of the received signal is

Ez = E0

Niw∑
k=1

αk cos(2πfct+ ϑk), (2.21)

where E0αk is the amplitude of the kth incident wave in the electric field, fc is the

carrier frequency, ϑk is phase shift given by

ϑk = 2πfkt + φp,k (2.22)

and φp,k is the random phase angle uniformly distributed from 0 to 2π.

The baseband equivalent of Ez is given by

Eb = E0

Niw∑
k=1

αke
j(2πfmt cos ζk+φp,k). (2.23)

Let p(ζ)dζ denote the fraction of the total power of the incident waves within dζ

of the angle ζ , where p(ζ)is the power per unit angle. Then the following relation

holds:

αk
2 = pζ(ζ)dζ. (2.24)
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Assuming the distribution of power with the arrival angle ζ is uniform:

pζ(ζ) =
Pr
2π

, −π ≤ ζ ≤ π (2.25)

where Pr is the mean received power, and the Niw incident waves are uniformly

distributed over an interval of 2π:

dζ =
2π

Niw
, (2.26)

then αk
2 takes the value of Pr/Niw and the kth arrival angle is

ζk =
2πk

Niw
. (2.27)

In Equation 2.23, if Niw is a large number, the central limit theorem can be

applied and Eb is approximately complex Gaussian and its envelope |Eb| is Rayleigh

distributed. In fact, |Eb| gives a good approximation to a Rayleigh random variable

for Niw ≥ 7 [65]. Figure 2.5 shows a comparison between theoretical and simulated

Rayleigh probability density function using Jakes’ model with Niw = 9. In the work

of Jakes [64], Eb is the baseband equivalent of the electric field component of the

received signal. However, since the magnitude of Equation 2.23 gives a Rayleigh

fading waveform, this model is usually used to simulate the Rayleigh fading channel

paths [14,55,66]. As suggested in Equation 2.23, since the Rayleigh fading waveform

can be approximated by the envelope of the sum of Niw sinusoids, this model is also

referred to as the “sum of sines” model. Consequently the frequency spectrum of

Eb is discrete, with Niw impulses at the Doppler frequency associated with each

incident wave.
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Figure 2.5: Theoretical and simulated Rayleigh PDF

2.2.3.4 Gans’ Model

Another model often used to simulate the Rayleigh fading channel path is Gans’

model. Instead of the physical aspect of the fading mechanism, Gans focused on

the relationship between the received power and the frequency and developed a

spectrum analysis.

For a mobile moving at a velocity of v, this model assumes that the incident

waves arrive from all directions with random phases, and the received power is

uniformly distributed with respect to the angle of arrival, for any velocity. If the

transmitted signal is narrowband with a carrier frequency of fc, the instantaneous
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frequency of the received signal component with an angle of arrival of ζ is given by

f(ζ) = fc + fm cos ζ. (2.28)

For simplicity, only the one-sided power spectral density Φ1u(f) of the received

signal is considered. ¿From Equation 2.28, the instantaneous frequency changes

from fc + fm to fc − fm as the angle of arrival increases from 0 to π.

For each ζ and the corresponding f(ζ), the received power differentials must be

the same [67]:

2pζ(ζ)dζ = Φ1u(f)(−df). (2.29)

In the above equation, the factor 2 accounts for both the positive as well as the

negative angles and the minus sign for df on the right hand side accounts for the

fact that as ζ increases, f(ζ) decreases [67]. Rearranging Equation 2.29 gives

Φ1u(f) = −2pζ(ζ)
dζ

df
(2.30)

By differentiating Equation 2.28, dζ/df can be obtained and the expression for

Φ1u(f) is given by

Φ1u(f) =
Pr

πfm

√
1−

(
f−fc
fm

)2 . (2.31)
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Figure 2.6: Simulation of Rayleigh fading channel tap using Gans’ model

Therefore, the double-sided power spectral density of the received signal is [67]

Φu(f) =




Pr

2πfm

√
1−( f+fcfm

)
2
, |f + fc| ≤ fm

Pr

2πfm

√
1−( f−fcfm

)
2
, |f − fc| ≤ fm

0, otherwise.

(2.32)

Note that Equation 2.32 produces an infinite power spectral density at f = ±fc±fm

which occurs when the angle of arrival is exactly 0 or π. The assumption that

the incident waves arrive at the mobile from all directions implies a continuous

distribution of the angle of arrival ζ . Based on this assumption, the probability

that the incident wave arrives at an angle of exactly 0 or π is zero. Therefore,

the representation for the power spectral density is also valid for these boundary

conditions.

The baseband spectrum is

Φub(f) =




Pr

πfm

√
1−( f

fm
)
2
, |f | ≤ fm

0, otherwise.

(2.33)

Unlike the frequency spectrum of Eb, Φub(f) is continuous in frequency, except at

|f | = fm. Since the power spectral density given in Equation 2.33 take the shape

of a “U”, it is often referred to as the U-shaped Doppler spectrum.

Figure 2.6 shows a block diagram of a method of generating one tap of the
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Rayleigh fading baseband channel. The kth tap of the Rayleigh fading channel is

generated by applying a complex white Gaussian noise ηG,k(t), with a power spectral

density of NGo, to the channel generator with transfer function of

Hub(f) =
√

Φub(f). (2.34)

Therefore, the Rayleigh fading channel tap at the output of the generator is given

by

ck(t) =

∫ ∞
−∞

hub(t− τ)ηG,k(t)dτ (2.35)

where hub(t) is the time domain impulse response of the generator.

By applying the power spectral density relation of the input and output of a

linear time-invariant system, the power spectral density of the time variations of

the channel tap can be obtained:

Φc(f) = NGo|Hub(f)|
2

= NGoΦub(f) (2.36)

which describes that the power spectral density of the variations in a Rayleigh fading

channel tap at the output of the generator is also U-shaped.

2.2.3.5 Two-Ray Rayleigh Fading Model

In analyzing a communication system with a high data rate, it is important that

the model for the multipath channel impulse response exhibit both fading, as well

as the time delay properties of the physical channel. The two-ray Rayleigh fading
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model, in which the channel impulse response consists of only two independent

paths, can serve this purpose, for analyzing the performance aspect related to the

IS-136 TDMA cellular standard [53]. The model can demonstrate these important

characteristics of a mobile radio channel, yet its simplicity allows theoretical analysis

and computer simulations [14,53,68,69].

The impulse response of the two-ray model is given by

c(t; τ) = α0(t)e
−jϑ0(t)δ(τ) + α1(t)e

−jϑ1(t)δ(τ − τ1)

= c0(t)δ(τ) + c1(t)δ(τ − τ1), (2.37)

where c0(t) and c1(t) are the independent complex gains or the tap coefficients of

the two rays, whose envelope is Rayleigh and phase is uniformly distributed.

The term τ1 is the time delay interval between path 0 and path 1. By varying τ1,

different time delay effects can be provided and the degree of frequency selectivity

of the channel can be varied. In one extreme case, τ1 can be set to zero, and path

1 merges with path 0. As a result, a flat Rayleigh channel can be obtained.

2.3 Receiver

The input to the receiver is the information-bearing signal distorted by the

channel, and the output is the estimated version of the transmitted data. Therefore,

the task of the receiver is to retrieve the transmitted data faithfully so that the error

rate can be as low as possible.

In high data rate transmission, ISI results from the multipath channel; if left

uncompensated, could be severe enough to cause incorrect detection of the trans-

mitted data. This makes it necessary to employ an equalizer in the receiver design
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Figure 2.7: Receiver with linear equalizer

to compensate or reduce the ISI in the received signal. Equalization is usually

accomplished by a filtering operation. In the presence of additive white Gaussian

noise (AWGN) in the system, the equalizer also acts as a matched filter to reduce

the effect of noise.

In this section, two types of receivers, namely a receiver with an LE and a

receiver with a DFE are considered. Note that the impulse response in the equalizers

are time-invariant. For a time-invariant channel, once this impulse response is

determined, there is no need to update. For a time-varying channel, this impulse

response can be adjusted, by means of adaptive algorithms [11, 22, 23] or other

updating methods [55], to accommodate the changes taking place in the channel.

2.3.1 Linear Equalizer

Figure 2.7 shows a block diagram of the receiver with an LE. The receiver consists

of an LE with an impulse response of wl(t), a symbol-spaced sampler and a decision

device.

The input to the LE is the received signal r(t) and the output b̂(t) is given by

b̂(t) = r(t) 0 wl(t). (2.38)
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The signal b̂(t) is sampled at the symbol rate to get

b̂n = b̂(t)
∣∣∣
t=nT

= b̂(nT ), (2.39)

which is the unquantized estimated version of the transmitted data. The LE can

also be modeled as a tapped delay line or a linear transversal equalizer, which

takes the sampled received signal as input and gives b̂n at the output if the delay

between the taps is a symbol period. If the delay is a fraction of a symbol period, a

fractionally spaced LE is used, which is studied in detail in the work by Gitlin and

Weinstein [28].

The output of the sampler is then applied to a decision device. Following some

non-linear decision rules, the decision device maps b̂n to the nearest level of the

transmitted data and gives an estimated version of the transmitted data b̃n at the

output.

In the presence of ISI, an LE may not be an effective choice in receiver design. In

order to minimize or completely eliminate ISI, an equalizer is usually implemented

based on the zero-forcing(ZF) criterion, which is simply the inverse filter of the

channel. In the case of selective fading channels, it enhances the noise at the fre-

quencies where the channel exhibits spectral nulls [23]. The use of the mean square

error criterion, on the other hand, results in incomplete elimination of the ISI, even

though the effects of both noise and ISI can be reduced. Under this condition, a

DFE is usually used to replace an LE.



2.3 Receiver 37

r(t)
wf(t)

nT
+

wb,n

bf(t) bf,n bn bn

^ ^ ^ ~

bb,n

-

^

Figure 2.8: Receiver with DFE

2.3.2 Decision Feedback Equalizer

Figure 2.8 shows a block diagram of the receiver with a DFE. It consists of a

feed forward filter with impulse response wf (t), a sample-rate sampler, a decision

device, and a feedback filter wb,n.

The input to the feed forward filter is the received signal, and the output is given

by

b̂f (t) = r(t) 0 wf(t). (2.40)

This output signal is sampled at the symbol rate to get

b̂f,n = b̂f (t)
∣∣∣
t=nT

= b̂f (nT ). (2.41)

As with the LE, the feed forward filter of the DFE can be modeled as a tapped

delay line, with a delay of T , or fraction of T between taps.

The unquantized estimated version of the transmitted data is obtained by sub-
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tracting the output of the feedback filter b̂b,n from b̂f,n:

b̂n = b̂f,n − b̂b,n. (2.42)

This signal is then applied to the decision device to obtain an estimate of the

transmitted data b̃n. The output of the decision device is then fed back to the

discrete-time filter wb,n to get

b̂b,n = b̃n 0 wb,n, (2.43)

where the symbol 0 denotes discrete-time convolution defined as

�n 0 �n =
∞∑

m=−∞

�n−m�m. (2.44)

Similar to the LE, the feed forward filter of a DFE minimizes the effects of noise

and the precursors caused by the future symbols. The only difference between a

DFE and an LE is the addition of the feedback filter in a DFE. A DFE feeds the

estimated version of the transmitted symbol back, via the feedback filter. In this

way, the post cursors caused by the previous symbols, assuming these symbols are

estimated correctly, can be properly weighted by the feedback filter and subtracted

from the estimate of the current symbol. Therefore, a DFE can completely eliminate

the ISI induced by the channel, without noise enhancement.



Chapter 3

Equalization, Channel Estimation

and Interpolation Techniques

3.1 Channel Estimation Techniques

In cellular radio transmission, data carrying signals are often transmitted to the

receiver via a channel that introduces impairments. One effective way to recover

the transmitted data is to first estimate the channel impulse response, then perform

equalization on the received data. The performance of the receiver, calculated

based on the estimated channel, depends on the accuracy of the channel estimate.

Therefore, choosing an effective channel estimation algorithm is of great importance

in receiver design.

In this section, previous work on channel estimation, such as the least sum of

squared errors (LSSE) channel estimation algorithms for static channels in Sec-

tions 3.1.1 and 3.1.2, and ML blind data and channel estimation method in Sec-

tion 3.1.3, is included to provide convenient reference to the readers. In Section 3.1.5,
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the sign ambiguity problem associated with blind deconvolution is also addressed.

An example is given to show that the sign ambiguity problem can be avoided by

employing differential encoding. The rest of this section includes development of

new algorithms and analysis, which forms part of the contributions of this research

thesis. As an extension to these channel estimation methods, the proposed ML

blind data, channel and co-channel estimation method is presented. Due to the

channel noise, the ML blind estimation method may lead to incorrect selection of

the data sequence and channel estimate. A theoretical analysis on the probability

of error in the ML blind data and channel estimation is performed. Finally, a new

frequency estimation method using cross correlation is also proposed to handle the

situation where the channel is time-varying.

3.1.1 LSSE Channel Estimation

Given the input and the output of the channel, the channel impulse response

can be identified using the LSSE criterion [39]. The channel estimate is determined

such that the sum of the squared errors between the actual output of the channel

and the output of the estimated channel is minimized.

Let c and ĉ be the actual channel and the channel estimate, respectively, and s

be the data sequence to be transmitted. The output of the actual channel and of

the estimated channel are given by

rn = cTsn + ηn (3.1)
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and

r̂n = ĉTsn, (3.2)

respectively, where the operation “T” denotes transpose and ηn is the zero mean

additive white Gaussian noise.

The sum of squared error (SSE) is a function of the channel estimate, and it is

defined in Equation 3.3:

sse (ĉ) =
K−1∑
n=0

|rn − r̂n|
2 (3.3)

where K is the length of the received sequence, and it is defined as

K = Nt −Nc + 1. (3.4)

Here, Nt is the length of the training sequence and Nc is the number of taps in the

channel. The channel estimate ĉ is optimum when the SSE is minimized.

The minimization of SSE is given by Crozier et al. [39] and the optimum channel

estimate, when the training sequence is available and s is known to the receiver, is

given by Equation 3.5:

ĉopt =
(
ST
)−1
z (3.5)

where S is the auto correlation matrix of the training sequence defined as

S =
K−1∑
n=0

snsn
H , (3.6)
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the symbol “H” denotes Hermitian transpose, z is the cross correlation vector of

the channel output and the training sequence s and is defined as

z =
K−1∑
n=0

rnsn
∗, (3.7)

and sn is the input vector to the channel given by

sn =




sn

sn−1

...

sn−Nc+1



. (3.8)

Finally, the LSSE is given by Equation 3.10:

lsse = sse (ĉopt) (3.9)

= Er − ĉ
H
optz (3.10)

where Er is the average power of the received signal, defined as

Er =
K−1∑
n=0

|rn|
2. (3.11)

3.1.2 LSSE Channel and Co-channel Estimation

In TDMA cellular radio transmission, CCI is present in most cases, due to the

frequency reuse plan. The LSSE channel estimation algorithm discussed in the

previous section can be modified to estimate both channel and co-channel impulse

responses.
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Figure 3.1: Transmission in the presence of CCI

Figure 3.1 shows a model for data transmission in the presence of CCI. Here,

si is the interfering signal transmitted in the co-channel cell, and ci is the vector

consisting of all the impulse responses of the co-channels. In the presence of CCI,

the output of the channel rn is given by the following equation:

rn = cTsn + νn + ηn, (3.12)

where νn is the CCI defined as

νn = ci
Tsi,n. (3.13)

When training is available in both channel and co-channel transmissions, the

estimate of the received signal can be expressed as

r̂n = ĉTsn + ĉTi si,n, (3.14)

and the SSE is given by

sse (ĉ2) = Er − ĉ
H
2 z2 − ĉ

T
2 z2

∗ + ĉT2S2ĉ
∗
2 (3.15)
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where

ĉ2 =


 ĉ
ĉi


 , (3.16)

z2 =


 z
zi


 (3.17)

and

S2 =


 S Si

Si
H Sii


 . (3.18)

In Equation 3.17, zi is the cross correlation vector of the channel and is defined

as

zi =
K−1∑
n=0

rnsi,n
∗. (3.19)

In Equation 3.18, Sii is the auto correlation of the data transmitted in the co-

channel, defined as

Sii =
K−1∑
n=0

si,nsi,n
H , (3.20)

and Si is the correlation matrix between the training sequences of the desired and

co-channel data transmission:

Si =
K−1∑
n=0

snsi,n
H . (3.21)
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The optimum channel and co-channel estimates are determined by minimizing

SSE. Taking the gradient of both sides of Equation 3.15, with respect to ĉ2, the

following equation is obtained:

ĉ2,opt =
(
S2

T
)−1
z2 (3.22)

The LSSE occurs when the channel and co-channel estimates are optimum, and

the LSSE is given by Equation 3.24:

lsse = sse (ĉ2,opt) (3.23)

= Er − ĉ
H
2,optz2. (3.24)

3.1.3 ML Blind Data and Channel Estimation

In order to reduce transmission overhead in some data transmission applications,

a training sequence is not available. In this case, the channel impulse response and

the data sequence have to be identified using blind methods.

ML blind data and channel estimation method is based on the maximum likeli-

hood criterion [11,17,50]. The noise samples ηn in the received data rn, defined in

Equation 3.12, are complex Gaussian random variables, assumed to be independent

identically distributed (iid), with zero mean, variance ση
2, and with probability

density function (PDF) given by

pη(ηn) =
1√

2πση2
exp(−

|ηn|2

2ση2
) (3.25)

where |�| is the magnitude of �. For K independent noise samples, the joint PDF
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is

pη(η0, η1, · · · , ηK−1) =
1

(πση2)
K
2

exp

(
−

1

ση2

K−1∑
n=0

|ηn|
2

)
. (3.26)

Therefore, the joint PDF of the received signal, r = [r0 r1 · · · rK−1]
T , conditioned

on arbitrary channel and co-channel estimates, and an arbitrary data sequence is

p (r|ĉ, ŝn, ĉi, ŝi,n) =
1

(2πση2)
K
2

exp

(
−

1

2ση2

K−1∑
n=0

∣∣rn − ĉT ŝn − ĉTi ŝi,n∣∣2
)

. (3.27)

This is also called the likelihood function. The ML estimates of the c and sn are

the vectors that maximize the likelihood function, or equivalently, minimize the cost

function,

J (r|ĉ, ŝn, ĉi, ŝi,n) =
K−1∑
n=0

∣∣rn − ĉT ŝn − ĉTi ŝi,n∣∣2 . (3.28)

The joint ML estimates of the channel impulse response ĉML and the data ŝn,ML

are given by

(ĉML, ŝn,ML) = arg

[
min
ĉ,ŝn

J (r|ĉ, ŝn, ĉi, ŝi,n)

]
, (3.29)

where arg denotes the arguments which satisfy the condition that follows. Here,

the statistical information of the interfering signal is not known. In order to reduce

the complexity of the estimation problem, the interference component is treated

as a constant. Therefore, the receiver designed this way cannot suppress the CCI

explicitly.

Following Equation 3.29, the receiver thus performs two tasks in order to de-

termine the maximum likelihood estimates of the channel and the data. In the
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Figure 3.2: Exhaustive search algorithm

first step, LSSE channel estimation is performed, and an LS channel estimate and

the LSSE of its output are determined for every possible input data sequence. In

the second step, the LSSE of all the channel estimates are compared. The channel

estimate with the lowest LSSE and its corresponding input sequence are chosen to

be the maximum likelihood estimates of the channel and the data. This exhaustive

search algorithm is illustrated in Figure 3.2.

The approach described above requires intensive computation, and its compu-

tational complexity grows exponentially with the length of the data sequence [11].

In fact, the number of possible input sequences is ML, where M is the alphabet

size and L is the length of the input sequence. For a long data sequence or a

large data alphabet size, such a method is prohibitive in its computational inten-

sity. Sub-optimum solutions are adopted for this purpose [17,50,51]. This intensive

computational requirement can also be lowered by reducing the alphabet size [17].

For a small data record and a small data alphabet size, however, this method is

feasible. In fact, it provides optimum solution and gives good performance.
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3.1.4 ML Blind Data, Channel and Co-channel Estimation

In order to estimate the transmitted data more accurately in the presence of the

CCI, the fact that the received signal consists of an interference component should

be taken into account. Optimal detection requires that the co-channel be estimated

and the CCI component in the received signal be taken into consideration when the

DFE coefficients are calculated. The receiver designed in this way can suppress the

CCI.

In this section, a new ML blind data, channel and co-channel estimation tech-

nique is presented. This technique is an extension to the existing ML blind data

and channel estimation technique detailed in Section 3.1.3, in which the channel

and co-channel estimates are chosen to minimize the likelihood function. With the

co-channel information, CCI can be suppressed and better system performance can

be achieved.

The likelihood function of the received data signal rn, conditioned on the trans-

mitted data, channel and co-channel is given in Equation 3.27. The maximum

likelihood solutions of the data, channel and co-channel can be determined by max-

imizing the conditional likelihood function or, equivalently by minimizing the cost

function given by Equation 3.28. The estimates of the data, channel and co-channel

are given by

(ĉML, ŝn,ML, ĉi,ML, ŝi,n,ML) = arg

[
min

ĉ,ŝn,ĉi,ŝi,n
J (r|ĉ, ŝn, ĉi, ŝi,n)

]
. (3.30)

To solve Equation 3.30 involves two steps. In the first step, LSSE channel and

co-channel estimation is performed and the LSSE is determined for every possible

combination of desired and interfering data sequences. In the second step, the LSSE
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of all the channel and co-channel estimates are compared. The lowest LSSE and

its corresponding data, channel and co-channel estimates are selected as the ML

solution to Equation 3.30. The number of possible combinations of bits for both

signals is ML+Li , where Li is the length of the data sequence for the co-channel.

As with the blind ML data and channel estimation method, the computational

requirement of this method is the major drawback, despite its optimality.

3.1.5 Sign Ambiguity Problem of Blind Data and Channel

Estimation

In the work of Seshadri [17], a brief suggestion was made that differential en-

coding can be employed to avoid the sign ambiguity problem associated with the

blind data and channel estimation. In this section, an example is presented to

demonstrate this important property of the differential encoding schemes.

In joint blind data and channel estimation, both the input data and the channel

are unknown to the receiver. The only known information is the received signal

and the possible bit combinations. By minimization of the likelihood function, the

input data and the channel can be estimated jointly, as detailed in Sections 3.1.3

and 3.1.4. This gives rise to the sign ambiguity problem.

Let s and c be the input sequence and the channel, respectively and r be the

received signal. Both data and channel pairs (s, c) and (−s,−c) give the same

received signal r. With only the knowledge of r, it is impossible to determine the

actual data and channel pair. This is called the sign ambiguity problem of blind

deconvolution.

With differential encoding, this problem can be resolved. Suppose the two ad-

jacent transmitted symbols are s0 and s1, then the differential phase ∆θ1 is given
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by

∆θ1 = arg (s0
∗s1) . (3.31)

If, due to the sign ambiguity problem, the two transmitted symbols are mistaken to

be −s0 and −s1, the result is the same differential phase. Since only the differential

phase determines the original binary bits, no bit error will be caused due to this

phase ambiguity problem.

3.1.6 Probability of Error in ML Blind Data and Channel

Estimation

It is mentioned in the previous section that the ML method provides the opti-

mum solution for the data and channel estimates. However, due to the impairments

caused by the channel, the quality of the LSSE channel estimate is affected. As a

result, the ML blind data and channel estimation method may select the channel

estimate corresponding to a data sequence which differs from the input sequence.

In this section, the probability of error in ML data and channel estimation is in-

vestigated. Since CCI and channel noise have different statistical characteristics,

considering both effects on the channel estimation quality would complicate the

analysis a great deal. In order to simplify the analysis, the CCI and the channel

noise are both modeled as white Gaussian processes, and are lumped together into

one noise source. Towards this goal, the statistical property of the noise component

in the channel estimate is studied. A model is then developed and some assumptions

are made to achieve this goal.
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3.1.6.1 Statistical Properties of Noise Component in the Channel Esti-

mate

When there is no interference in the system, the received signal is given by

Equation 3.1. By substituting this expression for rn into the cross correlation given

in Equation 3.7, it is easy to find that the channel estimate obtained by solving

Equation 3.5 consists of two components, the channel impulse response and an

additive component due to the additive noise:

ĉopt = c+ cη. (3.32)

When there is no noise, this noise component in Equation 3.32 is zero and the

optimum channel estimate given by the LSSE algorithm is the actual channel itself.

For a simple channel with two taps, cη is given by the following equation:

cη =


 cη,0

cη,1


 (3.33)

=



∑K−1
n=0 λ0,n∑K−1
n=0 λ1,n


 (3.34)

=



∑K−1
n=0 k0,nηn∑K−1
n=0 k1,nηn


 , (3.35)

where

k0,n =
N1sn+1

∗ −N2sn
∗

D
, (3.36)
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k1,n =
N3sn

∗ −N2
∗sn+1

∗

D
, (3.37)

and the coefficients N1, N2, N3 and D are defined, respectively, as

N1 =
K−1∑
n=0

|sn|
2 (3.38)

N2 =
K−1∑
n=0

snsn+1
∗ (3.39)

N3 =
K−1∑
n=0

|sn+1|
2 (3.40)

and

D =
K−1∑
n=0

|sn+1|
2
K−1∑
n=0

|sn|
2 −

K−1∑
n=0

sn
∗sn+1

K−1∑
n=0

snsn+1
∗. (3.41)

Since the noise is a complex Gaussian variate, with PDF given in Equation 3.25,

the nth term in the summation in Equation 3.35, λi,n = ki,nηn, for i = 0, 1, is zero

mean, complex Gaussian, with a variance of ki,n
2ση

2. The noise component of the

channel estimate is then multivariate complex Gaussian, with PDF given by the

following equation:

p (cη,i) =
1

πK det (Cλ,i)
exp

(
−λi

HCλ,i
−1λi

)
, (3.42)
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where

λi =




λi,0

λi,1

...

λi,K−1



, (3.43)

Cλ,i is the covariance matrix of λ, and defined as

Cλ,i = E[(λi −E[λi])(λi −E[λi])
H ], (3.44)

and det(�) is the determinant of the matrix �. Since λi has zero mean, the covari-

ance matrix is diagonal, with ki,n
2ση

2 on its main diagonal, and Equation 3.42 can

be further simplified as

p (cη,i) =
1

πK
∏K−1
n=0 ki,n

2ση2
exp

(
−
K−1∑
n=0

|λi,n|2

ki,n
2ση2

)
. (3.45)

The variance of the noise component in the channel estimate is the sum of the

variances for all the terms in the summation in Equation 3.35:

σcη,i
2 =

K−1∑
n=0

ki,n
2ση

2. (3.46)

For binary signaling, the input sequence only consists of ±1 and the coefficients N1

and N3 have the value of K. N2 has a much smaller value compared with N1 and

N3, and it can be neglected. For the coefficient D, the first term has the value of K2

and the second is much smaller and hence can be ignored. Therefore, the variance
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of cη,i can be approximated by the following equation:

σcη
2 =

1

K
ση
2. (3.47)

Equation 3.47 shows that the variance of the noise component in the channel

estimate is related to the variance of the channel noise by a simple factor.

3.1.6.2 Probability of Selecting the Right Channel Estimate

The block diagram in Figure 3.2 illustrates the process of ML blind data and

channel estimation. Let so and co be the actual input sequence and the channel

impulse response, and ro be the received signal, given by Equation 3.48:

ro = co
Tso + ηo. (3.48)

This received signal is used to estimate the channel impulse response ĉk for every

possible input sequence sk, for k = 0, 1, · · · , 2Ns − 1, where Ns is the length of

the input sequence.

For the actual input sequence so, the estimated output is

r̂o = so
T ĉo, (3.49)

and for the other potential input sequences, the estimated output is

r̂k = sk
T ĉk, k �= o. (3.50)
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By substituting Equation 3.32 into Equation 3.49, the estimated received signal is

r̂o = so
Tco + so

Tcη,o. (3.51)

Equation 3.51 can be rewritten in terms of ro:

r̂o = ro + ro
′, (3.52)

where r0
′ is a perturbation on ro and it is given as

ro
′ = so

Tcη,o − ηo. (3.53)

In order to simplify the analysis, it is assumed that the noise term in the channel

estimate is independent of the channel noise. Then the perturbation ro
′ is zero mean

Gaussian, with variance given by

σro′
2 = σcη

2 + ση
2. (3.54)

For the ML blind data and channel estimation method, the decision rule for the

channel estimate is ĉ = ĉi if and only if

‖ r̂o − ri ‖
2 < ‖ r̂k − ri ‖

2, k = 0, 1, · · · , 2Ns − 1, and k �= i (3.55)

in the Ns dimensional case, where r̂o, ri and r̂k represent the Ns-dimensional vectors

of the received signals, and ‖ � ‖ denotes Euclidean distance. In order to make

a correct decision, r̂o has to be in the neighborhood of ro, so that the following
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condition is satisfied:

‖ r̂o − ro ‖
2 < ‖ r̂k − ro ‖

2, k = 0, 1, · · · , 2Ns − 1, and k �= o. (3.56)

Therefore, the decision region for selecting the correct data and channel pair in a

two-dimensional case, is shown in Figure 3.3, and it is shaped by the surfaces ψk

at r̂k. If r̂o falls inside the shaded region, it has the smallest distance to ro and

the correct channel estimate is selected. Otherwise, a channel estimate with the

estimated output signal closest to ro will be selected, and an error occurs. It is

clear that the concept of decision regions, which for simplicity is illustrated for a

two-dimensional plane in Figure 3.3, extends directly to the case of an arbitrary

number of bits in the input sequence.

As mentioned before, the perturbation ro
′ is Gaussian distributed with zero

mean, and its PDF, in the one dimension case, is the bell-shaped curve centered

around the origin. In the Ns dimension case, its PDF is an Ns dimensional surface,

with a bell-shaped cross section, and the “volume” under the surface is unity. The

probability of selecting the right channel estimate is part of this “volume” centered
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at the origin, bounded by surfaces ψk. The mathematics involved in determining

the exact probability is very complicated. In order to simplify the problem, only the

lower and upper bounds are considered. In other words, only the minimum distance

dmin, the distance between ro and the closest plane, is required. The lower bound

for the probability of selecting the right channel estimate is thus a symmetrical

“volume” under the Ns dimensional surface, bounded by dmin and centered around

the origin. Finally, the lower bound for the probability of selecting the right channel

estimate is given by the following equation:

Plb(selecting the right channel estimate) =

(
erf

(
dmin√
2σro′

))Ns
. (3.57)

Therefore, the upper bound of the probability of selecting a wrong channel estimate,

or the probability of error in the ML data and channel estimation method is

Pe,ub = 1− Plb (3.58)

= 1−

(
erf

(
dmin√
2σro′

))Ns
. (3.59)

3.1.7 Channel Modeling with Frequency Estimation Using

Cross Correlation

In wireless mobile communications, the multi-path channel is changing con-

stantly as the vehicle traverses the environment. The rate of change in the channel

depends on the speed of the vehicle. In order to estimate the time-varying channel

during a TDMA time slot, a certain channel model is adopted, so that only a small

set of parameters, which represents the characteristics of the channel variations,

needs to be estimated.
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A multi-path channel can be modeled as a combination of a number of complex

exponentials [57, 64]. In the work of Tsatsanis et al. [57], the discrete-time fading

channel model given by the following equation is used [57]:

cn;i =
Nx−1∑
q=0

γi,qe
jωqn. (3.60)

In this model, each channel tap consists of Nx complex exponential components.

There are two sets of parameters to be estimated: complex gain γi,q and real angular

frequency ωq. These parameters, γi,q and ωq can be used to characterize the time-

varying channel and they are time-invariant. Therefore, by modeling the time-

varying channel this way, the time-varying problem is transformed into a time-

invariant one.

Tsatsanis et al. also suggested that the angular frequency ωq can be estimated

using both the autocorrelation and the fourth order statistics of the received signal

and the complex gain γi,q can be determined by minimizing the least squares of the

error of the output, or using adaptive algorithms [57]. In frequency estimation, the

fourth-order statistics are involved since the autocorrelation only gives the differ-

ences between different angular frequencies. The fourth-order statistics are usually

noisy and it is difficult to identify the peaks in the spectrum where the angular

frequencies are located. Here, a frequency estimation method using the second or-

der cross correlation between the transmitted and the received signals, is proposed.

Since the Fourier transform of the cross correlation shows peaks where the angular

frequencies are, the use of the higher order statistics can be avoided.

Figure 3.4 shows a block diagram of the transmission of a signal over a time-

varying channel. With input signal sn, the output of the time-varying channel is
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Figure 3.4: Transmission over a time-varying channel

given by the following equation:

rn =
Nc−1∑
i=0

sicn;n−i + ηn. (3.61)

The cross correlation between the input and the output signals is defined as

φrs(n,m) = E[rnsm
∗]. (3.62)

Since the output signal is not a stationary process, the cross correlation is a function

of both n and m. By substituting Equations 3.61 and 3.60 into Equation 3.62, the

cross correlation can be rewritten as

φrs(n,m) =




σs
2
∑Nx−1
q=0 γn−m,qe

jωqn, 0 ≤ n−m ≤ Nc − 1 and 0 ≤ n ≤ N − 1

0, otherwise,

(3.63)

assuming that

E[snsm
∗] = σs

2δn−m (3.64)

and

E[ηnsm
∗] = 0. (3.65)
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¿From Equation 3.63, one can observe that by multiplying the received signal by

the complex conjugate of the transmitted signal and taking the expectation, the

transmitted signal component is essentially “removed” from the received signal.

Only the time-varying channel remains in this expression.

The cross correlation is the sum of Nx complex exponentials. In order to identify

the frequency components in the cross correlation, the Fourier transform of φrs(n,m)

is taken, with respect to time index n. The cross-power density spectrum is given

by

Φrs(ω;m) =
∞∑

n=−∞

φrs(n,m)e−jωn (3.66)

=




σs
2
∑Nx−1
q=0

∑Nc−1
i=0 γn−m,qe

−j(ω−ωq)n, 0 ≤ n−m ≤ Nc − 1

0, otherwise.
(3.67)

By taking the derivative of the magnitude of Φrs(ω;m) with respect to ω and setting

it to zero, one can find that the magnitude of the spectrum reaches maximum at ωq.

Therefore, the frequency components of the time-varying channel can be estimated

by identifying the peaks in the magnitude of the cross-power density spectrum.

As an example, Figure 3.5 shows the magnitude of the cross-power density spec-

trum, |Phirs(ω;m)| for a time-varying channel tap at maximum Doppler frequency

fm of 180 Hz. There are three replicas of the transmitted signal arriving at the re-

ceiver, and the channel model consists of three complex exponentials at frequencies

of -180 Hz, -114 Hz and 173 Hz, as indicated by the solid vertical lines in Figure 3.5.

With a data record of 500 symbols, this method provides peaks that are visually

separable, which is not the case for a data record with 300 symbols.

In some TDMA transmissions, such as IS-136, the number of data symbols in

a time slot is usually not more than 200, only a small fraction of which is known
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Figure 3.5: Magnitude of the cross-power density

to the receiver and can be used as training sequence. The size of the data record

required to estimate the frequencies makes this method unattractive to apply to

these TDMA transmissions.

Estimation of frequencies from the cross correlation is one of the spectral esti-

mation problems. Spectral estimation methods fall into two categories: parametric

and non-parametric methods. The conventional Fourier method used in the above

example is periodogram-based and it belongs to the class of non-parametric meth-

ods. The resolution of these methods does not depend on the signal-to-noise ratio

(SNR). It is related to the length of the data record: the longer the data record, the

better the resolution [70]. Therefore, a large number of data is required to resolve
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the peaks in the cross-power density spectrum in the above example.

3.2 Equalization Techniques Dealing with Time-

Varying Channels

In TDMA cellular radio communications, transmission of data signals usually

occurs over a fading multi-path channel. The channel impulse response varies con-

stantly, depending on the speed of the mobile, due to the changes in the surround-

ings. When the mobile is traveling at highway speeds, the time-varying channel

exhibits Doppler fading rates of up to about 180 Hz. Consequently, even for rel-

atively low symbol rates in TDMA transmission, a transmitted signal experiences

rapid variations during a long TDMA time slot, and an estimate of the channel at

just the start of each time slot may not be sufficient. This gives rise to the need

for increasing the frequency of equalizer updates and, consequently, for channel

interpolation.

When there are some channel samples available during a TDMA time slot, by

means of either LSSE channel estimation or blind ML data and channel estimation,

the time-varying channel can be reconstructed by interpolation. Based on the in-

terpolated channel, the equalizer coefficients can be updated. The accuracy of the

interpolated channel, and hence the receiver performance, depend on the interpo-

lation technique used and the number of channel samples available. An increase in

channel estimation frequency can improve the accuracy of the interpolated channel,

regardless of the interpolation technique.

In this section, derivation of the optimum equalizer in the mean square error

(MSE) sense is first presented. Then, several equalization updating techniques for
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time-varying channels and the their underlying channel interpolation techniques are

proposed. For the purpose of comparison of the interpolation models, the conven-

tional fixed equalizer is also included in this section.

3.2.1 Optimum MSE Equalizer

The purpose of an equalizer is to compensate for the undesired effect introduced

by the communication channel, so that the transmitted signal can be retrieved at

its output. Figure 3.6 shows an equalizer, w, used in the receiver and its output

error en. The equalizer is optimum in the MSE sense when the MSE of its output

is minimized. The cost function is, therefore, the MSE of the equalizer output:

J = E
[
|en|

2] . (3.68)

The output error signal en is the difference between desired response or the trans-

mitted signal bn, that is,

en = bn − b̂n, (3.69)

where the equalizer output b̂n is simply the convolution between the received signal

rn and the equalizer w,

b̂n = rHnw. (3.70)

Applying the principle of orthogonality, the optimum equalizer, wopt, is given
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Figure 3.6: Error at the output of an equalizer

by the following equation [22]:

Rwopt = p, (3.71)

or

wopt = R
−1p, (3.72)

where the autocorrelation matrix R and the cross correlation vector p are given by

R = E
[
rHn rn

]
, (3.73)

and

p = E [rnbn
∗] . (3.74)

Equation 3.71 is also referred to as the matrix form of the Wiener-Hopf equations.

With the estimated channel and the known transmitted sequence, both the

auto correlation matrix and the cross correlation vector can be estimated and the

optimum equalizer can be determined by using Equation 3.72.

3.2.2 Fixed Equalizer
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Figure 3.7: Interpolated channel in fixed equalizer method

The interpolation method used in a fixed equalizer is illustrated in Figure 3.7.

A set of Ns channel samples {ci} are available at time {ti}. In the time interval

[ti, ti+1], the interpolated channel takes the value of the channel sample ci at time ti.

Therefore, the channel is treated as if it were time invariant in the interval [ti, ti+1],

and this is the simplest interpolation method. The interpolated channel is given by

the following equation:

c(t) = ci, ti ≤ t ≤ ti+1. (3.75)

The equalizer coefficients wi are calculated at each available channel sample, and

kept fixed until the next available channel sample where the update takes place.

3.2.3 Displaced Equalizer

Displaced equalizer is an equalizer updating technique, in which equalizer co-

efficients are computed in the middle of a received signal interval and applied to

the entire interval. The interpolation technique used in the displaced equalizers is

similar to that for the fixed equalizer method, requires no interpolation. Figure 3.8

shows the basic idea behind the interpolation method used in a displaced equalizer.
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Figure 3.8: Interpolated channel in displaced equalizer method

As shown in the figure, time instants ti−1,i and ti,i+1 are the midpoints between

time ti−1 and ti, ti and ti+1, respectively. The channel coefficients in time interval

[ti−1,i, ti,i+1], are fixed at the values of ci, which are determined at time ti. Therefore,

the interpolated channel in this interval can be described by the following equation:

c(t) = ci, ti−1,i ≤ t ≤ ti,i+1. (3.76)

In general, this interpolation method gives a more accurate interpolated channel

compared with the previous method. Since interval [ti−1,i, ti] is closer in time to ti

than ti−1, it makes more sense for the interpolated channel to take the value of ci

instead of ci−1.

The equalizer coefficients are updated based on the interpolated channel and

should take the values of wi, which are calculated at ti for the interval [ti−1,i, ti,i+1].

No update is required within this interval. Since, wi is applied to the interval

[ti−1,i, ti,i+1] in this equalization method, compared to the fixed equalizer method

where wi is applied to interval [ti, ti+1], the equalizer wi seems to be displaced

from interval [ti, ti+1] to [ti−1,i, ti,i+1]. Therefore, the equalizer using this updating

method is called the displaced equalizer.
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3.2.4 Curve Fitting Equalizer

The interpolation models adopted by both fixed equalizer and displaced equalizer

techniques result in piecewise interpolated channels. These models work very well

when the channel is stationary or slowly time-varying. However, as in most cases,

the channel is fast time-varying. Despite their simplicity, these techniques cannot

accurately characterize the variations in a channel tap, especially in the case of high

mobile speed. In this case, a more accurate model for interpolation, for example,

polynomials, splines, or piecewise linear model, can be used, in order to improve

the performance. In this section, some curve fitting techniques which employ a

polynomial or a cubic spline model are proposed. The equalizer coefficients are

updated using the Wiener-Hopf equations based on the interpolated channel. The

goal here is to incorporate a more accurate interpolated channel to achieve better

performance in the fast time-varying environment.

3.2.4.1 Polynomial Exact Fit

The curve fitting model adopted here is an (Np − 1)th order polynomial. One

tap of the time-varying channel can be modeled by

c(t) = a0 + a1t+ a2t
2 + · · ·+ aNp−1t

Np−1. (3.77)

To completely model a tap coefficient of the time-varying channel, the polynomial

coefficients must be determined. To determine Np coefficients, Ns = Np channel

samples are required. Fitting this polynomial to the set of Ns channel samples {ci},
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the coefficients of the polynomial are determined by solving equation

a = T1
−1c, (3.78)

where

a =




a0

a1

...

aNs−1



, (3.79)

c =




c0

c1

...

cNs−1



, (3.80)

and

T1 =




1 t0 · · · t0
Ns−1

1 t1 · · · t1
Ns−1

...
...

. . .
...

1 tNs−1 · · · tNs−1
Ns−1



. (3.81)

Using this curve fitting method, all the channel samples are on the resulting poly-

nomial.

In general, within an observation interval, the accuracy of the interpolated chan-

nel improves as the number of available channel samples increases. However, the
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duration of a time slot is usually in the order of 10−3 seconds, and furthermore,

for higher order polynomials, the matrix T1 can be ill-conditioned. Therefore, this

method can run into numerical problems in this particular application for higher or-

der polynomials. This provides motivation for the proposal of the two curve fitting

methods discussed in the following sections – polynomial LS fit and spline fit.

3.2.4.2 Polynomial LS Fit

In this curve fitting method, the goal is to fit a set of Ns channel sample points

(ti, ci) to the model given in Equation 3.77, so that the squared error of the curve-

fitted channel at time instants ti is minimized. With this method, there is no

restriction on the order of the polynomial Np. When Ns ≥ Np, the problem is

equivalent to solving an over determined system with Ns equations andNp unknowns

in the LS sense.

The coefficients of the polynomial are determined by solving the following equa-

tion:

aLS = arg

[
min
a

Ns−1∑
i=0

[
ci − c(ti; a0 · · ·aNp−1)

]2]
. (3.82)

Minimization of the sum of squared errors in Equation 3.82 yields

a = T2
−1b, (3.83)
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where

T2 =




1 t · · · tNp−1

t t2 · · · tNp

...
...

. . .
...

tNp−1 tNp · · · t2(Np−1)




(3.84)

and

b =




c

tc

...

tNp−1c



. (3.85)

Here, �m�n denotes average, and it is defined as

�m�n =
1

Ns

Ns−1∑
i=0

�im�in. (3.86)

3.2.4.3 Cubic Spline Fit

The time-varying channel tap can also be interpolated using a spline function.

A spline function is a function that consists of polynomial pieces joined together at

the known data samples, called knots, with certain smoothness conditions, and it
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is defined as

c(t) =




g0(t), t0 ≤ t ≤ t1

g1(t), t1 ≤ t ≤ t2

...
...

gNs−2(t) tNs−2 ≤ t ≤ tNs−1

. (3.87)

In the above equation, gi(t) is a polynomial, and it takes the value of ci and ci+1 at

its end points.

Each segment of the polynomial in a cubic spline is a cubic polynomial. In

addition, each segment is required to have the same first and second derivatives

as the adjoining segment at the knot between them, so that the overall curve is

smooth. The task here is to determine the coefficients of the cubic polynomials.

Let ui = c′′(ti) for 0 ≤ i ≤ Ns − 1, and ∆ti = ti+1 − ti for 0 ≤ i ≤ Ns − 2. Since

the second derivative of a cubic spline is linear in interval [ti, ti+1] and it takes the

value of ui and ui+1 at the end points, it takes the form [71]

g′′i (t) =
ui+1
∆ti

(t− ti) +
ui
∆ti

(ti+1 − t). (3.88)

By integrating Equation 3.88 twice and evaluating the integration constants

using the interpolation conditions of gi(ti) = ci and gi(ti+1) = ci+1, the ith segment

of the spline can be obtained, in terms of ui [71]:

gi(t) =
ui+1
6∆ti

(t− ti)
3 +

ui
6∆ti

(ti+1 − t)3 +

(
ci+1
∆ti
−

∆ti
6

ui+1

)
(t− ti) (3.89)

+

(
ci

∆ti
−

∆ti

6
ui

)
(ti+1 − t). (3.90)

The second derivative ui can be determined by using the condition on the first
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derivative at the knots. By differentiating the ith and (i − 1)th segments of the

cubic spline, and equating them, Ns − 2 equations are obtained [71]:

∆ti−1ui−1 + 2(∆ti−1 + ∆ti) + ∆tiui+1 =
ci+1 − ci
6∆ti

−
ci − ci−1
6∆ti−1

, 1 ≤ i ≤ Ns − 2.

(3.91)

In order to solve the Ns unknown second derivatives, two more equations are

needed, in addition to the above Ns − 2 equations. The remaining two equations

are given by using the “not-a-knot” end condition, which requires that the third

derivative of the spline be a single constant in the first two subintervals and another

single constant in the last two subintervals. These two equations are

∆t1u0 − u1(∆t0 + ∆t1) + ∆t0u2 = 0 (3.92)

and

∆tNs−2uNs−3 − uNs−2(∆tNs−3 + ∆tNs−2) + ∆tNs−3uNs−1 = 0. (3.93)

Similar to the previous curve fitting method, the degree of the spline is not

restricted by the number of channel samples.

3.3 Block Adaptation Strategies in Time-Varying

Environment

Figure 3.9 shows a typical time slot in a TDMA transmission. There are usually

one or two known training sequences within a time slot, and here two are shown in
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data1 training1 data2 training2 data3

Figure 3.9: A TDMA time slot

the diagram. The rest are transmitted data that are unknown to the receiver. In

order to achieve good system performance in TDMA cellular radio, especially at high

mobile speed, block adaptation strategy proposed by Lo et al. is proven to offer good

immunity to fast fading [41, 55, 56]. In this section, the work on block adaptation

done by Lo et al. is briefly described. Then a new block adaptation with blind data

and channel estimation method is proposed to reduce the amount of processing

delay and improve the system throughput associated with the conventional block

adaptation method proposed by Lo et al. at the expense of complexity. This new

method involves combinations of channel estimation and equalization techniques

discussed in the previous sections.

3.3.1 Background in Block Adaptation

The conventional block adaptation method proposed by Lo et al. computes the

time-varying channel during the unknown data period by interpolating a set of

estimated channel samples obtained through periodic training at adjacent TDMA

time slots. Figure 3.10 shows the interpolation of a time-varying channel within a

TDMA time slot in the conventional block adaptation method. In this figure, the

letter “T” denotes a training section and “D” denotes an unknown data section.

With periodic training, a snap shot of the time-varying channel, denoted by ×,

can be estimated by using one of the channel estimation algorithm such as LSSE.

By interpolating Q consecutively estimated channel samples from periodic training,

with generally Q/2 from the past and Q/2 from the future, channel samples denoted
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T D T D T D T D

Figure 3.10: Interpolation in the conventional block adaptation method

by • can be obtained during the unknown data section in the current time slot. The

interpolation is carried out by a truncated raised cosine interpolator. By using the

interpolated channel samples, together with the channel samples obtained from

training, the equalizer coefficients are computed periodically to adapt to the fast

time-varying channel.

While this method provides good immunity to decision errors caused by deep

fades, it suffers from the inherent limitation of processing delay. In the worst case,

except for the one from the current time slot, the other Q − 1 estimated channel

samples from training are from the future time slots, and the processing delay in

this case is Q−1 time slots. Another limitation associated with this method is that

the frequency of the periodic training sequences, and hence the length of the time

slot, depends on the Doppler frequency. In order to provide reliable interpolation

for all vehicle speeds, Nyquist’s sampling criterion must be satisfied, which requires

the frequency of the training sequences to be at least twice the maximum Doppler

frequency in the worst case. This results in reduction in system throughput.

3.3.2 Block Adaptation with Blind Data and Channel Esti-

mation

A new block adaptation method is proposed here to improve the processing

delay and system throughput associated with the conventional method. Unlike the

conventional block adaptation method, the new method interpolates the estimated
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Figure 3.11: Interpolation in the proposed block adaptation method

channel obtained using the training sequence in the current time slot and using the

ML blind data and channel estimation method.

Figure 3.11 shows interpolation in the new block adaptation method within a

time slot. In this time slot, there are two training sequences from where estimated

channel samples, denoted by ×, can be obtained by the LSSE channel estimation

method. These channel samples are considered to be in the middle of the training

sequences. However, with these two channel samples, it is not sufficient to predict

the variations of the channel in the entire time slot, especially in the high mobile

speed case. In the proposed method, more channel samples, and the corresponding

short estimation sequences are made available in the unknown data section by using

the ML blind data and channel estimation method, described in Section 3.1.3. As

shown in Figure 3.11, short estimation sequences, represented by the shaded boxes,

can be selected in the unknown data sections to perform ML blind data and channel

estimation. The estimated channel samples obtained in this way, denoted by ◦, are

also considered to be in the middle of the estimation sequence. The frequency of

these channel samples depends on the maximum Doppler frequency.

The length of the estimation sequence has to be at least twice the memory of the

channel, to provide a reliable channel estimate. There are two reasons to keep this

sequence short. The LSSE channel estimation and ML blind channel estimation
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used in the proposed block adaptation method are estimation algorithms for time-

invariant channels. Therefore, the estimation sequences should be sufficiently short

so that the time-varying channel during the estimation sequences is essentially time-

invariant. Furthermore, the complexity of the blind channel estimation method

grows exponentially with the length of the estimation sequence. Therefore, one

should consider all these issues when implementing this algorithm.

With these channel samples available in a time slot, the time-varying channel

can be interpolated and the equalizer coefficients can be updated to adapt to the

fast time-varying channel between the training and the estimation sequences. This

task is carried out by using one of the equalizer updating methods – the fixed

equalizer, the displaced equalizer or the curve fitting equalizer. The interpolated

channel samples, denoted by • in Figure 3.11, are obtained by interpolation using the

model underlying the fixed equalizer, displaced equalizer or curve fitting equalizer

updating methods.

In this way, the processing delay is eliminated since all the data can be recovered

by the end of the current time slot. No additional training sequence is required and

the system throughput is improved, compared to the conventional method. The

trade-off is the intensive computational requirement.

This method can also be extended to suppress CCI. Snap shots of the co-channel

impulse response can be obtained together with the desired channel impulse response

using the ML blind data, channel and co-channel estimation method. Then the

time-varying channel and co-channel can be interpolated using the interpolator in

one of the three equalizer updating methods. The interpolated co-channel can be

incorporated into the formulation of the Wiener-Hopf equations. The equalizer

computed in this way is capable of suppressing CCI, as well as tracking the time-
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Figure 3.12: Baseband communication system

varying channel and co-channel.

3.4 Mean Square Error Analysis

Mean square error analyses of various equalizer types on a time-invariant channel

have been presented in detail in the literature [11, 28, 72, 73]. Discussion in this

section is intended to develop a new MSE expression for a displaced LE on time-

varying channels.

3.4.1 MSE Criterion

A typical baseband communication system is shown in the block diagram in

Figure 3.12. The discrete sequence {bn} is a sequence of information-bearing sym-

bols. This information-bearing sequence is pulse shaped by the transmit filter p(t)

and transmitted through the frequency selective time-invariant channel c(t) with

additive white Gaussian noise η(t). The received signal r(t) is applied to a linear

equalizer, w(t), with infinite duration in time, which produces an output denoted

by b̂(t). This continuous-time signal is then sampled at the symbol rate to produce

b̂n.

The objective here is to design the equalizer w(t), so that the information-bearing

symbol bn can be faithfully estimated at the receiver end, with the estimation error
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minimized in some statistical sense.

Usually, mean square error (MSE) criterion is chosen for statistical optimization

of the equalizer. The cost function or performance index for the MSE criterion is

the mean-square value of the estimation error en, namely,

εI = E
[
|en|

2] (3.94)

= E

[∣∣∣bn − b̂n

∣∣∣2] , (3.95)

where εI denotes the MSE of the equalizer output on a time-invariant channel.

The choice of MSE criterion for statistical optimization of the equalizer is dic-

tated by its mathematical tractability. In particular, MSE criterion leads to a second

order dependence of the cost function on the unknown linear equalizer. This will

become apparent in the following section. Furthermore, this second order depen-

dence of the cost function on the linear equalizer results in a quadratic error surface,

which gives a unique solution for the optimum equalizer at its minimum [22]. An-

other advantage associated with the MSE criterion is the useful relationship between

the minimum MSE (MMSE) and the probability of error. In fact, the MSE crite-

rion allows ISI and noise to be taken into account jointly, and in most practical

applications, it leads to values of error probability very close to that minimizing the

probability of error [72]. An upper bound on the probability of error can also be

derived from the expression for the MMSE [74,75].

3.4.2 MMSE of Infinite LE on Time-Invariant Channels

The MMSE of an infinite LE on a time-invariant channel is derived in the work

of a few researchers [11, 28, 72]. Since the new MSE expression for the displaced
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equalizer is developed based on the MMSE expression of an infinite LE on time-

invariant channels, the expression for the time-invariant channels is presented in

this section as a starting point of the development of the new MSE expression.

Let h(t) be the overall time-invariant channel, which includes the transmit filter

and the physical channel. Its autocorrelation function ξ(t) is defined as

ξ(t) = h(t) 0 h∗(−t), (3.96)

with the associated Fourier transform given by the following equation:

Ξ(f) = F{ξ(t)}

= F{h(t) 0 h∗(−t)}

= H(f)H∗(f)

= |H(f)|2. (3.97)

ξ(t) can be sampled to get

ξ[n] = ξ(t)|t=nT . (3.98)

The MMSE is given by the following expression:

εI,min =

〈
1

1 + 1
No

Ξ 1
T
(f)

〉
, (3.99)

where subscript “min” on εI denotes minimum. In Equation 3.99, Ξ 1
T
(f) is the
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discrete time continuous frequency Fourier transform:

Ξ 1
T
(f) = F{ξ[n]}, (3.100)

and it is related to the continuous time continuous frequency Fourier transform Ξ(f)

by the following equation:

Ξ 1
T
(f) =

1

T

∞∑
k=−∞

Ξ

(
f +

k

T

)
. (3.101)

The optimum infinite LE which gives the MMSE can also be obtained [72,76]:

W (f) =
H∗(f)

No + Ξ 1
T
(f)

. (3.102)

It is assumed that the channel estimate used to derive the optimum LE is perfect.

This assumption will be effective for the rest of the MSE analysis.

3.4.3 Average MMSE of Infinite LE on Fading Channels

In the previous section, an MMSE expression was presented for the linear equal-

izer on a time-invariant channel. This section describes the development of a new

expression for the average MMSE of an infinite-length linear equalizer on a fading

time-varying channel in the presence of additive white Gaussian noise, based on the

expression in Equation 3.99. Towards this goal, a model and its statistics for the

time-varying channel is first investigated. A simple transmit filter is then chosen to

simplify the analysis. The PDF of the overall channel and, finally, an expression of

average MMSE and its relationship with the average SNR for LE on fading channel

are also derived.
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3.4.3.1 Model and Statistics of the Channel Taps

The channel model used here is a 2-ray model, with a delay interval of T/2:

c(τ ; t) = c0(t)δ(τ) + c1(t)δ(τ −
T

2
). (3.103)

¿From the above equation, the channel is a function of both the time index t and

the time delay τ , and its time-varying Fourier transform, taken with respect to the

time delay τ is given by

C(f ; t) = c0(t) + c1(t) exp

(
−j2πf

T

2

)
. (3.104)

The two taps c0(t) and c1(t), given by the Equations 3.105 and 3.106, are complex

and time-varying, that is,

c0(t) = c0,R(t) + jc0,I(t) (3.105)

and

c1(t) = c1,R(t) + jc1,I(t). (3.106)

The channel taps are independently generated by the Gans’ channel generator de-

scribed in Section 2.2.3.4. Input to the generator is a zero-mean white Gaussian

noise sequence. Since the generator is linear, the output is also Gaussian. Therefore,

the channel taps are complex Gaussian, with their magnitude Rayleigh distributed

and phase uniformly distributed.

The autocorrelation functions of the channel taps are summarized in the follow-
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ing equations:

φ00(∆t) = E [c0(t)c0
∗(t−∆t)]

= E [(c0,R(t) + jc0,I(t)) (c0,R(t−∆t)− jc0,I(t−∆t))]

= φ0R(∆t) + φ0I(∆t),

(3.107)

and similarly,

φ11(∆t) = E [c1(t)c1
∗(t−∆t)]

= φ1R(∆t) + φ1I(∆t),

(3.108)

where φiR(∆t) and φiI(∆t), for i = 0, 1, are the autocorrelation function of the real

and imaginary part of tap i, respectively, and defined as

φiR(∆t) = E
[
ci,R(t)c

∗
i,R(t−∆t)

]
(3.109)

and

φiI(∆t) = E
[
ci,I(t)c

∗
i,I(t−∆t)

]
. (3.110)

For the two channel taps with identical statistical properties, it follows that

φ0R(∆t) = φ0I(∆t) = φ1R(∆t) = φ1I(∆t) = φR,I(∆t), (3.111)
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and

φ00(∆t) = φ11(∆t) = 2φR,I(∆t). (3.112)

Since the two taps are independent, the cross correlation functions are

φ01(∆t) = E [c0(t)c1
∗(t−∆t)] (3.113)

= 0, (3.114)

and similarly,

φ10(∆t) = 0. (3.115)

3.4.3.2 Transmit Filter

In order to simplify the mathematics in this analysis, a rectangular pulse with

zero rolloff factor is used as the transmit filter:

|P (f)| =



√
T, |f | ≤ 1

2T

0, otherwise,
(3.116)

where T is the symbol period.

3.4.3.3 PDF of Fourier Transform of the Channel Autocorrelation

In this section, an expression for the PDF of Ξ 1
T
(f ; t) is derived. The term

Ξ 1
T
(f ; t), the discrete time continuous frequency Fourier transform of the autocor-
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relation of the time-varying channel is given by

Ξ 1
T
(f ; t) =

1

T

∞∑
k=−∞

Ξ

(
f +

k

T
; t

)
(3.117)

where Ξ(f ; t) is the Fourier transform of the autocorrelation of the time-varying

channel. Since a transmit filter with zero rolloff is used, there is no aliasing due to

sampling of the autocorrelation of the overall channel and there is only one term in

the summation in the expression for Ξ 1
T
(f ; t), namely,

Ξ 1
T
(f ; t) =

1

T
Ξ (f ; t)

=
1

T
|H(f ; t)|2. (3.118)

In Equation 3.118, H(f ; t) is the time-varying Fourier transform of the overall chan-

nel h(τ ; t), and |H(f ; t)|2 can be written as

|H(f ; t)|2 = |P (f)|2|C(f ; t)|2

= T |C(f ; t)|2. (3.119)

Let x ≡ Ξ 1
T
(f ; t). With the two tap channel given in Equation 3.104 and the

transmit filter given by Equation 3.116, x can be written as

x = cQcH , (3.120)
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where c and Q are defined as

c =


 c0(t)

c1(t)


 (3.121)

and

Q =


 1 exp

(
−j2πf T

2

)
exp

(
j2πf T

2

)
1


 . (3.122)

The right hand side of Equation 3.120 is a quadratic form in complex Gaussian

variables c0(t) and c1(t). Since Q is a Hermitian matrix, and c has zero mean, the

characteristic function of the quadratic form is given by Turin [77],

ϕ(t) =
Nc∏
n=1

(1− jtλn)
−1 , (3.123)

where t is an independent variable, λn are the eigenvalues of matrix LQ and L is

the covariance matrix of c, defined as

L = E[(c−E[c])(c− E[c])H ]. (3.124)

The two eigenvalues can be obtained by solving the characteristic equation for LQ:

λ1 = 4φR,I(0) (3.125)

λ2 = 0. (3.126)

Therefore, there is only one term in the product term in Equation 3.123.

Finally, the PDF of x can be derived by using the fact that the characteristic
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function and the PDF are a Fourier transform pair [77]:

pX(x) =




1
λ1

exp(− x
λ1
), x ≥ 0

0, otherwise.
(3.127)

3.4.3.4 Average MMSE of Infinite LE on Time-Varying Channels

For time-varying channels, the instantaneous value of the MMSE of an infinite

LE is also time-varying, given by

εV,min(t) =

〈
1

1 + 1
No

Ξ 1
T
(f ; t)

〉
, (3.128)

where εV,min denotes the MMSE of the equalizer output on a time-varying channel.

In Equation 3.128, the operation 〈�〉 denotes the average of � over frequency,

defined as

〈�〉 = T

∫ 1
2T

− 1
2T

�df (3.129)

The average MMSE of the LE on a time-varying channel can be derived by taking

the expectation of the MMSE expression given in Equation 3.128 with respect to

the time-varying channel:

εV,min = E[εV,min(t)] (3.130)

=

〈
E[

1

1 + 1
No

x
]

〉
, (3.131)

where � denotes the average of �. With the PDF of x derived in the previous

section, the expectation in Equation 3.131 can be evaluated using the following
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definition [78]:

E[f(x)] =

∫ ∞
−∞

f(x)pX(x)dx, (3.132)

with

f(x) =
1

1 + 1
No

x
. (3.133)

By evaluating the integral in Equation 3.132 and the angle brackets in Equa-

tion 3.131, the final expression for the average MMSE of an infinite LE on a fading

channel can be obtained:

εV,min =
No
λ1

exp

(
No
λ1

)
Ei

(
No
λ1

)
, (3.134)

where Ei(x) is called the exponential integral function, and it is defined as

Ei(x) =



∫∞
x

e−t

t
dt, x > 0

not defined, x ≤ 0
. (3.135)

Note that the SNR at the input of the infinite LE is

γin =
Psignal+ISI

Pnoise
(3.136)

=
λ1

No
, (3.137)

where the subscript “in” on γ denotes the input of the LE, and Psignal+ISI and

Pnoise denote the power of the signal plus ISI and the power of noise, respectively.
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Therefore, Equation 3.134 can be rewritten in terms of input SNR:

εV,min =
1

γin
exp

(
1

γin

)
Ei

(
1

γin

)
. (3.138)

As expected, the limit of the right hand side of Equation 3.138 is 0 as γ →∞.

3.4.4 MSE of Displaced LE on Fading Channels

In the case of time-invariant channels, if the optimum LE given in Equation

3.102 is used in the receiver, the MSE remains constant at MMSE for the entire

time slot. This is not true for a time-varying channel. The optimum LE derived

for a snap shot of the time-varying channel is no longer optimum at another time

instant, and the resulting MSE increases. The rate of increase in MSE depends on

the rate of change in the channel.

The diagram in Figure 3.13 shows the MSE when a displaced LE (DLE) is used

in the case of fading channel. In the time interval shown in the figure, the MSE

reaches its minimum at the mid-point t0 where the channel estimate is available.

The time instant t1, at which the channel estimate is not available is termed a

displaced time. At t1, the LE, which is derived and being optimum at t0, gives

a higher MSE ε1. The following theoretical development is intended to derive an

expression for ε1, in terms of εV,min and the time difference ∆t between t1 and t0.

The fading channel, due to its time-varying nature, involves two dimensions:

the time and the time delay. Up to this point, time is represented by the symbol

t and the time delay by the symbol τ . In order to simplify the notation in the

theoretical analysis, for the remainder of this chapter, all the time-varying filters

and waveforms at time instances t0 and t1 will be represented by the subscripts
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tt1t0

MSE ε1

εmin

Figure 3.13: MSE of DLE in a time slot

0 and 1, respectively. The time delay will be represented by the symbol t. For

example, for the time-varying channel at t1, instead of c(t1; τ), c1(t) will be used.

3.4.4.1 Perturbations in the Time-Varying Channels

The theoretical development in this section leads to an expression of the variance

of the perturbations in the time-varying channel. Since the MSE at t1 depends on

the perturbation of the time-varying channel from t0 to t1, the result developed here

will be useful in deriving an expression for the MSE at t1, as it will become apparent

in the later section.

At time t0 and t1, the time-varying channel are given by the following equations:

c0(t) = c00δ(t) + c01δ

(
t−

T

2

)
(3.139)

c1(t) = c10δ(t) + c11δ

(
t−

T

2

)
. (3.140)

Define y0 = c10 − c00 and y1 = c11 − c01 to be the perturbations of tap 0 and tap 1,

respectively, of the channel at t1 with respect to c0(t). Then the channel at t1 can
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also be written in terms of the channel at t0 and the perturbations:

c1(t) = c0(t) + y0δ(t) + y1δ

(
t−

T

2

)
(3.141)

= c0(t) + cp(t), (3.142)

where cp(t) is the channel perturbation defined as

cp(t) = y0δ(t) + y1δ

(
t−

T

2

)
, (3.143)

and the Fourier transform of c1(t) is given by

C1(f) = C0(f) +
(
y0 + y1e

−jπfT
)
. (3.144)

Since the channel taps are zero-mean complex Gaussian random processes, the

perturbations in the channel taps yi, for i = 0, 1, are zero-mean complex Gaussian

i.i.d. random variables. The variance of the perturbation σy
2 is defined as

σy
2 = E[|yi|

2] (3.145)

= E[|c1i − c0i|
2]. (3.146)

Substituting Equation 2.35 into Equation 3.146 and simplifying, the following ex-

pression for σy
2 can be obtained:

σy
2 = 2NGo (Eu,00 −Re{Eu,01}) , (3.147)

where E with subscript u denotes the energy of the Gans’ channel generator and it
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is defined as

Eu,mk =

∫ ∞
−∞

hub(tm − τ)h∗ub(tk − τ)dτ. (3.148)

Evaluation of Eu,00 is straight forward by change of variable and by the use of

Parseval’s theorem:

Eu,00 =

∫ ∞
−∞

|hub (t0 − τ)|2 dτ

=

∫ ∞
−∞

|hub(τ)|
2dτ

=

∫ ∞
−∞

|Hub(f)|
2df

=

∫ ∞
−∞

Φub(f)df, (3.149)

where Φub(f) is the U-shaped Doppler spectrum defined in Equation 2.33. By

evaluating the integral in Equation 3.149 [79], the following simple expression for

Eu,00 can be obtained:

Eu,00 = PrTo, (3.150)

where To is 1 s, and it appears in the above equation so that the units on the left

and right hand sides of the equation are the same.

For Eu,01, the following relation is obtained by the change of variable:

Eu,01 =

∫ ∞
−∞

hub(t1 − τ)h∗ub(t0 − τ)dτ

=

∫ ∞
−∞

hub(τ + ∆t)h∗ub(τ)dτ. (3.151)
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Taking the Fourier transform of Equation 3.151, with respect to ∆t, the following

relation is obtained:

F{Eu,01} = |Hub(f)|
2. (3.152)

The inverse Fourier transform of |Hub(f)|2, Eu,01 is given by

Eu,01 = F
−1{|Hub(f)|

2}

=

∫ ∞
−∞

|Hub(f)|
2ej2πf∆tdf (3.153)

=

∫ ∞
−∞

Φub(f)e
j2πf∆tdf. (3.154)

By evaluating the integral in Equation 3.154 [79], the following expression for

Re{Eu,01} can be obtained:

Re{Eu,01} = PrJ0 (2πfm∆t) , (3.155)

where Jn(x) is the nth order Bessel function of the first kind, and is defined as

Jn(x) =
1

2π

∫ π

−π

exp(jx sin θ − jnθ)dθ. (3.156)

Finally, the expression for the variance of the perturbations in the time-varying

channel is

σy
2 = 2PrNGo (1− J0(2πfm∆t)) . (3.157)

Note that σy
2 is a function of ∆t. When ∆t = 0, t1 coincides with t0, and

the perturbation of the channel with respect to itself and its variance are zero. As



3.4 Mean Square Error Analysis 93

∆t increases, σy
2 oscillates as a damped sinusoid. This behavior can be accounted

for by the multiple sinusoidal nature of the channel tap generated by using Gans’

model. The U-shaped Doppler spectrum in Gans’ channel model is band limited by

−fm and fm. In the extreme case, there are only two frequency components −fm

and fm in the U-shaped Doppler spectrum. The channel taps consist of one single

sinusoid with a frequency of fm and so is the variance of the channel perturbations.

As ∆t→∞, c1(t) and c0(t) are so far apart that they are essentially uncorrelated,

and σy
2 takes the value of 2PrNGo.

3.4.4.2 Estimated Information-Bearing Symbol at a Displaced Time

At time t0 and t1, the output of the transmit filter p(t) and the received signals

of the communication system in Figure 3.12 are

s0(t) =
∞∑

n=−∞

b0[n]p(t− nT ) (3.158)

s1(t) =
∞∑

n=−∞

b1[n]p(t− nT ) (3.159)

r0(t) = s0(t) 0 c0(t) + η0(t) (3.160)

r1(t) = s1(t) 0 c1(t) + η1(t), (3.161)

where the operation 0 here denotes the continuous time convolution. When the

DLE method is used, the channel estimate is available at t0 where the optimum

LE coefficients are computed. This equalizer is used during the entire interval as

described in Section 3.2.3. Therefore, at t1, the transmitted signal retrieved at the

output of the receiver is estimated from the received signal r1(t) using the equalizer
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computed at t0:

b̂1(t) = r1(t) 0 w0(t) (3.162)

= [s1(t) 0 c1(t) + η1(t)] 0 w0(t). (3.163)

Substituting Equations 3.159 and 3.141 into Equation 3.163, the following ex-

pression for b̂1(t) can be obtained:

b̂1(t) =

[
∞∑

n=−∞

b1[n]p(t− nT ) 0

(
c0(t) + y0δ(t) + y1δ

(
t−

T

2

))
+ η1(t)

]
0 w0(t)

= b̂1o + b̂1p, (3.164)

where

b̂1o(t) =
∞∑

n=−∞

b1[n]p(t− nT ) 0 c0(t) 0 w0(t) + η1(t) 0 w0(t), (3.165)

and

b̂1p(t) = y0

∞∑
n=−∞

b1[n]p(t− nT ) 0 w0(t) + y1

∞∑
n=−∞

b1[n]p(t− nT ) 0 w0

(
t−

T

2

)
.

(3.166)

Equation 3.164 suggests that the output of the receiver at t1 consists of two com-

ponents: b̂1o(t) and b̂1p(t). As the channel c1(t) can be decomposed into two com-

ponents c0(t) and cp(t), the output of the receiver at t1 can also be separated into

two components, with b̂1o(t) corresponding to c0(t) and b̂1p(t) to cp(t). These two

components, as shown in the diagram in Figure 3.14, can be described as follows:

b̂1o is the desired output of the system, estimated from the received signal that was
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b1(t)
^

s1(t)
c0(t) w0(t)

cp(t) w0(t)

+
+

η1(t)

b1p(t)
^

b1o(t)
^

Figure 3.14: The two components in b̂1(t)

transmitted through the channel c0(t), using the optimum receiver w0(t); b̂1p is the

excess component, resulting from the perturbations of the channel cp(t). The reason

for separating these two components will become apparent when an expression for

MSE at t1 is derived in the next section.

The term b̂1p(t) can be further simplified. Since p(t) is a sinc pulse, b̂1p(t) can

be rewritten as

b̂1p(t) = y0

∞∑
n=−∞

b1[n]w0,bl(t− nT ) + y1

∞∑
n=−∞

b1[n]w0,bl

(
t− nT −

T

2

)
, (3.167)

where w0,bl(t) is the band-limited receiver and it is defined as

w0,bl(t) = p(t) 0 w0(t). (3.168)

Finally, the estimated transmitted symbol at t1, b̂1[n], can be obtained by sam-

pling the output of the receiver at time t = nT ,

b̂1[n] = b̂1(t)
∣∣∣
t=nT

= b̂1o[n] + b̂1p[n], (3.169)
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where

b̂1o[n] =
∞∑

m=−∞

b1[m]p(nT −mT ) 0 c0(nT ) 0 w0(nT ) + η1(nT ) 0 w0(nT ), (3.170)

and

b̂1p[n] = y0

∞∑
m=−∞

b1[m]w0,bl(nT −mT ) + y1

∞∑
m=−∞

b1[m]w0,bl

(
nT −mT −

T

2

)
.

(3.171)

Since the optimum receiver is a function of the channel at t0, b̂1[n] is a function of

the channel at t0 and the channel perturbations.

3.4.4.3 Average MSE at a Displaced Time

The MSE at a displaced time t1, ε1, is defined as

ε1 = EB[|b1[n]− b̂1[n]|
2]. (3.172)

Substituting Equation 3.169 into the above equation, the following expression for

ε1 is obtained:

ε1 = EB[|b1[n]− b̂1o[n]− b̂1p[n]|
2]

= EB[|b1[n]− b̂1o[n]|
2]

−EB [2Re{(b1[n]− b̂1o[n])b̂
∗
1p[n]}] + EB[|b̂1p[n]|

2]. (3.173)

The first term in Equation 3.173 effectively results in the MMSE of an infinite

LE on a time-invariant channel. The symbol b1[n] is transmitted through the overall
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channel h0(t), and the receiver output b̂1o[n] is estimated by using the LE w0(t),

which is optimum if the channel is h0(t). As in c1(t) and b̂1[n], the MSE at t1

also consists of two parts: the minimum MSE for time-invariant channel and an

excess MSE. This justifies the need for separating b̂1[n] into two components in the

previous section.

As in b̂1[n], ε1 is also a function of c0(t), y0 and y1. Since the samples of

c0(t), y0 and y1 are random variables, the average value for ε1 can be obtained by

taking the expectations of ε1 with respect to these random variables. Due to the

linearity and uniform convergence of the expectation operation, the order in which

the expectations are taken is interchangeable.

For the first term in Equation 3.173, the expectation with respect to the channel

at t0 is taken first. The result of taking the expectation is the average MSE for

fading channel, εV,min, which is given in Equation 3.134. Since εV,min is a constant,

its expected value over the channel perturbations remains constant:

EY [EH [EB[|b1[n]− b̂1o[n]|
2]]] = EY [EH [εI,min]]

= EY [εV,min]

= εV,min, (3.174)

which is also equal to ε0, the average MSE at t0.

Taking the expectation of the second term in Equation 3.173 over the channel

perturbations y0 and y1 and interchanging the order of linear operations, one can
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write

EY [EB[2Re{(b1[n]− b̂1o[n])b̂
∗
1p[n]}]] = EB[2Re{EY [(b1[n]− b̂1o[n])b̂

∗
1p[n]]}].

(3.175)

The result of evaluating the expectation over the channel perturbation in the above

equation is zero, since the perturbations have zero mean.

Evaluating the expectation of the third term in Equation 3.173 over the trans-

mitted symbol, it can be expressed as follows:

EB

[∣∣∣b̂1p∣∣∣2
]
= σb

2
∞∑

m=−∞

∣∣∣∣y0w0,bl(nT −mT ) + y1w0,bl

(
nT −mT −

T

2

)∣∣∣∣
2

. (3.176)

Taking the expectation of the above equation with respect to the channel pertur-

bations, the equations below can be obtained:

EY

[
EB

[∣∣∣b̂1p∣∣∣2
]]

= σb
2σy

2

∞∑
m=−∞

|w0,bl(mT )|2 +

∣∣∣∣w0,bl
(
mT −

T

2

)∣∣∣∣
2

(3.177)

= 2σb
2σy

2
∞∑

m=−∞

|w0,bl(mT )|2 (3.178)

The summation term in Equation 3.178 is the energy in the band limited optimum

LE at t0 and can be expressed in the frequency domain by deploying Parseval’s
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theorem:

∞∑
m=−∞

|w0,bl(mT )|2 = T

∫ 1
2T

− 1
2T

∣∣∣W0,bl, 1
T
(f)
∣∣∣2 df

=

∫ 1
2T

− 1
2T

∣∣∣∣∣
∞∑

k=−∞

W0,bl

(
f +

k

T

)∣∣∣∣∣
2

df

=

∫ 1
2T

− 1
2T

|W0(f)|
2 df (3.179)

(3.180)

where the subscript “ 1
T
” denotes discrete-time continuous-frequency Fourier trans-

form. Therefore, the expected value of the third term in Equation 3.173, with

respect to the channel perturbation is

EY

[
EB

[∣∣∣b̂1p∣∣∣2
]]

= 2σb
2σy

2

∫ 1
2T

− 1
2T

|W0(f)|
2
df. (3.181)

Taking the expectation of both sides in Equation 3.181 over the channel at t0, and

evaluating the integral on the right hand side, one can write

EH

[
EY

[
EB

[∣∣∣b̂1p∣∣∣2
]]]

= 2Aσb
2σy

2, (3.182)

where A is defined as

A =
1

λ1

[
e
No
λ1 Ei

(
No
λ1

)(
1 +

No
λ1

)
− 1

]
, (3.183)

and could be written in terms of γin, the input SNR:

A =
1

λ1

[
e
1
γinEi

(
1

γin

)(
1 +

1

γin

)
− 1

]
. (3.184)
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The expression for the average MSE at t1 is given by the following equation:

ε1 = EH [EY [ε1]]

= ε0 + 2Aσb
2σy

2

= εV,min + 4APrNGoσb
2(1− J0(2πfm∆t))

= εV,min + ∆ε(γin, fm,∆t), (3.185)

where ∆ε(γin, fm,∆t) is the excess MSE, defined as

∆ε(γin, fm,∆t) = 4APrNGoσb
2(1− J0(2πfm∆t)). (3.186)

Observe that the average MSE at t1 consists of two terms: the average MMSE and

the excess MSE. The expression in Equation 3.185 is in fact the general average

MSE expression for any arbitrary time tk. At time tk, if the time-varying channel

is available, and is used to derive an optimum LE receiver, the average MSE can

achieve its minimum at εV,min, which is constant. However, if no channel information

is available at this time and the optimum LE derived at t0 is used, the excess MSE

is added to the average MSE to adjust change in the time-varying channel from t0

to tk. The excess MSE depends on the amount of change in the channel, and is a

function of the rate of change in the channel and the time interval in which this

change takes place. Therefore, it is a function of fm and ∆t.

For ∆t ≥ 0, Equation 3.185 gives an expression for the average MSE when a

fixed LE is used in a receiver. The fact that ε1 is an even function of ∆t suggests

that the MSE curve is symmetrical with respect to the axis ∆t = 0, and the MSE

value approaches minimum as ∆t approaches 0 from both positive and negative

sides. This mathematically verifies the possibility of the use of a displaced LE and
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its performance advantage over a fixed LE.



Chapter 4

Application to IS-136 800 MHz

Operation

4.1 Background

The commercial development of cellular systems has evolved remarkably since

the World Allocation Radio Conference approved frequency allocations for cellular

telephone in the 800-900 MHz band [1]. In the late 70’s and early 80’s, the first

generation cellular systems were established in different countries, based on FDMA

and analog FM technology. Total Access Communication System (TACS) in Eu-

rope and Nippon Telephone (NTT) in Japan are some typical examples of the first

generation analog cellular systems. In North America, the Advanced Mobile Phone

Service, also known as AMPS or IS-21, was developed and is widely used.

As cellular phones became more popular, the analog systems cannot support

the increasing demand for capacity in large cities. The second generation digital

cellular systems, such as the United States Digital Cellular system (USDC) and
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Global System for Mobile Communications (GSM) in Europe, emerge to improve

both the capacity and the system performance. The USDC system using TDMA

method is standardized as Interim Standard 136 (IS-136) [80].

The IS-136 system was designed to share the same channel frequencies, frequency

reuse plan and base stations as AMPS. Frequency reuse gives rise to co-channel

interference (CCI) which cannot be overcome by raising the power of the transmitted

signal since it would increase the level of CCI for the co-channel cells and adjacent

channel interference (ACI) for the neighboring cells. Additionally, transmission

in most cellular radio applications is accomplished in a time-varying multipath

environment. This causes frequency selective fading in the transmitted signal.

Emerged in the early 90’s, IS-136 TDMA system was designed mainly for voice

traffic and a data rate of 48.6 kb/s was sufficient. At the end of the 90’s, wireless

network operators face explosion of data traffic due to the general use of wireless

Internet, strong demand from users for new mobile multimedia services, and increas-

ing demand from users for general mobility [81]. It is predicted that, by the end

of 2002, packet-based multimedia services, including IP telephony, will account for

over 50 percent of all wireless traffic [82]. There is a need in the wireless industry to

evolve the current infrastructure and network services to meet the demand for high

speed data services. As an interim solution for the evolution from the second to

the third generation wireless network, TDMA operators are planning for Enhanced

Data Rate for Global Evolution (EDGE) to deliver 384 kb/s with full mobility [82].

Although IS-136 TDMA standard is not adopted by the TDMA operators, it is a

good example to demonstrate the effectiveness of the methods and algorithms de-

veloped in this thesis. Furthermore, the methods and algorithms developed in this

thesis are general and they can be used in other practical applications and standards
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such as GSM. Therefore, IS-136 TDMA system is used in this thesis as an example.

In this chapter, some of the equalization and interpolation techniques discussed

in Chapter 3 will be deployed to achieve a 5% BER performance in the IS-136 mobile

to base station transmission for the 800 MHz operation, in the presence of CCI. To

achieve this goal, the BER of a Displaced DFE (DDFE) is tested. For comparison,

the DFE bound for such a system is obtained through simulation. The performance

of conventional adaptive DFE and calculated DFE using Wiener-Hopf equations is

also presented for this purpose.

4.2 System Descriptions

4.2.1 Transmitter

The transmitter in IS-136 consists of a π/4 DQPSK encoder, an up sampler and

a transmit filter. Specified in IS-136 standard, the input bits to the transmitter are

first converted to a sequence of π/4 DQPSK symbols. Then the sequence is sent

to an up sampler to double the sampling frequency. These T/2-spaced symbols are

further pulse shaped by a square root raised cosine pulse with a roll of factor of

35%, and finally, transmitted through a time varying Rayleigh fading channel.

4.2.1.1 Encoder

The π/4 DQPSK encoder maps a pair of input bits into one of the four possible

differential phases. The relationship of the input bits and the differential phase is

outlined in Table 4.1 [83].

Depending on the differential phase and the previous π/4 DQPSK symbol, the
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Input Bits Differential Phase (∆θk)
00 π/4
01 3π/4
11 −3π/4
10 −π/4

Table 4.1: Mapping of the π/4 DQPSK symbol

current kth transmitted symbol can be generated using Equation 4.1,


 Ik

Qk


 =


 cos (∆θk) − sin (∆θk)

sin (∆θk) cos (∆θk)




 Ik−1

Qk−1


 (4.1)

where (Ik, Qk) and (Ik−1, Qk−1) are the in-phase and quadrature components of

the kth and (k− 1)th π/4 DQPSK symbols, respectively. It can also be interpreted

that the kth symbol is generated by rotating the previous symbol by an angle of

∆θk.

4.2.1.2 Up Sampler

The up sampler in the transmitter is used to double the symbol rate, since the

a square root raised cosine pulse with 35% roll-off is used in the transmit filter. It

places one zero between two consecutive π/4 DQPSK symbols and its output xk is

given by the following equation [84]:

xk =




b
(
k
2

)
, k = 0, 2, 4 · · · ,

0, otherwise
. (4.2)

4.2.1.3 Transmit Filter and Receive Filter

The purpose of the transmit filter, also known as the pulse shaping filter, is to
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band-limit the input signal and perform a digital-to-analog conversion, so that the

input signal can fit in the analog band limited channel.

One basic requirement of the transmit filter is to have zero ISI at the pulse

sampling time. The transmit filter used here is a square root raised cosine pulse,

which exhibits this important property.

In order to reduce the noise power outside of signal bandwidth, an identical

square root raised cosine pulse is used as the receive filter at the receiver front end.

Since the combination of the transmit and the receive filters gives a raised cosine

pulse, for simulation purpose, these two filters are combined and only one single

raised cosine filter is used in place of the transmit filter.

The time domain and frequency domain representations of the raised cosine

pulse are given in Equations 4.3 and 4.4 [60]:

p (t) = sinc

(
t

T

)
cos
(
πβt
T

)
1− 4β2t2

T 2

(4.3)

P (f) =




T, 0 ≤ |f | ≤ 1−β
2T

T
2

[
1 + cos

(
Tπ
β

(
|f | − 1−β

2T

))]
, 1−β

2T
≤ |f | ≤ 1+β

2T

0, |f | > 1+β
2T

(4.4)

where β is the roll off factor, 0 ≤ β ≤ 1, and T is the symbol duration.

Figure 4.1 shows the time domain and frequency domain characteristics of the

raised cosine pulses with roll off factors of 0 and 35%. One can observe that the

pulse decays more rapidly with a higher roll off factor.

As shown in Figure 4.1, the highest frequency component in the frequency re-

sponse of the pulse shaping filter is 1.35/(2T ). According to the Nyquist sampling
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Figure 4.1: Raised cosine pulses



4.2 System Descriptions 108

criterion, the condition for anti-aliasing is

fs ≥
1.35

T
, (4.5)

where fS is the sampling frequency.

Here, a sampling frequency of 2
T

is used. The reason for this is three fold.

Firstly, raising the sampling frequency twice, instead of 1.35 times, simplifies the

computation. Secondly, as shown in the next section, the resolution of the channel

model IS-136 is T/2, and the input to the channel should also be T/2-spaced, in

order to maintain the resolution. Finally, a fractionally spaced equalizer can also be

used in the receiver to achieve better BER performance, as mentioned in Section 1.2.

In digital signal processing, the transmit filter is usually implemented as an FIR

filter, which means sampling and truncation are involved. In order to achieve a close

approximation, the number of taps in the FIR filter should be sufficiently large, so

that it contains at least 98% of energy of the continuous time raised cosine pulse.

The energy of a continuous time signal and a discrete time signal are given by

E =

∫ ∞
−∞

|p(t)|2dt =

∫ ∞
−∞

|P (f)|2df (4.6)

and

E = T

N−1∑
n=0

|p [n] |2, (4.7)

respectively. N is the length of the FIR filter. For β = 0.35, the energy of the raised

cosine pulse is 7.3T/8. N should be chosen such that the energy of the FIR filter is

at least 98% of the continuous time pulse.
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Figure 4.2: 2-ray channel model

Truncation in the time domain involved in the approximation process results

in side lobes with infinite duration in the frequency spectrum. The two adjacent

samples should be sufficiently far apart, so that the sum of the side lobes is not as

significant. This is another benefit of using a sampling frequency of 2/T , instead of

1.35/T .

4.2.2 Channel

In wireless communications, a signal usually propagates in a multipath environ-

ment, due to reflections of the signal from buildings, mountains and other obstacles.

A multipath channel model has been developed in 2.2. Here, a 2-ray channel model

is adopted. This model consists of two significant multipath components, one ar-

riving after another with a path delay interval of T/2. Figure 4.2 shows a 2-ray

channel at a time instant.

The two components, with equal average power, are varying independently, with

Rayleigh distributions. The 2-ray channel can be represented by Equation 4.8:

c[n] = c0[n]δ[n] + c1[n]δ

[
n−

1

2

]
(4.8)
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where

c0[n] = |c0[n]| e
j arg(c0[n]) (4.9)

c1[n] = |c1[n]| e
j arg(c1[n]) (4.10)

and

E{|c0[n]|
2} = E{|c1[n]|

2}. (4.11)

Figure 4.3 shows variation of the magnitude of one channel tap, for both 100 km/hr

and 8 km/hr. In the case of 800 MHz operation, the Doppler frequency for 100 km/hr

is 77.5 Hz. At a mobile speed of 100 km/hr, with a symbol rate of 24.3 kHz and

162 symbols per time slot, the transmitted signal experiences 3 deep fades in 6 time

slots. On average, there will be one deep fade in every two time slots.

4.2.3 Receiver

There are two receive antennas, followed by the equalizer and the decoder. Here

the decoder is integrated into the equalizer and a block diagram of the arrangement

is shown in Figure 4.4.

4.2.3.1 Equalizer

In a digital communication system, the system performance is mainly degraded

by fading, ISI, CCI and noise. Both fading and ISI occur when the signal propagates

in the multipath environment in which there are propagation delay and attenuation

associated with each path. CCI originates from the frequency reuse plan of the
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Re[ej∆θ̃k ] Im[ej∆θ̃k ] Estimated bits
≥ 0 ≥ 0 00
≥ 0 < 0 10
< 0 ≥ 0 01
< 0 < 0 11

Table 4.2: π/4 DQPSK decision rules

TDMA system. It comes from cells sharing the same frequency channel. Noise is

the most common problem in any given kind of communication system. It includes

the noise from surrounding environment, noise from the non-linear devices and

thermal noise from the components of the communication system.

Equalization, in this case, has several tasks: to compensate the fading channel,

to cancel the interferences and to serve as a matched filter to reduce the effect of

the noise in the system. For the IS-136 800 MHz operation, a T/2-spaced DFE is

used in order to provide remedies for all the above problems.

4.2.3.2 Decoder

The task of a decoder is to apply a specific decision rule, depending on the

application, to the input symbols to estimate the original input data sequence to

the transmitter.

In this case, the decoder first determines the kth differential phase ∆θ̃k by sub-

tracting the phase of the (k−1)th symbol from the kth symbol. Then it follows the

decision rules outlined in Table 4.2 to estimate the input bits to the transmitter.

The decoder is integrated into the DFE. Since the system performance will

improve by feeding the clean symbols, as opposed to the noisy symbols, back to the

DFE, this task is also accomplished by the decoder. It retrieves the clean differential

phases from the output bits, following the conversion rules tabulated in Table 4.1,
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and reconstructs the current symbol by adding the differential phase to the previous

symbol phase.

4.3 Performance of Receivers

In this section, BER performance of different DFE schemes is presented. The

DFE used in the receiver has five T/2-spaced taps in the two feed forward filters, and

three T -spaced taps in the feedback filter (5-5-3 DFE). The choice of the number of

taps in the DFE is the result of considering the trade-off between complexity and

performance. First, a receiver with a known channel impulse response is tested in

such system. This is the ideal case, and it sets the lower BER bound of the system

performance for DFE receivers. Then the performance of an adaptive DFE, calcu-

lated DFE using Wiener-Hopf equations and displaced DFE (DDFE) are evaluated

and compared against the lower bound.

4.3.1 DFE Bounds

Here, the receiver is assumed to have perfect knowledge of the time-varying

channel for each symbol in the time slot. The channel impulse response is used to

estimate the auto correlation matrix and cross correlation vector of the DFE. The

tap coefficients of the DFE are determined by using the Wiener-Hopf equations,

such that the MSE at the DFE output is minimized.

In practice, information of the time-varying channel is unknown to the receiver,

and hence has to be estimated. The performance of such an ideal receiver only serves

as a lower bound for the other DFE receivers. As the channel estimation algorithm

improves in terms of accuracy, the system performance will become closer to this
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lower bound.

Figure 4.5 and Figure 4.6 illustrate the BER bounds for channels with path

delay T/2 between the first ray and the second. The • in the BER figures denotes

the performance requirement specified by the IS-136 standard: 3% BER at an SNR

of 17 dB and 5% BER at a CIR of 17 dB. If the • is above the BER curve of a

particular receiver, its BER performance satisfies the standard. Figure 4.5 shows the

BER lower bound at various values of SNR. In order to investigate the performance

of the DFE on a system subjected to additive white Gaussian noise (AWGN) only,

the power of the interfering signal is set to zero. At a vehicle speed of 100 km/hr,

the lower bound satisfies the 3% BER requirement, specified in the IS-136 standard

for a system under noise conditions, with a gain of 11 dB in SNR. Figure 4.6 shows

the BER lower bound for the DFE at various CCI levels. This figure is obtained

at a vehicle speed of 100 km/hr and an SNR of 30 dB. The DFE can achieve a 5%

BER with a gain of 11 dB in CIR. These figures show that the DFE can give good

performance provided that the receiver can estimate and track the time-varying

channel accurately.

The performance of the DFE for a channel with various path delays is also

studied. A plot of BER versus path delay is given in Figure 4.7. This plot is

obtained at an SNR of 30 dB, CIR of 17 dB and vehicle speed of 100 km/hr.

As shown in this figure, the BER reaches minimum at a path delay of T/2. As the

path delay increases, the ISI introduced by the channel is more severe. Therefore,

the BER goes up at relative path delay of 3T/4 and T . Note also, that the BER is

approximately 0.31% at a path delay of T . This implies that, with a good channel

estimation algorithm, 5% BER is achievable at path delay of T .

When the relative path delay is zero, the transmitted signal is subjected to flat
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Figure 4.5: BER lower bound for DFE (800 MHz operation, CIR =∞)

fading. It is well known that the optimum receiver for flat fading channel is an

optimum diversity combiner [25], and the use of equalization in such a system will

degrade the performance. This accounts for the poor performance of the receiver

under a flat fading channel. When the path delay increases to T/4, the performance

improves, compared to the flat fading case.

4.3.2 Adaptive DFE

In most cases in wireless mobile communication, the time-varying channel is

unknown to the receiver. In order to recover the transmitted data at the receive

end, an adaptive equalizer, which follows certain adaptation rules, is often deployed
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Figure 4.6: BER lower bound for DFE (800 MHz operation, SNR = 30 dB)

to adapt to the channel.

For an IS-136 system, there are only 14 training symbols in each time slot. It

requires an adaptive algorithm whose convergence can be achieved at the end of the

training symbols. The RLS algorithm is chosen for its fast convergence property.

4.3.2.1 RLS-DFE with no Tracking

Here, 14 training symbols in each time slot are used to facilitate the training of

the coefficients of the RLS-DFE. Once training is accomplished, the DFE coefficients

are fixed until the end of the time slot. There is no tracking or updating of the

coefficients in the rest of the time slot. Therefore, this is a fixed DFE.
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Figure 4.8 shows the BER performance of this receiver, at 30 dB SNR for various

mobile speeds. At lower mobile speeds, the BER at 17 dB CIR or higher is well below

5% since the time-varying channel changes relatively slowly at these mobile speeds.

However, at higher mobile speeds, this receiver scheme is not feasible. Since the

channel changes rapidly during the time slot, the DFE with fixed coefficients cannot

anticipate these changes. As a result, the transmitted data cannot be retrieved and

the BER performance is poor for high mobile speeds.

It is also worth noting the shape of the BER curves for higher mobile speed.

In the high CIR region, the curves become flat, which is different from the classic

water-fall-shaped BER curves for the AWGN channels. These irreducible BER
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Figure 4.8: BER performance of RLS-DFE without tracking

curves demonstrate the presence of error propagation in the receiver resulting from

the severe ISI, high Doppler frequency and CCI.

4.3.2.2 RLS-DFE with Tracking

In the case of high mobile speeds, the time-varying channel is changing so fast,

that the DFE trained to give good performance at the beginning of the time slot

might not be feasible in the middle or at the end of the time slot. Here, a DFE

with the abililty to update its coefficients, in response to the change in the channel

is required in the receiver to maintain the performance.

One typical way to deal with the fast time-varying channel is to incorporate a
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tracking ability in the DFE. Both LMS and RLS are the typical adaptive algorithms

for updating the DFE coefficients, and their tracking performance is comparable in

general [39]. LMS is known for its simplicity; whereas RLS algorithm can provide

better and faster tracking of the time-varying channel with spectral nulls [12] [85].

Therefore, RLS algorithm is also used for tracking in the receiver despite its com-

plexity in implementation.

The tracking algorithm used here can be summarized as followed:

Step1: Divide the data sequence into M blocks.

Step2: Compute w from the training sequence.

Step3: Set wt = w

Step4: for i = 1 to M

apply w to block i

update wt

w = wt

end

Figures 4.9 and 4.10 show the BER curves for the RLS-DFE with tracking capa-

bility, with 14 and 7 symbols in each block, respectively. These figures demonstrate

improvement in the BER performance, compared to the one with no tracking. How-

ever, the error propagation problem still remains, as the BER curve is still relatively

flat in the high CIR region. This is inherent with the algorithm. When the above

algorithm is applied to the system, the decoded symbols from the previous block are

assumed correct and used to facilitate the training of the DFE for the current block.

For low vehicle speeds, such as 0 km/hr, 8 km/hr and 50 km/hr, this assumption is

valid. In these cases, the performance is good and it meets the requirement specified
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Figure 4.9: BER performance of RLS-DFE, 14 symbols per block

in the standard. At high vehicle speeds, such as 100 km/hr, however, due to the

fast fading environment, CCI and ISI, this assumption might not be valid. Even

though there is improvement, the error generated in the current block will affect

the performance of the DFE in the blocks that followed, until the end of the time

slot. Therefore, more and more errors are accumulated towards the end of the time

slot.

The purpose of tracking is to update the DFE coefficients fast enough so that

the DFE can adapt to the fast fading channel. The performance of the receiver

also relies on how often the update takes place, compared to the rate of change in

the channel. Therefore, the number of symbols in each block plays an important

role. If this number is too large, the system is not capable of tracking the fast
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Figure 4.10: BER performance of RLS-DFE, 7 symbols per block

fading channel. On the other hand, if the system tracks symbol by symbol, the

algorithm might be unstable due to errors and the numerical property of the data

sequence. The curves in Figure 4.9 show some improvement over the no tracking

case. However, the number of symbols in a block might still be too large. When the

number of symbols is reduced to 7, further improvement in BER can be achieved,

as shown in Figure 4.10.

As expected, the DFEs with tracking demonstrate better performance, compared

to the one with no tracking. However, it cannot satisfy the performance criterion

specified in IS-136: 5% BER at 17 dB CIR for higher vehicle speeds.
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4.3.3 Calculated DFE Using Wiener-Hopf Equations

In this section, a calculated DFE using the Wiener-Hopf equations, based on

channel estimation, is tested. In this receiver scheme, the receiver has two stages:

the channel estimation stage and the equalization stage.

The motivation for this receiver scheme is the accuracy in the estimation process.

Given a training sequence with fixed length, the estimation error is smaller if the

number of parameters to be estimated is reduced. With 14 training symbols, or

28 training bits it is more accurate to estimate two parameters in the time-varying

channel than the large number of tap coefficients in the DFE. Furthermore, since the

number of parameters to be estimated is much less, it is much simpler to estimate

the channel than to estimate the taps of the equalizer [39]. For the same reason,

channel estimation can also be accomplished with the 12 Coded Digital Verification

Color Code (CDVCC) bits, which are in the middle of the time slot and known to

the receiver. Therefore, this method should give better BER performance. Since

tracking causes error propagation, it is not considered in this case.

4.3.3.1 MSE of Channel Estimation

¿From the known bits in the time slot, the LSSE algorithm discussed in Sec-

tion 3.1 is used here to estimate the channel impulse response. It is assumed that

the channel is static during the known bits. Since the two sections of known bits

are short, compared with the entire time slot, this assumption is valid. In order

to ensure that the LSSE channel estimation algorithm gives an accurate channel

estimate, the MSE of the channel estimate, in the cases of 28 and 12 training bits,

is studied.
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Figure 4.11: Channel estimation MSE versus CIR

The MSE of the channel estimate is defined by the following equation:

MSEch =
1

N

N−1∑
i=0

∥∥∥hi − ĥi

∥∥∥2 (4.12)

where N is the number of runs, hi and ĥi are the ith channel and channel estimate.

Figure 4.11 shows the MSE of the channel estimate at different levels of CCI.

The quality of channel estimation with 28 training bits is better than that with 12

bits. The curve with 28 training bits exhibits a gain of over 5 dB for a CIR of 25 dB

or lower, over that with 12 training bits. This gain increases as the CIR increases.

Since there are only two channel parameters to be estimated, the MSE is sufficiently

low, even with only 12 bits.
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4.3.3.2 Calculation of Optimum DFE Coefficients

After channel estimation is accomplished, the channel estimate is used to com-

pute the estimated auto correlation matrix and cross correlation vector of the DFE,

as discussed in Section 3.2.1. The optimum DFE coefficients are given by the

Wiener-Hopf equations 3.72.

4.3.3.3 Performance of Calculated DFE Using Wiener-Hopf Equations

Figure 4.12 shows how the calculated DFE works in a time slot. In this case,

both channel estimation and calculation of DFE1 is performed at the 28-bit training

sequence. DFE1 is applied to the received symbols from the start of the time slot

to the 12 CDVCC bits, where the channel estimation and calculation of DFE2 are

performed. DFE2 is then applied to the received symbols from this point on until

the end of the time slot.

Figure 4.13 shows the error distribution over a time slot for the calculated DFE,

at a vehicle speed of 100 km/hr and a CIR of 17 dB. In the regions following the

training bits and the CDVCC bits, the average BER is relatively low since changes

in the time-varying channel are not significant from regions of known bits. In the

regions further away from the training sequences, the BER grows more rapidly due

to the more significant changes in the channel and error propagation introduced by
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Figure 4.13: BER distribution of calculated DFE

the feedback mechanism of the DFE. The average BER here is 4.7%, which satisfies

the IS-136 requirement. For higher CIR and lower mobile speed, the BER should

also satisfy this requirement.

4.3.4 Displaced DFE

The purpose and advantage of the displaced equalizer technique have been pre-

sented and discussed in Section 3.2.3. Here, a DFE receiver using this scheme is

applied to the IS-136 received symbols to achieve better BER performance, and such

a receiver is called a displaced DFE (DDFE). As in the calculated DFE case, chan-

nel estimation and DFE calculation are performed twice in the time slot – once at
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the training bits and the other at the CDVCC bits. The only difference here is that

DFE2, instead of DFE1, is applied to the second half of section Data1. Figure 4.14

shows the arrangement of the DDFE applied to a time slot.

The error distribution for the DDFE is presented in Figure 4.15, at a vehicle

speed of 100 km/hr, and a CIR of 17 dB. For comparison purpose, the error distri-

bution curve for the standard calculated DFE is also shown in this figure. In the

DDFE case, since the second half of section Data1 is filtered by DFE2, the error

in this region is significantly reduced, compared to that of the standard calculated

DFE. The BER is also reduced to 2.3%. Therefore, by applying a DDFE to the

received symbols, the BER performance is improved, without significant increase in

system complexity and computational intensity.

4.4 Discussion

In this section, comparisons of the receiver schemes detailed in the previous

section are presented. Two issues are involved in these comparisons: the BER

performance and the computational complexity.

4.4.1 Comparison of Performance
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Figure 4.15: BER distribution of DDFE and standard calculated DFE

Figure 4.16 shows a comparison of the BER performance of different receiver

schemes. Here, only the performance of the worst case vehicle speed of 100 km/hr

is considered, at a SNR of 30 dB. The BER performance of the receiver with perfect

channel estimate is also presented as the lower bound. With the ideal channel

estimator, the maximum gain obtainable for 5% BER at a CIR of 17 dB is 11 dB.

Among all the curves, BER curves of RLS-DFE, for both non-tracking and track-

ing cases, are the farthest away from the lower bound. Despite the fast convergence

property of the RLS algorithm, this class of receivers suffers from several disad-

vantages in this application. First, the 28 training bits might not be sufficient for

the convergence of the algorithm. For channels exhibiting spectral nulls or some

other hostile properties, a longer training sequence might be necessary. However, at
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Figure 4.16: Comparison of BER performance

higher vehicle speeds, since the channel varies so fast that it changes significantly

during the training sequence, a longer training sequence might not provide any im-

provement. Second, in theory, a large number of taps in the equalizer is required to

provide good system performance. However, with only 28 training bits, the large

number of parameters estimated will result in higher estimation error, which trans-

late to higher BER. Finally, decision directed tracking, which is one of the solutions

to deal with fast time-varying channel, causes error propagation. Therefore, the 5%

BER at a CIR of 17 dB is not satisfied by the RLS-DFE.

BER curves for the calculated DFE all satisfy the IS-136 requirement since there

are only two channel parameters to be estimated. The standard calculated DFE,

with a margin of only 0.5 dB, barely satisfies the BER requirement. On the other
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hand, the DDFE meets the BER requirement with margin of 7 dB. With this special

DFE technique, the average error is reduced significantly in the time slot for fast

time-varying channels.

Comparing the BER curves against the lower bound, there is still much room

for improvement, which implies that the potential performance of the DFE is not

achieved, with the current channel estimation algorithm. By employing a better

channel estimation algorithm, the error floor can be lowered, and more closely ap-

proach the lower bound.

4.4.2 Comparison of Complexity

Another comparison of different receiver schemes is its computational complex-

ity. The various algorithms and schemes discussed above involve different numbers

of floating point operations and matrix operations. One way to quantify the com-

putational complexity is to use the notion of a flop. A flop is a floating point

operation [86]. Each operation, such as a floating point add or floating point mul-

tiply, is considered as a flop. Since the number of flops is the same for filtering

operations for all the DFE receivers after the DFE coefficients are determined, only

the computational load of calculation of the DFE coefficients is considered here.

For the RLS-DFE receivers, the DFE is trained at the beginning of the time slot

using 14 training symbols where 14 updates of the DFE coefficients occur. With Nw

coefficients in DFE, each update using the RLS algorithm involves 5Nw
2+6Nw +2

flops [87]. In the case of the RLS-DFE with no tracking, the DFE is fixed and no

more updates are required. For the RLS-DFE with tracking, there are 147 additional

updates of the DFE coefficients, and the total number of updates is 161.

For the calculated DFEs, including the standard calculated DFE and the DDFE,
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the operation count consists of two parts: the LSSE channel estimation and the

computation of the DFE coefficients using the Wiener-Hopf equations.

For LSSE channel estimation, the numbers of operations required to compute

the auto correlation matrix S and the cross correlation vector z are KNc
2 and KNc,

respectively, for a training sequence with length Nt and a channel with Nc taps. The

operation count for solving Equation 3.5 for ĉopt is
2
3
Nc

3+ 3
2
Nc

2− 1
6
Nc by using the

LU decomposition method, detailed in the work of Press et al. [88].

By applying the LSSE channel estimation algorithm, even though matrix in-

version is also involved, the matrix is the auto correlation of the training sequence

and it is a function of the training sequence only. For a fixed training sequence, the

inverse of the matrix can be pre-computed and stored [39], and no further matrix in-

version is required. This can reduce the computational complexity significantly. In

this case, only the computation of the cross correlation and a matrix multiplication

are involved, and the total number of flops required for LSSE channel estimation

can be reduce to 2Nc
2 + (K − 1)Nc. For two antennas in the receiver, this number

is doubled.

For computing the optimum DFE coefficients from the channel estimates, the

Wiener-Hopf equations are solved. For an overall channel, including the transmit

filter and the actual channel, of Nh taps and a feed forward filter in the DFE with

Nff taps, it takes 3(2Nh−1)(2Nff−1) operations for estimating the auto correlation

matrixR, due to its special structure. It takes no operations for estimating the cross

correlation vector p. The operation count for solving the Wiener-Hopf equation is

2
3
Nw

3 + 3
2
Nw

2 − 1
6
Nw flops.

The process of determining the DFE coefficients, including LSSE channel esti-

mation and DFE coefficient computation, takes place twice within a time slot, once
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DFE type Operation count
RLS-DFE, no tracking 14(5Nw

2 + 6Nw + 2)
RLS-DFE, tracking 161(5Nw

2 + 6Nw + 2)
Calculated DFE 4

3
Nw

3 + 3Nw
2 − 1

3
Nw + C

Table 4.3: Operation counts for different DFE methods

at the training sequence with 14 symbols and once at the CDVCC with 6 symbols.

In summary, the operation counts for different DFE methods are tabulated in

Table 4.3, for Nc = 2, Nh = 20 and Nff = 5.

In Figure 4.17, the number of operations for different DFE methods is plotted

against the number of DFE coefficients. Even though the computational complexity

of the RLS-DFEs is O
(
Nw

2
)
and that of the calculated DFEs is O

(
Nw

3
)
, for small

number of taps in the DFE, the number of operations for the RLS-DFEs is much

larger, due to the large proportionality constant. This can be observed by comparing

the curves in Figure 4.17. Therefore, the calculated DFEs require less computational

load than the RLS-DFEs.
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Chapter 5

Application to IS-136 1.9 GHz

Operation

5.1 Background

The IS-136 TDMA system operates at both 800 MHz and 1.9 GHz. The addition

of the 1.9 GHz operation in the IS-136 system is to increase the system capacity so

that the increasing demands for wireless mobile communications can be satisfied.

Since these are operations of the same system, the specifications on the system set

up and the criterion of the system performance for 1.9 GHz operation are identical

with those for the 800 MHz operation. The only difference is the center frequency at

which the system operates. Since the center frequency is roughly doubled for the 1.9

GHz operation, the Doppler frequency experienced by the system is roughly twice

as high. This implies that more channel variations take place within the duration of

one TDMA time slot. Higher Doppler frequencies make it more difficult to achieve

the specified performance criterion and the equalizer updating techniques employed
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in the 800 MHz operations are no longer feasible. Other techniques, usually more

complex, have to be found in order to meet the performance requirement under this

even more adverse condition [55].

In this chapter, more complex channel estimation techniques discussed in Chap-

ter 3 will be deployed to achieve a 5% BER performance for the 1.9 GHz operation,

in the presence of CCI. In particular, blind techniques, such as joint data and chan-

nel estimation, and joint data, channel and co-channel estimation, will be used

despite their intensive computational complexity. Furthermore, three channel inter-

polation methods, the displaced LE, the displaced DFE and the curve fitting DFE

will be employed, in combination with the various channel estimation methods and

their BER performance is tested and compared through simulations. An important

issue, the computational complexity of various methods, is also compared at the

end of the chapter.

5.2 Performance of Receivers

In this section, BER performance of different equalizer schemes with two-antenna

diversity will be evaluated with one dominant CCI. For simulation purposes, a two-

ray channel with path delay of T/2 is considered. Here, two equalizer structures,

the LE and the DFE are used, and they are fractionally spaced equalizers with

T/2-spaced taps. As with those used in the 800 MHz operation, the DFEs used

here have five T/2-spaced taps in the two feed forward filters, and three T -spaced

taps in the feedback filter (5-5-3 DFE). The LEs have eight T/2-spaced taps (8-8

LE). Since, in general, the receiver scheme will also work in cases of lower velocity,

if it can satisfy the performance criterion at high velocity, it is only tested at the
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velocity of 100 km/hr.

In the remainder of this section, the lower BER bounds of the system with DFE

receivers and LE receivers are evaluated by means of simulations. All the simulation

results are obtained by averaging over 1000 simulation runs. The performance

of various equalization schemes are evaluated and compared against these lower

bounds. In order to verify the theoretical analysis conducted in Chapter 3, the

MSE of receivers with DLE and the probability of error in ML data and channel

estimation are also simulated to compare against the theoretical results.

5.2.1 DFE and LE Bounds

The DFE and LE bounds can be obtained when channel estimation is perfect.

In these cases, the receivers are assumed to have perfect knowledge of the time-

varying channel, or possibly both channel and co-channel at every symbol period

during the time slot. Here, these bounds are obtained by means of simulations,

and the results represent the best performance one particular equalizer scheme can

achieve. With these simulation results, one can decide if the equalizer scheme can

be used to satisfy the performance criterion, by improving the channel estimation

quality.

Figure 5.1 shows the BER performance of DFE and LE receivers at the presence

of noise, for two antenna diversity. The curves are obtained at a vehicle velocity

of 100 km/hr and CCI power of zero. Both lower bounds satisfy the 3% BER

performance requirement at SNR of 17 dB, with a margin of 11 dB. Therefore,

both receiver schemes are feasible, provided that the channel estimates are accurate

enough.

It is worth noting that Chou et al. attempts to use a DFE with two T-spaced
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Figure 5.1: BER lower bound (1.9 GHz operation, CIR =∞)

feedforward filters in the applications of IS-136 800 MHz operation, at vehicle speed

of 100 km/hr [89]. It is also assumed that the time-varying channel impulse response

is known and a 2-ray channel model with a path delay of T/2 is used [89]. When the

2 rays in the channel model have equal average power, the performance criterion of

3% at 17 dB SNR cannot be satisfied. In this research thesis, a DFE with 2 T/2-

spaced feedforward filters are used. As shown in Figure 5.1, superior performance

is achieved due to the fact that the fractionally-spaced equalizer approximates the

optimal receiver which includes the functions of a matched filter and an equalizer [12,

23,28].

Also note the changes in these lower bounds as the SNR level increases. At low
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SNR, the effect of the noise dominates, and error rate is high for both DFE and

LE. As the noise power decreases, the effect of the ISI introduced by the channel

dominates, and the performance of DFE surpasses that of LE due to its ability to

cancel ISI.

As an alternative to equalization, diversity combining can also be used to miti-

gate the effect of ISI. In fact, diversity combining is less computationally intensive

than equalization. Clark et al. investigated an MMSE diversity combining technique

which is designed to combat ISI in wideband digital cellular radio application [90]. It

is found that MMSE diversity combining offers significant improvement over selec-

tion diversity and maximal ratio combining for slowly time-varying indoor channels

with high delay spreads [90]. However, fast fading is not considered in this work.

The curves in Figure 5.2 represent the lower bounds of LE and DFE receivers

in the presence of CCI, with and without the information of the co-channel. They

are obtained at an SNR level of 30 dB. Unless explicitly specified otherwise, the

SNR level will be maintained at 30 dB in the simulations throughout this section.

All of these lower bounds satisfy the 5% BER performance requirement at a CIR

level of 17 dB. Since these bounds are obtained with perfect channel estimation, by

employing a good channel estimation algorithm, these receiver schemes can be used

to meet the standard in the presence of CCI.

Without knowledge of the co-channel, the error rate for both DFE and LE

receivers is high when CCI is severe. Since the effect of ISI in the system dominates

as the level of CCI decreases, the DFE receiver gives better performance than the

LE receiver.

Comparing the two DFE lower bounds, it is obvious that the performance of the

DFE receiver with the co-channel information is superior to the one without the
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Figure 5.2: BER lower bound (1900 MHz operation, SNR = 30 dB)

co-channel information at high level of CCI (low level of CIR). It implies that the

DFE receiver with knowledge of both channel and co-channel can suppress both ISI

and CCI to achieve outstanding performance. At high CIR, since the level of CCI is

low enough, the receiver with knowledge of the co-channel, has similar performance

to that of the one without the the co-channel information, and the gap between the

bounds for these two types of receivers are closing. Therefore, when the CCI is not

so severe, the DFE receiver with no co-channel information, can be used to achieve

comparable performance.

On the other hand, the LE receivers, with or without the knowledge of the co-

channel, have very similar performance. With the model developed in Chapter 2,

the characteristic of the CCI is very similar to that of the ISI. Due to the inherent
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Figure 5.3: Variation of one channel tap (1900 MHz operation)

limitation of the LE receivers, they cannot cancel the ISI as well as the CCI, even

when provided the co-channel information.

5.2.2 DFE and LE Partial Bounds

5.2.2.1 Channel Samples at SYNC and CDVCC only

One of the differences between 800 MHz and 1.9 GHz operations is the frequency

band where the operation takes place. The center frequencies of the 1.9 GHz oper-

ation is more than twice that of the 800 MHz operation. Therefore, more variations

in the communication channel during a time slot can be expected. Figure 5.3 shows

the magnitude of one channel tap in an interval of two time slots for a mobile speed
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Figure 5.4: Performance of DFE receiver, Case A0

of 100 km/hr. On average, there are more than one deep fades in every time slot.

If the LSSE channel estimation method is used on the SYNC and CDVCC se-

quences in a time slot, two channel samples are available. In this case, there are

only two channel samples available in a time slot, and it is called scheme A0. Fig-

ure 5.4 shows the BER performance of the DDFE and curve fitting DFE (CFDFE)

receivers at vehicle speed of 100 km/hr. It is assumed that the channel estimation

at these two known sequences are perfect. The curves in these two figures are re-

ferred to as the partial DFE bounds since they are obtained by using perfect channel

estimates in only some parts of a time slot, and they represent the best attainable

performance these DFE receivers can achieve.

At high vehicle speeds, for example, 100 km/hr, the best performance of these
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receivers cannot satisfy the standard. This indicates that with only two channel

samples available in a time slot, even with no estimation errors, the channel cannot

be accurately interpolated over the entire time slot. In practice, estimation errors

associated with the LSSE channel estimation process do occur, and degrade the BER

performance. Therefore, two channel samples alone are not adequate to accurately

characterize the time-varying channel at high vehicle speed.

Since in the presence of ISI, the performance of a DFE receiver surpasses that

of an LE receiver, it can be concluded that the performance of a LE receiver also

cannot meet the standard with scheme A0.

5.2.2.2 Insertion of the Channel Samples

The accuracy of the interpolated channel can be improved by increasing the

frequency of the channel samples. However, adding more channel samples in a time

slot means an increase in complexity. Therefore, a trade-off must be made between

accuracy and complexity. In order to understand how to insert channel samples

efficiently so that good BER performance can be achieved with relatively small

number of samples inserted, a few insertion schemes are investigated in this section.

These insertion schemes are listed in Figure 5.5. The rectangles in the figure

represent the duration of a time slot in the IS-136 mobile cellular system. Inside

the rectangles, the symbols × denote the channel samples obtained at SYNC and

CDVCC by using the LSSE channel estimation method. The symbols ◦ denote the

inserted channel samples obtained by some other means, such as ML blind data and

channel estimation.
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(a) Scheme A1

(b) Scheme A2

(c) Scheme A3

(d) Scheme B1

(e) Scheme B2

(f) Scheme B3

(g) Scheme B4

(h) Scheme B5

Figure 5.5: Channel sample insertion schemes

5.2.2.3 Partial Bounds with Channel Information

Figures 5.6 and 5.7 show the BER performance of the DDFE and curve fitting
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Figure 5.6: DDFE partial bounds

DFE receivers, respectively, by employing the channel sample insertion schemes

listed in Figure 5.5 at a vehicle speed of 100 km/hr. These schemes are labeled A1

through B5. For comparison purposes, these channel samples are assumed to be

estimated perfectly and they represent the partial DFE bounds.

The partial DDFE bounds satisfy the 5% BER performance criterion at CIR of

17 dB for different insertion schemes, except for scheme A1. Among the insertion

schemes with 5 channel samples in a time slot, scheme B2 gives the best BER

performance. With 7 channel samples in a time slot, schemes B4 and B5 give

comparable performance which is the best among all the schemes.

As shown in Figure 5.7, all the partial curve fitting bounds surpass the 5% BER

performance criterion. As of the partial DDFE bounds, schemes B4 and B5 give
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Figure 5.7: Curve fitting DFE partial bounds

the best performance among all insertion schemes with a curve fitting DFE receiver.

In fact, the gap between these partial bounds and the lower bound is so small that

it can be predicted that any additional channel samples to schemes B4 and B5 will

not improve the BER performance as much as the addition of one of the existing

7 channel samples in these schemes. This implies the marginal improvement in the

BER performance associated with the additional channel samples cannot justify the

cost of obtaining these channel samples. Therefore, 7 channel samples in a time slot

are sufficient to achieve good BER performance.

Since schemes B2, B4 and B5 give good BER performance for both DDFE and

curve fitting DFE receivers, only these three channel sample insertion schemes will

be investigated further. The curves in Figure 5.8 represent the partial bounds for
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Figure 5.8: DLE partial bounds

a DLE receiver with schemes B2, B4 and B5 at a vehicle speed of 100 km/hr.

The partial DLE bounds for these three schemes meet the 5% BER performance

requirement.

5.2.2.4 Partial Bounds with Channel and Co-channel Information

Partial bound of an equalizer is obtained with the channel estimation is perfect.

With the perfect channel estimates at a few points in a time slot, the time-varying

channel can be interpolated by the interpolating method associated with a particular

equalizer updating technique. Figures 5.9, 5.10 and 5.11 show the partial bounds

for the DDFE, curve fitting DFE and DLE receivers with channel and co-channel
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Figure 5.9: DDFE partial bounds with co-channel information

information, in comparison with the DFE and LE lower bounds. In this case,

the channel and co-channel within a time slot are interpolated from the known

channel and co-channel samples by using various channel interpolation methods.

The equalizer coefficients are calculated using the interpolated channel and co-

channel.

With the information about the co-channel, all three receivers give better per-

formance using insertion schemes B4 and B5. With two less channel and co-channel

samples in a time slot, the interpolated channel and co-channel in scheme B2 are

not as accurate as those in the two other schemes and the error rate associated with

this scheme is larger for all three receiver types.
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Figure 5.10: Curve fitting DFE partial bounds with co-channel information

5.2.2.5 Comparison

This section compares the BER performance of the DDFE, curve fitting DFE

and DLE receivers with and without the co-channel information. For this pur-

pose, the partial bounds of scheme B4 for various receiver schemes are replotted in

Figure 5.12.

With co-channel information, the performance of the DDFE receiver and the

curve fitting DFE receivers surpasses that of the DFE receivers without co-channel

information at the low CIR region. Since the interference power is high in this

region, the interference suppression capability of the DFE receivers with co-channel

information is obvious. In the high CIR region, since the level of CCI is small,
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Figure 5.11: DLE partial bounds with co-channel information

the advantage of the DFE receivers with co-channel information disappears and the

BER performance is similar with or without co-channel information. On the other

hand, the two partial DLE bounds are similar. As with LE lower bounds discussed

in Section 5.2.1, the lack of ability of an LE to cancel CCI accounts for the similarity

of these two partial bounds.

Among the three types of receivers, with or without information of the co-

channel, performance of a DLE is the worst, due to the inherent limitation of an LE.

Without the feedback mechanism, an LE can remove neither ISI nor CCI even with

perfect channel and co-channel estimates provided. A receiver with a curve fitting

DFE gives the best BER performance. The basic difference between the DDFE

and the curve fitting DFE methods is the channel model used in the interpolation
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Figure 5.12: Partial bounds for scheme B4

process. In the case of a curve fitting DFE, a cubic spline interpolation scheme

is used to reconstruct the time-varying channel and co-channel during a time slot.

Since the interpolated channel and co-channel in a DDFE receiver are only the zero-

order (piece-wise) approximation of the physical channels, the interpolated channels

in the curve fitting DFE receiver scheme is far more accurate. This accounts for

the superior BER performance of the curve fitting DFE receiver. As the number

of channel samples increases in a time slot, the difference in BER performance

between the DDFE and the curve fitting DFE receiver narrows. Ultimately, if the

number of channel samples available is equal to the number of symbols in the time

slot, the BER performance of both receivers are the same and these partial bounds

will become the DFE lower bound. The fact that the curve fitting DFE method
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provides more accurate interpolated channel and co-channel also accounts for the

better improvement, in terms of BER, offered by this receiver at low CIR when the

co-channel information is available.

5.2.3 Performance with Blind ML Data and Channel Esti-

mation
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Figure 5.13: Histogram of the LSSE

In the case of high vehicle speed, more channel samples are needed in a time

slot in order to predict the variations of the time-varying channel. In particular,

at a vehicle speed of 100 km/hr, the maximum Doppler frequency is approximately

180 Hz for the 1.9 GHz operation. This implies that the time-varying channel goes
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through 1.16 cycles per time slot. As illustrated in the previous sections, with 7

channel samples, insertion schemes B4 and B5 offered superior BER performance.

With only two known sequences, SYNC and CDVCC, available in a time slot, more

channel samples can only be obtained by means of blind methods. Blind ML data

and channel estimation method is one of these blind methods.

Figure 5.13 shows the histogram of the average LSSE over 2000 runs, resulting

from the blind data and channel estimation using an estimation sequence of 12 bits.

This histogram is obtained at a vehicle speed of 100 km/hr and CIR of 17 dB. It is

found that, out of the 212 possible input sequences, the number of input sequences

associated with a low LSSE is relatively small. This validates the blind data and

channel estimation scheme with an estimation sequence of 12 bits long in the IS-136

application.

The blind data and channel estimation method is tested in the three receiver

schemes and the BER performance is shown in Figures 5.14, 5.15 and 5.16 for the

DDFE, curve fitting DFE and DLE receivers, respectively. For comparison, the

lower bounds for DFE and LE are also plotted in the same figures. Since the IS-136

system uses π/4 DQPSK differential encoding scheme, it is assumed that the phase

of the symbol prior to the estimation sequence is known in order for the blind data

and channel estimation to be applied. With the blind data and channel estimation

method, the BER performance of all three receiver schemes satisfy the 5% BER

criterion at 17 dB of CIR for various channel sample insertion schemes.

Figure 5.17 shows a comparison of performance of the three receiver schemes

with blind data and channel estimation. For comparison purposes, the BER curves

of the DDFE, curve fitting DFE and DLE receivers for insertion scheme B4 are

regenerated here. Similar to the partial bounds, the DFE receivers give better
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Figure 5.14: DDFE receiver with blind channel estimation

performance than the LE receiver in general. Between the two DFE receivers, the

BER performance of the curve fitting DFE receiver surpasses that of the DDFE

receiver at the high CIR region due to the fact that the curve fitting DFE receiver

provides a more accurate interpolated channel than the DDFE receiver.

Comparing the curves in Figures 5.14, 5.15, 5.16 and 5.17, the BER performance

is similar at low CIR, in particular, at 0 dB CIR, regardless the type of receiver and

the channel sample insertion scheme used. In this region the CCI power is high and

the effect of CCI dominates. With only the channel information from blind data

and channel estimation, the receivers cannot suppress CCI. This accounts for the

similar poor BER performance in the low CIR region for all the receiver types and

all insertion schemes.
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Figure 5.15: Curve fitting DFE receiver with blind channel estimation

5.2.4 MSE of Receivers with DLE

The theoretical MSE analysis of DLE receivers presented in Section 3.4 was

intended for the IS-136 application. However, in the course of the mathematical

development, some elements in the transmitter, which are different from the IS-136

specification, have been used in order to simplify the analysis and, more importantly,

derive an expression for the MSE of the DLE receiver on fading channels. These

elements include a BPSK encoder and a rectangular pulse with zero roll-off in the

transmit filter. In addition to simplifying the mathematics, adopting a transmit

filter with zero roll-off is also critical since the LE can be the optimum receiver

only if the channel is band-limited in the interval of [−1/2T, 1/2T ] [72]. Despite
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Figure 5.16: DLE receiver with blind channel estimation

these differences, the shape of the MSE curve should remain the same as simulation

results, and it can serve as a reference. Therefore, the MSE performance of the

DLE receiver of this modified system, obtained by means of theoretical analysis

and computer simulations, is presented in this chapter for comparison purposes.

5.2.4.1 Average MMSE

An expression of average MMSE for the infinite LE on time-varying channel was

derived in terms of input SNR, and it is given in Equation 3.138. This theoretically

derived average MMSE on time-varying channel is plotted in Figure 5.18. For

comparison purpose, the average MMSE obtained by means of simulation and the
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Figure 5.17: Blind channel estimation receivers with scheme B4

MMSE of an AWGN channel are also plotted against the input SNR, on the same

figure.

The average MMSE of a simulated LE is obtained from the simulation of a

baseband communication system with LE receiver, similar to the one described in

Figure 3.12, averaging over 4000 channels. In the simulation, the LE receiver has

finite length and its optimum coefficients are derived iteratively using the LMS adap-

tive algorithm. Since both equalizers, the LE with infinite length in the theoretical

analysis and the simulated LE with finite length, are optimized in the MSE sense,

in the presence of channel noise, they cannot completely eliminate ISI. Therefore,

the output of both equalizers contains residual ISI, as well as additive noise. At low

SNR, the high noise power results in significant MMSE at the output of both LEs,
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Figure 5.18: MMSE for infinite LE

as shown in Figure 5.18. Insufficient averaging of the simulated MMSE accounts

for the discrepancy between the two MMSE curves in the low SNR region. Since

the theoretical MMSE averages over all possible channels, it represents the mean

of the MMSE of an LE with infinite length. As the number of channels used in

the computer simulation increases, the simulated average MMSE approaches the

theoretical average MMSE asymptotically. At high SNR, the MMSE curve of the

finite length LE becomes flat due to the fact that an LE with finite length is in-

adequate to compensate for the ISI on the channel with spectral nulls. Thus, the

ISI at the output remains, even though the noise power is low, and this may lead

to serious performance degradation. On the other hand, the MMSE curve for the
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LE with infinite length continues to fall as the SNR increases, which indicates that

the residual ISI and noise level at the equalizer output decrease. In fact this op-

timum LE is equivalent to the cascade of a matched filter and a transversal filter.

The former reduces the noise effects and provides the principal correction factor

when SNR is low. The latter reduces ISI and at high SNR, it attempts to suppress

ISI [72]. Furthermore, the finite precision effect of the computer simulation on the

simulation result also contributes to the flattening of the simulated average MMSE

at high SNR.

The MMSE of an AWGN channel is derived from a special group of channels:

the channel consists of an impulse and AWGN. The MMSE of such channels is given

by the following equation:

εAWGN,min =
1

1 + γin
, (5.1)

which represents the lowest MMSE attainable by an LE. The derivation of Equa-

tion 5.1 is shown in Appendix C. As shown in Figure 5.18, the MMSE of an AWGN

channel and the theoretical average MMSE are similar in shape and they both ap-

proach zero as SNR → ∞. Since the channel has only one single tap, there no

residual ISI at the output of the LE, and this accounts for the discrepancy between

the two MMSE curves: for an MMSE level of 30 dB, the LE requires 9 dB higher

in SNR in order to recover the signal from both ISI and noise.

For the purpose of verifying theoretical derivation of the average MMSE of the

infinite LE on time-varying channels, a different approach is taken to evaluate the

expression in Equation 3.130: εV,min(t) is first obtained by evaluating the angle

bracket analytically, followed by the evaluation of the mathematical expectation us-

ing 4-dimensional numerical integration. The angle bracket is an averaging process
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over frequency, and its evaluation is given in Appendix A. Since the time-varying

channel in the MSE analysis is assumed to have two taps with complex values, there

are four variables for the time-varying channel. In order to evaluate the expectation

in Equation 3.130, with respect to the time-varying channel, 4-dimensional integra-

tion is required, and the details for 4-dimensional numerical integration is given in

Appendix B.

The result of the numerical integration approach is also plotted in Figure 5.18.

The average MMSE obtained numerically coincides with the theoretical average

MMSE, which verifies the theoretical analysis performed in Chapter 3.

5.2.4.2 Average MSE

The MMSE of an LE can be achieved at the symbol period where the perfect

channel estimate is available. In the case of a time-varying channel, the MSE will

exceed the MMSE at any other point if the LE receiver is fixed. An expression for

the average MSE is derived in Chapter 3, and the average MSE in Equation 3.185 is

a function of input SNR γin, the Doppler frequency fm and the time difference ∆t.

In Figure 5.19, the average MSE is plotted against the time difference at various

values of SNR for a vehicle speed of 100 km/hr. All these curves are parabolic

in shape, and the MSE grows as |∆t| increases. Since, on average, the channel

changes more as it moves away from the point where the perfect channel estimate

is available, the performance of the receiver which is only optimum with respect to

the perfect channel estimate, becomes worse.

It can also be observed that as |∆t| increases, the MSE increases as the noise level

reduces. In fact, as No → 0, Equation 3.185 yields an infinite MSE. This behavior

is unusual, yet can be explained by the fact that an optimum LE in the sense of
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Figure 5.19: Average MSE at 100 km/hr, theoretical analysis

minimizing MSE is acting as a zero-forcing filter in the absence of noise in order

to suppress ISI. Since the channel consists of two time-varying channel taps, this

time-varying channel exhibits spectral nulls, which occur at different frequencies at

different time. Figure 5.20 shows four channel and receiver pairs at different values

of SNR and |∆t|. The spikes in the frequency response of the LE at an SNR of

30 dB are larger than that at an SNR of 10 dB since the amount of noise at the

spectral nulls are much smaller in the case of 30 dB SNR. In the extreme case,

the magnitude of this spike approaches infinity as the channel noise disappears. At

∆t = 0, this optimum LE strikes a balance between reducing noise and ISI, and

the error at the output is low. At |∆t| � 0, this LE is no longer optimum and

the nulls of the time-varying channel have shifted away from the frequencies where
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Figure 5.20: Channel and receiver pairs at various SNR and |∆t|
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the spikes of the LE appear. As a result, at high SNR, the signal at the output of

the LE gained a large amount of power, and the error is high compared with the

transmitted data with average power of one.
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Figure 5.21: Average MSE at 100 km/hr, simulation result

Figure 5.21 and Figure 5.22 shows the simulation and theoretical results, re-

spectively, of the average MSE as a function of ∆t at two different levels of SNR

and a vehicle speed of 100 km/hr. The simulation results are consistent with the

theoretical analysis: both average MSE curves are parabolic in shape, and the av-

erage MSE at an SNR of 10 dB crosses the one at an SNR of 40 dB. In the case

of computer simulation, the two average MSE curves cross at ∆t = 20T , whereas

the two theoretical average MSE curves at 10 dB and 40 dB input SNR cross at

∆t = 5.5T . This can be accounted for by the insufficient averaging of the simulation
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Figure 5.22: Average MSE at 100 km/hr, theoretical result

Results and the finite precision effect of the computer.
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Figure 5.23: Probability of error in blind channel estimation

5.2.5 Probability of Error in ML Blind Data and Channel

Estimation

In the process of blind ML data and channel estimation, errors can occur due

to the channel noise. In particular, at low SNR, a data and channel pair, which

is different from the actual pair, could be selected. The resulting error in channel

estimation degrades the system performance.

In Chapter 3, theoretical analysis on the probability of selecting the correct

channel estimate using the blind ML data and channel estimation method was

performed and an upper bound on the probability of error was derived. This upper

bound is plotted in Figure 5.23, and compared with the average probability of error
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in blind ML channel estimation obtained by means of simulations.

Note that, in the expression of the upper bound in Equation 3.59, dmin, which is

the distance between the received signal ro and the closest possible received signal,

is difficult to determine theoretically. Therefore, the value of dmin used to calculate

the upper bound is determined by computer simulations. Since the value of dmin

and, consequently, the upper bound of the probability of error depend on the time-

varying channel, the theoretical upper bound plotted in Figure 5.23 is averaged over

different values of dmin, corresponding to different random channels.

It is found that the upper bound for the probability of error is above the sim-

ulation result at almost all SNR levels shown, except for 30 dB of SNR, where

insufficient averaging might have occured. It can also be observed that the gap

between the curves becomes larger as SNR decreases. This can be explained by the

validity of the assumption made in the theoretical analysis: the channel estimation

error due to noise and the channel noise are independent. For high SNR, the corre-

lation between the estimation error and the channel noise is insignificant and can be

neglected. Therefore, the assumption is valid at high SNR. At low SNR, the corre-

lation becomes more significant as the noise power increases and σro′
2, the variance

of the sum of the estimation error and the channel noise, given in Equation 3.54

becomes less accurate. Furthermore, the erf function and the power operation in

the upper bound expression are highly non-linear. They can magnify any small

change in value in the argument, which results in large change in the upper bound.

Therefore, this upper bound is not accurate at low SNR.

5.3 Discussion
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The discussion in this section on the comparison of various receiver types can be

divided into two parts. The first deals with the performance issue and the second

deals with the complexity issue.

5.3.1 Performance Issues

5.3.1.1 DDFE, DLE and Curve Fitting DFE

In general, the performance of a DFE receiver is better than an LE receiver,

as shown in Figures 5.2, 5.12 and 5.17. This is true for the lower bounds and the

partial bounds for receivers with or without information on the co-channel. It is also

true for receivers using channel samples that are estimated perfectly or estimated by

using the ML blind data and channel estimation method. This can be explained by

the fact that a DFE receiver is capable of cancelling ISI, as well as CCI if co-channel

information is provided, with its feedback mechanism, which is not present in an

LE receiver.

Between the two DFE receivers, since the curve fitting DFE receiver adopts

a cubic spline model to interpolate the channel, its interpolated channel is more

accurate than that of the DDFE receiver, which is only a zeroth order approximation

of the physical channel. Consequently, at high SNR regions where the channel

estimates are relatively more accurate, the BER performance of the curve fitting

DFE receiver is better, as shown in Figures 5.12 and 5.17.

5.3.1.2 Lower Bounds, Partial Bounds and Blind Channel Estimation

Figures 5.24 and 5.25 show a comparison of the lower BER bound, the partial

bound and BER performance of receiver using blind channel estimation for a DLE
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Figure 5.24: DLE receiver performance for scheme B4

receiver and a DDFE receiver, respectively. In the case of partial bound and receiver

using blind channel estimation, channel sample insertion scheme B4 is used. The

gap between the lower bounds and the partial bounds shown in both figures is mainly

caused by interpolation errors in the partial bounds. The fact that the displaced

equalizers adopt a piece-wise channel interpolation model accounts for the big gap

between the lower bounds and the partial bounds.

Note that the partial bounds and the BER curve of a receiver using blind channel

estimation cross each other in both figures. This behavior can be explained by the

non-linearity in the relationship between the MSE and the BER. In the case of the

partial bound, the channel samples in a time slot are estimated without error and,

thus, the MSE of the channel samples are minimized. However, it is by no means
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Figure 5.25: DDFE receiver performance for scheme B4

certain that such a system achieves minimum probability of error. In fact, a channel

estimate that gives the lowest probability of error can be found by optimization

under the criterion of minimum error probability, which is a rather complex task

involving the solution of non-linear equations [11]. Therefore, it is possible for the

BER performance of the receiver using blind channel estimation to be better than

the partial bounds.

Figure 5.26 shows a comparison of the lower BER bound, the partial bound and

BER curve of the curve fitting receiver using blind channel estimation for insertion

scheme B4. The fact that the lower bound and the partial bound are close to each

other indicates that the error in the interpolated channel reconstructed using the

cubic spline curve fitting method is minimal. With blind channel estimation, the
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Figure 5.26: Curve fitting DFE receiver performance for scheme B4

BER curve is much further away from the two bounds. One can observe that with an

accurate channel estimate, the channel interpolation error is minimal. However, for

a channel estimate with relatively large estimation error, such as the one obtained

by using the blind channel estimation method, the estimation error is amplified

by the interpolation process, resulting in larger interpolation error. Therefore, the

BER performance of the curve fitting DFE is more sensitive to estimation error

than the DDFE and DLE.
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5.3.2 Complexity Issues

5.3.2.1 Complexity Measure

The computational complexity of a channel estimation method is usually mea-

sured in terms of the number of operations. In the two following sections, Sec-

tions 5.3.2.2 and 5.3.2.3, the complexity of the blind channel estimation method

and the blind channel and co-channel estimation method will be discussed and

compared. The number of operations involved in these two methods is large and

it is inconvenient to use such a small unit. Additionally, measuring the complexity

of a particular estimation method is mainly for comparison purposes, and it is not

necessary to measure the complexity strictly to the exact number of operations.

Since both of these two channel estimation methods involve in large number of

LSSE channel estimations, in the two following sections, the computational com-

plexity will be measured and compared in terms of the number of LSSE channel

estimations.

5.3.2.2 Blind Channel Estimation

Channel samples within a time slot can be added by using the blind channel

estimation method. As discussed in the earlier sections, the number of channel

samples added is dictated by the trade-off between complexity and performance.

Among all the insertion schemes discussed in Section 5.2.2.2, the partial DDFE

and curve fitting DFE bounds plotted in Figures 5.6 and 5.7, respectively, show

that a minimum of two channel samples need to be inserted, in order to meet the

performance criterion. Therefore, the complexity can only be reduced by shortening

the estimation sequence with a penalty in performance.
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Figure 5.27: MSE of channel estimate vs. length of estimation sequence

Figure 5.27 shows the MSE of channel estimate as a function of the number of

bits in the estimation sequence at SNR = 30 dB, CIR = 17 dB and v = 100 km/hr.

The MSE of the channel estimate is given by Equation 4.12 and the MSE curve

is obtained by averaging over 10000 channels. As shown in the figure, reducing

the number of bits in the estimation sequence from 12 to 10 causes a loss of only

0.5 dB in MSE. This means the number of LSSE channel estimation involved can be

reduced by a factor of 4. However, due to the non-linear relationship between MSE

and BER, the degradation in terms of BER performance equivalent to the 0.5 dB

loss in MSE is not clear. The degradation in BER performance can be determined

by means of simulations.

Among the insertion schemes with two channel samples inserted in a time slot,
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Figure 5.28: BER performance for scheme A2

scheme A2 gives the best performance. Therefore, the complexity and BER perfor-

mance of scheme A2 is used as a reference. Figure 5.28 shows the BER performance

of receivers where scheme A2 is adopted, with 12 bits or 10 bits in the estimation

sequence. The BER curves are obtained for the DDFE, DLE and curve fitting DFE

receiver schemes. For all three types of receivers, the BER performance of a receiver

with 10 bits in the estimation sequence is similar to that with 12 bits. Therefore,

the complexity of the blind channel estimation process can be reduced significantly

from 212 to 210 LSSE channel estimations without severe degradation in the BER

performance.

Alternatively, with the same complexity, the number of bits in the estimation

sequence can be reduced, so that more channel samples obtained from the blind
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Figure 5.29: Insertion scheme B6

channel estimation method can be added to the time slot to improve the perfor-

mance. Suppose the number of bits in the estimation sequence is reduced from 12

bits to 10 bits. Without changing the complexity, the number of channel samples

obtained from blind channel estimation can be increased from 2 to 8. These 8 chan-

nel samples can be arranged in a time slot as shown in Figure 5.29, and this new

insertion scheme is called scheme B6.

Figure 5.30 and Figure 5.31 show the BER performance of scheme B6 with 10

bits in the estimation sequence, in comparison with that of scheme A2 and scheme

B4 with 12 bits in the sequence, respectively. Scheme B6 offers far more superior

BER performance at higher CIR than scheme A2. In fact, the BER performance

of scheme B6 is also better than that of scheme B4, despite the fact that scheme

B4 with 12 bits in the estimation sequence requires larger number of LSSE channel

estimations. Therefore, with the same or less computational requirement, better

BER performance can be achieved by reducing the number of bits in the estimation

sequence and adding more channel samples in a time slot.

In summary, Table 5.1 shows a comparison in complexity of the blind channel

estimation method, in terms of the number of LSSE channel estimations, and BER

performance for different insertion schemes, with different number of bits in the

estimation sequence, at a vehicle speed of 100 km/hr and 17 dB CIR. The data in the

table suggest that the computational requirement of the blind channel estimation

method can be eased by reducing the number of bits in the estimation sequence.
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Figure 5.30: BER performance for scheme A2 and B6

5.3.2.3 Blind Channel Estimation and Blind Channel and Co-channel

Estimation

In this section, the computational requirement of blind channel estimation and

blind channel and co-channel estimation methods, in terms of number of LSSE

channel estimations is compared. Since the simulation results of the BER perfor-

mance of a receiver using the blind channel and co-channel estimation method are

not available, due to the intensive computational requirements, BER performance

discussed in this section is limited to partial bounds only, in which case the channel

and co-channel are assumed to be estimated without errors.

If two estimation sequences of 10 bits are used, one for channel and the other
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Figure 5.31: BER performance for scheme B4 and B6

for co-channel estimation, the number of LSSE channel estimations involved in

obtaining a pair of channel and co-channel samples is 220. This is 210 times more

complex than the blind channel estimation with an estimation sequence with the

same length. Figure 5.12 shows a comparison of partial bounds of a system using

both estimation methods, for all three receiver types and insertion scheme B4. With

the blind channel and co-channel estimation method, a system gives better BER

performance at low level of CIR, especially for the curve fitting DFE receivers. This

performance advantage vanishes as the level of CIR at which the system is operating

improves. Assuming the difference in estimation errors associated with both channel

estimation methods are similar, the performance advantage offered by the blind

channel and co-channel estimation method cannot justify its computational cost.
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Scheme
BER (%) Computational Complexity

DDFE DLE CFDFE (# of LSSE channel estimations)

A2, 12 bits 1.6454 2.1878 1.1226 2× 212 = 8192

A2, 10 bits 1.7415 2.2607 1.1158 2× 210 = 2048

B6, 10 bits 0.4222 0.5122 0.5004 8× 210 = 8192

B4, 12 bits 0.7637 1.0026 0.6617 5× 212 = 20480

Table 5.1: Comparison in complexity and BER performance

Figure 5.32 shows a comparison of BER performance between scheme B2 with

co-channel information and scheme B4 with no co-channel information for the three

receiver types. Here, in scheme B2 there are three pairs of channel and co-channel

samples obtained by the blind channel and co-channel estimation method; whereas

there are five channel samples from the blind channel estimation method in the case

of scheme B4. At low CIR level, the receiver gives better BER performance when the

blind channel and co-channel method is adopted. However, the computational cost

to achieve this improvement in BER performance is increased from 5 × 210 = 5120

in scheme B4 to 3 × 220 = 3, 145, 728 LSSE channel estimations in scheme B2.

In the high CIR region, the BER performance of scheme B4 with only channel

samples available is much better than that of scheme B2 with both channel and

co-channel samples available. This example shows that, in the high CIR region, by

inserting more channel samples in a time slot, instead making an effort to obtain

the co-channel information, better BER performance can be achieved with less

computational requirement.

Therefore, even though the co-channel estimate can be obtained and CCI can

be explicitly suppressed by using blind methods, the cost is too high and the per-
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Figure 5.32: BER performance for scheme B2 and B4

formance advantage is not significant enough to justify the cost.

5.3.2.4 DDFE, DLE and Curve Fitting DFE

With the same channel estimation method, the number of operations involved

in channel estimation is the same for different receiver schemes. The computational

complexity of a receiver scheme mostly depends on the number of operations in-

volved in computing the optimum equalizer tap coefficients. In this section, the

“flop” is again used as the complexity measure.

The number of operations required to solve the Wiener-Hopf equations for the

optimum equalizer coefficients is 3(2Nh − 1)(2Nff − 1) + 2
3
Nw

3 + 3
2
Nw

2 − 1
6
Nw, as
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Receiver type Operation count

DDFE/DLE Ns[3(2Nh − 1)(2Nff − 1) + 2
3
Nw

3 + 3
2
Nw

2 − 1
6
Nw]

Curve fitting DFE
(2
3
Ns

3 + 3
2
Ns

2 − 1
6
Ns) + [14× 162

Nb
+ 12(Ns − 1)]

+162
Nb

[3(2Nh − 1)(2Nff − 1) + 2
3
Nw

3 + 3
2
Nw

2 − 1
6
Nw]

Table 5.2: Operation counts three receiver types

discussed in Section 4.4. This process is common to all three types of receivers.

For the DDFE and DLE receivers, updates of the equalizer take place only when

a channel sample is available. With Ns channel samples available, there are Ns

updates of the equalizer coefficients. For the curve fitting DFE receiver, spline

interpolation of the time-varying channel is involved, and this interpolation process

is more complex than that in DDFE and DLE receivers. To solve the Ns equations

in Equations 3.91, 3.92 and 3.93 for the Ns second derivatives ui,
2
3
Ns

3 + 3
2
Ns

2 −

1
6
Ns operations are involved. These second derivatives can be substituted back

into Equation 3.90 to determine the interpolated channel at any time t. If the

Doppler frequency is such that the equalizer coefficients need to be updated every

Nb symbols, 162/Nb interpolated channel samples are to be determined by using

Equation 3.90, and the number of flops involved, Nf is

Nf = 14×
162

Nb
+ 12(Ns − 1). (5.2)

With 162/Nb interpolated channel samples, the equalizer coefficients can be updated

162/Nb times during a time slot.

The number of operations involved in determining and updating the equalizer

tap coefficients for the three receiver types is tabulated in Table 5.2. With Nh = 20,
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Ns = 7, Nb = 6 and Nff = 5, number of operations required for a 5-5-3 DDFE

is 19383 flops, for a 8-8 DLE is 29155 flops and for a 5-5-3 curve fitting DFE is

75514. ¿From these figures and the BER performance of different receiver types,

it can be concluded that the 8-8 DLE is indeed not a desirable solution for this

particular application. For updating the equalizer tap coefficients, the curve fitting

DFE receiver is almost four times more complex than the DDFE receivers, yet it

offers excellent performance at the high CIR region. Furthermore, considering the

overall complexity of the entire system, the operation count of the equalizer update

is insignificant, compared with that in blind channel estimation. Therefore, the

choice of receiver type depends on the specific application.

To reduce the number of matrix inversions involved in the curve fitting DFE

method, a second approach to determining the optimum tap coefficients is at-

tempted. In this approach, the optimum equalizer tap coefficients are first de-

termined where the channel samples are available, then the tap coefficients are

interpolated with the spline curve fitting method, as opposed to the first approach,

where channel interpolation followed by tap coefficients computation takes place. It

is found that the second approach is not feasible since the equalizer tap coefficients

determined from this approach are different from the first approach. Interpolation

and computation of the tap coefficients, are involved in both approaches. The only

difference is the order in which these two processes take place. If both processes

were linear, interchanging the order of these processes would result in the same

tap coefficients at any time in the time slot. Matrix inversion involved in the op-

timum tap coefficient computation is a non-linear process. Therefore, the resulting

equalizer tap coefficients from this approach are not accurate.



Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

The work in this thesis has investigated a variety of channel estimation and

equalization techniques for TDMA cellular radio transmission over the fast time-

varying selective fading channel. In this section, a summary of the work accom-

plished in this research thesis is presented and the conclusions about the channel

estimation and equalization methods in different applications are also highlighted.

The issues that cause the degradations in TDMA cellular radio transmission

include ISI, CCI and the fast time-varying nature of the radio channel. To fully

characterize the time-varying channel within a TDMA time slot, channel estimation

is first performed at some points during a time slot, then the time-varying channel

is reconstructed by interpolation. In Chapter 3, new channel and co-channel esti-

mation technique, together with the channel estimation techniques were discussed.

It was proven that the sign ambiguity problem associated with the blind data and

channel estimation method can be avoided by using differential encoding scheme.
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In order to improve the system performance in a fast time-varying environment, a

novel block adaptation with blind channel estimation strategy was developed, which

involves in combinations of channel estimation and interpolation methods. Analysis

was also performed on the probability of error in the ML blind data and channel

estimation method and an upper bound for the probability of error was derived.

To reduce the impact of ISI and CCI on the system performance, equalization is

required. Two new equalizer updating techniques based on channel interpolation

methods, displaced equalizer and curve fitting equalizer, were also presented. With

the estimated channel and possibly the estimated co-channel, equalizer coefficients

can be computed by using the Wiener-Hopf equations. In this thesis, two types of

equalizers, LE and DFE, were considered. An expression for average MSE for a

displaced LE on time-varying channel was also derived in this chapter.

Chapters 4 and 5 show two applications of these channel estimation and equal-

ization techniques. The first application deals with the IS-136 800 MHz operation.

In this application, the adaptive DFE methods are not feasible due to insufficient

training of the equalizer and error propagation caused by decision-directed tracking.

Since the carrier frequency, and hence the Doppler frequency are relatively low, with

the two existing known sequences in a time slot, both fixed DFE and DDFE calcu-

lated based on channel estimation satisfy the IS-136 system performance criteria.

This is not true in the IS-136 1.9 GHz application. Since the carrier frequency

is roughly doubled, the Doppler effect is twice as severe as that in the case of 800

MHz operation and more variations in the time-varying channel can be expected.

With channel information at the two points, SYNC and CDVCC, it is insufficient

to characterize the time-varying channel during the entire time slot; more chan-

nel samples were obtained by means of blind ML channel estimation. With these
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additional channel samples in a time slot, the time-varying channel was interpo-

lated by using one of the two new channel interpolation methods. Among the three

types of receivers, the DDFE, DLE and curve fitting DFE receivers, the curve fit-

ting DFE gives the best BER performance at high CIR. However, it is the most

complex receiver scheme. The DDFE receiver requires the least number of opera-

tions and it gives good BER performance. A DLE receiver is not recommended in

this application since its BER performance is worse than the DDFE receiver, but

it requires more operations. In the low CIR region, the performance of all three

types of receivers suffers due to the fact that without the information about the

co-channel, these receivers cannot explicitly suppress CCI. This gives rise to the

need for co-channel estimation.

The partial bounds of the DFE receiver types show that, with information about

both channel and co-channel, these receivers can suppress CCI and achieve excellent

performance at low CIR. Without the feedback filter, the LE receiver can suppress

neither CCI nor ISI, even when provided with accurate channel and co-channel

information, and the performance of the LE receivers with or without co-channel

information are the same. At high CIR, since the power of CCI is so low, it makes

little difference in performance whether or not co-channel information is used for all

receiver types. For system operating in high CIR region, better BER performance

can be achieved by putting more effort in obtaining more channel samples in a time

slot, instead of estimating the co-channel.

Whether or not the co-channel information is needed depends not only on the

CIR level, but also the system cost as well. If a 10-bit estimation sequence is

used, estimating both channel and co-channel requires 210 times more operations

than estimating the channel only. Therefore, even though receiver with co-channel
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information offers better performance at low CIR, one should make sure that the

cost can be justified.

6.2 Future Work

Many issues and research topics related to this research thesis were not addressed

and accomplished in this thesis, due to limitations in time and resources. In this

section, some of these issues are suggested for possible future study.

The simulation results for BER performance of a system with both channel

and co-channel information available presented in this thesis are obtained with

the assumption that the channel and co-channel can be estimated perfectly. This

assumption was made to avoid the intensive computational demand of the blind

channel and co-channel estimation method. How the estimation error in this method

affects the BER performance would be a good topic to investigate. This can be

accomplished, using the optimum but exhaustive method described in this thesis,

when the availability of computer time and memory is not a concern. Another

approach is to search for a sub-optimum algorithm for the blind channel and co-

channel estimation. A sub-optimal blind trellis search technique was proposed by

Seshadri [17] to estimate data and channel jointly. How to extend this algorithm to

estimate co-channel as well, is itself a useful topic.

Suppression of CCI can also be achieved by performing constrained optimiza-

tion on the output signal of the receiver. The output signal power of the receiver

consists of residual ISI, CCI and noise, and it is also a function of the equalizer tap

coefficients. The constrained optimization is to ensure that the worst case interfer-

ence level at the receiver output does not exceed a prescribed level. One approach
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to solve this problem is to maximize the output power of the receiver subject to

the constraint that the power of the interference and noise is less than a certain

level. Equivalently, one can also find the equalizer tap coefficients so that the power

of the receiver output is minimized while setting the power of the desired signal

at the output to a constant. Due to the second order dependence of the power

at the receiver output on the equalizer tap coefficients, which defines in a multi-

dimensional parabolic power surface with a distinct maximum or minimum point,

the optimum equalizer resulting from the constrained optimization is guaranteed

to be the unique global solution. Therefore, suppression of CCI by constrained

optimization is a useful research topic to explore.

Since performance of a communication system is often evaluated in terms of

BER, intuition suggests the equalizer is optimized when the probability of error is

minimized. However, the probability of error is a highly non-linear function of the

equalizer tap coefficients [11], and the solution to this problem is mathematically

intractable. Finding an analytical solution or its approximation is a challenging yet

interesting research topic.

Finally, an analysis was performed on the average MSE of a infinite DLE on

fading channels and an expression for it was presented in this research thesis. Find-

ing the average MSE of a DDFE on fading channels is a good topic for theoretical

analysis and it is meaningful to compare the average MSE of these two equalizer

types on fading channels.
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Appendix A

Evaluation of Instantaneous

MMSE

The instantaneous MMSE of an infinite LE on time-varying channels is given

by Equation 3.128. The key to the evaluation of the instantaneous MMSE is the

evaluation the angle bracket, or integration over frequency. With some algebraic

manipulations, the integral is in the form in which the integration result is provided

by Gradshtěin and Ryzhik [79]. Due to an incompleteness associated with the

integration result given by Gradshtěin and Ryzhik, a modification to the expression

is made, and the correct integration result is also presented in this appendix.

The two channel taps c0(t) and c1(t) can be written in polar form:

c0(t) = r0e
jθ0(t), (A.1)

and

c1(t) = r1e
jθ1(t), (A.2)
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where r0(t) and θ0(t) are the magnitude and the phase of c0(t), and r1(t) and θ1(t)

are the magnitude and the phase of c1(t). The magnitude and the phase of the two

channel taps are random processes and they change with time. For simplicity in

equation writing, they will be represented as r0, θ0, r1 and θ1 in the remainder of this

appendix. Therefore, the discrete-time continuous-frequency Fourier transform of

the auto correlation of the time-varying channel, Ξ 1
T
(f ; t), can be expressed in terms

of r0, θ0, r1 and θ1, by substituting Equations A.1 and A.2 into Equation 3.118:

Ξ 1
T
(f ; t) = r20 + r21 + 2r0r1 cos

(
2π

T

2
f + θ0 − θ1

)
. (A.3)

Substituting the above equation into Equation 3.128 and re-arranging, the in-

stantaneous MMSE of an infinite LE on time-varying channel is given by the fol-

lowing equation:

εV,min(t) = εV,min(r0, r1, θ0, θ1)

=
1

π

∫ π
2
+∆θ

−π
2
+∆θ

h(y) dy, (A.4)

where

h(y) =
1

A+ B cos y
, (A.5)

A = 1 +
1

No

(
r20 + r21

)
, (A.6)

B =
2

No
r0r1, (A.7)
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∆θ = θ0 − θ1, (A.8)

and

y = 2π
T

2
f + ∆θ. (A.9)

The integral on the right hand side of Equation A.4, is now in the form in

which the integration result is provided by Gradshtěin and Ryzhik in the Table of

Integrals [79]. Evaluation of the limits of integration in Equation A.4 gives:

εV,min(r0, r1, θ0, θ1) =
2

√
A2 −B2

1

π
arctan

(√
A2 −B2 tan

(
y
2

)
A+ B

)∣∣∣∣∣
π
2
+∆θ

−π
2
+∆θ

, (A.10)

=
2

√
A2 −B2

1

π
arctan

(√
A2 −B2

B cos (∆θ)

)
. (A.11)

Figure A.1 shows the function to be integrated, h(y), between the integration

limits, for a given channel with A = 3.655×104 and B = 3.5896×104. The function

to be integrated is continuous over the integration interval, as should be the area

under it. However, since the function tan
(
y
2

)
is discontinuous at y = ±π, the

area under the curve in Figure A.1 cannot be smooth, if ±π ∈
[
−π
2
+ ∆θ, π

2
+ ∆θ

]
.

Figure A.2 shows the expression on the right hand side of Equation A.10 between

the integration limits, which displays a discontinuity at π.

In order to remove the discontinuity in the curve for the area under h(y), a mod-

ified step function is added to the expression on the left hand side of Equation A.10:
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Figure A.1: Function to be integrated, h(y)

εV,min(r0, r1, θ0, θ1) =
2

√
A2 −B2

[
1

π
arctan

(√
A2 −B2 tan

(
y
2

)
A+ B

)
+ um(∆θ)

]∣∣∣∣∣
π
2
+∆θ

−π
2
+∆θ

,

(A.12)

=
2

√
A2 −B2

[
1

π
arctan

(√
A2 −B2

B cos (∆θ)

)
+ um(∆θ)

]
. (A.13)

The modified step function um(∆θ) is defined as
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Figure A.2: Area under the curve h(y), using Table of Integrals

um(∆θ) = u−
(
∆θ +

3π

2

)
− u−

(
∆θ +

π

2

)
+ u−

(
∆θ −

π

2

)
− u−

(
∆θ −

3π

2

)
,

(A.14)

where

u−(x) =




1, x > 0

0, x ≤ 0.
(A.15)

Figure A.3 shows the area under the curve in Figure A.1, using the expression
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Figure A.3: Correct area under the curve h(y)

given in Equation A.12. By adding the modified step function, the discontinuity

disappeared. It can be concluded that the expression in Equation A.13 correctly

represents the instantaneous MMSE.



Appendix B

Evaluation of Expectation by

Four-Dimensional Numerical

Integration

In this section, the method of evaluating the expectation in Equation 3.130, with

respect to the time-varying channel, by using four-dimensional numerical integration

is presented. The four-dimensional Simpson’s rule for numerical integration is first

derived, and the evaluation of the four-dimensional integral in Equation 3.130 by

Simpson’s rule and its result are discussed.

B.1 Four-dimensional Simpson’s Rule

Let f(w) be continuous on the interval [wl, wu], the area under which is divided

into Mw strips with equal width, for an even integer Mw. The width of the strips
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hw is given by the following equation:

hw =
wu − wl

Mw

, (B.1)

and the area of two consecutive strips, a one-dimensional element, can then be

approximated by the one-dimensional Simpson’s rule [91]:

V1D(i) =

∫ wi+1

wi−1

f(w) dw

=
hw

3
[f (wi−1) + 4f (wi) + f (wi+1)] . (B.2)

In the four-dimensional case, the surface f(w, x, y, z) is continuous for w ∈

[wl, wu], x ∈ [xl, xu], y ∈ [yl, yu], and z ∈ [zl, zu]. By means of four successive appli-

cations of the one-dimensional Simpson’s rule, in the w, x, y and z directions, the

volume of one four-dimensional element is approximated by

V4D(i, j,m, n) =

∫ zn+1

zn−1

∫ ym+1

ym−1

∫ xj+1

xj−1

∫ wi+1

wi−1

f(w, x, y, z) dw dx dy dz

=
hzhyhxhw

81
[(S1 + S2) + 4 (S3 + S4 + S5 + S6)

+16 (S7 + S8 + S9) + 64S10 + 256S11] , (B.3)

where hw is defined in Equation B.1,

hx =
xu − xl
Mx

, (B.4)

hy =
yu − yl
My

, (B.5)
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hz =
zu − zl

Mz

. (B.6)

The variables Sk, for k = 1, . . . , 11 are the sums of the 4D function f(w, x, y, z)

evaluated at different sets of w, x, y, and z:

S1 = f(wi−1, xj−1, ym−1, zn−1) + f(wi−1, xj−1, ym−1, zn+1)

+ f(wi−1, xj−1, ym+1, zn−1) + f(wi−1, xj−1, ym+1, zn+1)

+ f(wi−1, xj+1, ym−1, zn−1) + f(wi−1, xj+1, ym−1, zn+1)

+ f(wi−1, xj+1, ym+1, zn−1) + f(wi−1, xj+1, ym+1, zn+1), (B.7)

S2 = f(wi+1, xj−1, ym−1, zn−1) + f(wi+1, xj−1, ym−1, zn+1)

+ f(wi+1, xj−1, ym+1, zn−1) + f(wi+1, xj−1, ym+1, zn+1)

+ f(wi+1, xj+1, ym−1, zn−1) + f(wi+1, xj+1, ym−1, zn+1)

+ f(wi+1, xj+1, ym+1, zn−1) + f(wi+1, xj+1, ym+1, zn+1), (B.8)

S3 = f(wi−1, xj−1, ym−1, zn) + f(wi−1, xj−1, ym, zn−1)

+ f(wi−1, xj−1, ym, zn+1) + f(wi−1, xj−1, ym+1, zn)

+ f(wi−1, xj+1, ym−1, zn) + f(wi−1, xj+1, ym, zn−1)

+ f(wi−1, xj+1, ym, zn+1) + f(wi−1, xj+1, ym+1, zn), (B.9)



B.1 Four-dimensional Simpson’s Rule 205

S4 = f(wi+1, xj−1, ym−1, zn) + f(wi+1, xj−1, ym, zn−1)

+ f(wi+1, xj−1, ym, zn+1) + f(wi+1, xj−1, ym+1, zn)

+ f(wi+1, xj+1, ym−1, zn) + f(wi+1, xj+1, ym, zn−1)

+ f(wi+1, xj+1, ym, zn+1) + f(wi+1, xj+1, ym+1, zn), (B.10)

S5 = f(wi−1, xj , ym−1, zn−1) + f(wi−1, xj , ym−1, zn+1)

+ f(wi−1, xj , ym+1, zn−1) + f(wi−1, xj , ym+1, zn+1)

+ f(wi, xj−1, ym−1, zn−1) + f(wi, xj−1, ym−1, zn+1)

+ f(wi, xj−1, ym+1, zn−1) + f(wi, xj−1, ym+1, zn+1), (B.11)

S6 = f(wi, xj+1, ym−1, zn−1) + f(wi, xj+1, ym−1, zn+1)

+ f(wi, xj+1, ym+1, zn−1) + f(wi, xj+1, ym+1, zn+1)

+ f(wi+1, xj , ym−1, zn−1) + f(wi+1, xj , ym−1, zn+1)

+ f(wi+1, xj , ym+1, zn−1) + f(wi+1, xj , ym+1, zn+1), (B.12)

S7 = f(wi−1, xj−1, ym, zn) + f(wi−1, xj+1, ym, zn)

+ f(wi+1, xj−1, ym, zn) + f(wi+1, xj+1, ym, zn)

+ f(wi−1, xj, ym−1, zn) + f(wi−1, xj , ym, zn−1)

+ f(wi−1, xj, ym, zn+1) + f(wi−1, xj , ym+1, zn), (B.13)
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S8 = f(wi, xj−1, ym−1, zn) + f(wi, xj−1, ym, zn−1)

+ f(wi, xj−1, ym, zn+1) + f(wi, xj−1, ym+1, zn)

+ f(wi, xj+1, ym−1, zn) + f(wi, xj+1, ym, zn−1)

+ f(wi, xj+1, ym, zn+1) + f(wi, xj+1, ym+1, zn), (B.14)

S9 = f(wi+1, xj, ym−1, zn) + f(wi+1, xj , ym, zn−1)

+ f(wi+1, xj, ym, zn+1) + f(wi+1, xj , ym+1, zn)

+ f(wi, xj , ym−1, zn−1) + f(wi, xj , ym−1, zn+1)

+ f(wi, xj , ym+1, zn−1) + f(wi, xj , ym+1, zn+1), (B.15)

S10 = f(wi−1, xj , ym, zn) + f(wi, xj−1, ym, zn)

+ f(wi, xj+1, ym, zn) + f(wi+1, xj, ym, zn)

+ f(wi, xj , ym−1, zn) + f(wi, xj, ym, zn−1)

+ f(wi, xj , ym, zn+1) + f(wi, xj, ym+1, zn), (B.16)

and

S11 = f(wi, xi, yi, zi). (B.17)

The total volume under the four-dimensional surface is the sum of all the ele-

ments:

V =
Mz−1∑
n=1

My−1∑
m=1

Mx−1∑
j=1

Mw−1∑
i=1

V4D(i, j,m, n), i, j,m, n odd integers. (B.18)
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B.2 Evaluation of the Expectation

In this section, the four-dimensional Simpson’s rule is applied to evaluation the

mathematical expectation in Equation 3.130. From Equations 3.130 and 3.128, the

average MMSE of a time-varying channel εV,min is given by

εV,min =

∫ ∫ ∫ ∫
εV,min(r0, r1, θ0, θ1)PΘ0(θ0)PΘ1(θ1)PR0(r0)PR1(r1), dθ0 dθ1 dr0 dr1

=
1

4π2σr4

∫ ∞
0

∫ ∞
0

∫ π

−π

∫ π

−π

εV,min(r0, r1, θ0, θ1)r0r1e
−
r0
2+r1

2

2σr2 dθ0 dθ1 dr0 dr1

=
1

4π2σr4

∫ ∞
0

∫ ∞
0

∫ π

−π

∫ π

−π

f(r0, r1, θ0, θ1)dθ0 dθ1 dr0 dr1, (B.19)

where PΘ0(θ0), PΘ1(θ1), PR0(r0) and PR1(r1) are the PDFs of θ0, θ1, r0 and r1,

respectively and σ2r is the variance of r0 and r1.

Figure B.1 shows the results of the numerical integration. For comparison pur-

pose, the theoretical average MMSE is also plotted in the same figure. In approx-

imation 1, the number of intervals for θ0 and θ1 is 45and that for r0 and r1 is 210.

The upper limit for r0 and r1 is 60. In approximation 2, the number of intervals for

θ0 and θ1 is 45and that for r0 and r1 is 1024. The upper limit for r0 and r1 is 5. It

can be observed that approximation 2 gives a more accurate result. This suggests

that the function f(r0, r1, θ0, θ1) decays rapidly as r0 and r1 increase. Due to the

discontinuities in the arctan function in the equation for g(r0, r1, θ0, θ1), a large num-

ber of intervals is required in order to accurately approximate the four-dimensional

function f(r0, r1, θ0, θ1) at the discontinuity.
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Figure B.1: Comparison of numerical integration results



Appendix C

MMSE of an AWGN Channel

In this appendix, an expression for the MMSE of an AWGN channel, in terms

of the input SNR, is derived.

Figure C.1 shows a simple data communication in an AWGN channel. dn is the

uncorrelated transmitted data with zero mean and unit variance:

E[dn] = 0 (C.1)

b =1dn

ηn wn

dn
^

dn

en

Figure C.1: Data communication in an AWGN channel
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and

E[dndm] =




1, n = m

0, n �= m
. (C.2)

The AWGN channel is modeled as a unit impulse, followed by the AWGN. The

AWGN, denoted by ηn, is a random process, with the following statistical properties

E[ηn] = 0, (C.3)

E[ηnηm] =




σ2n, n = m

0, n �= m
, (C.4)

and it is uncorrelated with the transmitted data:

E[dnηm] = 0. (C.5)

d̂n is the estimate of the desired signal, at the output of the receiver wn, that is,

d̂n = wnbdn + wnηn. (C.6)

en is the error in the estimate d̂n, and it is given by the following equation:

en = dn − d̂n. (C.7)
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The MSE of the estimate, εAWGN (wn), is given by

εAWGN (wn) = E[|en|
2],

= E[|dn − d̂n|
2], (C.8)

where the expectation is taken over the ensemble of the data dn and the noise, ηn.

By substituting Equation C.6 into the above equation, and simplifying, the MSE of

an AWGN channel can be rewritten:

εAWGN (wn) = (b2 + σ2n)w
2
n − 2bwn + 1. (C.9)

In order to determine the minimum MSE, derivative of both sides in Equa-

tion C.9 is taken with respect to wn, and set to zero. Then the optimum receiver,

wMMSE, at which the MMSE ocurrs, is given by

wMMSE =
b

b2 + σ2n
, (C.10)

and the MMSE of an AWGN channel can be obtained by substituting Equation C.10

into Equation C.9:

εAWGN,min =
σ2n

b2 + σ2n
. (C.11)

Since the SNR at the input of the receiver, γin is defined as

γin =
Ps

Pn
=

1

σ2n
, (C.12)
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for b = 1, the MMSE of an AWGN can be written in terms of γin:

εAWGN,min =
1

1 + γin
. (C.13)


