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Abstract

Techniques to reduce the effect of co-channel interference (CCI), intersymbol
interference (ISI) and noise in a time-division multiple access (TDMA) radio cellular
radio system will allow an increase in network capacity without a loss in quality of
service.

Two new analytical results have been derived and presented. The first result is
the probability of error of a method for blind maximum likelihood (ML) data and
channel estimation in the presence of noise. The second result is the mean square
error of a displaced linear equalizer with infinite length on a time-varying channel
in the presence of additive white Gaussian noise. These results provide measures of
effectiveness of the blind maximum likelihood data and channel estimation method
and the displaced linear equalizer used in the receiver.

In order to achieve good system performance in a fast time-varying environment,
a novel block adaptation with blind channel estimation strategy has been developed.
It involves combinations of channel estimation and interpolation. With this strategy,
in addition to the channel estimates obtained from known sequences in a TDMA
time slot, channel estimates are obtained using small sequences of unknown data and

the ML blind data and channel estimation method. The time-varying channel during
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a time slot can then be reconstructed by interpolating these channel estimates.
Subsequently, the equalizer coefficients can be determined by using the Wiener-
Hopf equations. A similar strategy can be applied to deal with time variations in
the CCI. The effectiveness of this novel block adaptation strategy has been proven

in the IS-136 application.
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Chapter 1

Introduction

1.1 Motivation

The global demand for wireless communications has grown rapidly over the
last decade and the growth is predicted to continue over the next decade [2-10].
The attraction of wireless networking is its ability to offer mobility and portability
which conventional wired systems lack. In addition, wireless networking provides
connectivity with minimal infrastructure requirements. With this advantage, it can
support an initially sparse subscriber base with low penetration rate. Wireless tech-
nology also provides “instant networks” in countries which lack existing copper or
fiber infrastructure, and makes telecommunication service possible for some remote
areas [6], where both time and cost to deploy a wired network are prohibitive.

For cellular phone usage only, the annual increase in cellular subscribers world
wide averaged about 40% over the past decade [8], leaping from four million in
1988 to 123 million in 1995 [2], with a projection of over 590 million by the end of

year 2001 [8]. It is anticipated that, by 2010, more than half of all communications
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will be carried by mobile cellular networks [5], and wireless technology will become
the primary source for voice communication, with a total market penetration of
50-60% [8].

The potential market for wireless communications is enormous, especially in
the developing countries. The land-line telephone densities in countries like China,
India, Pakistan and the Phillipines, are 30 times lower than in some countries in
North America and Europe. It is estimated that approximately three billion people
have no phone at home [2] and they become a huge source for potential cellular
subscribers.

As a mainstream communication medium with an enormous potential to grow,
cellular technology is poised to take on new challenges, providing high-speed data
transmission services as well as voice communication services to users on the move.
This gives rise to the third generation cellular networks with the goal of providing
personal communication services any time and anywhere. The major improvement
of the third generation cellular networks is the provision of multiple-data-rate ser-
vices. High data rate enables a broader range of services, including wireless Internet
access, video conferencing, wireless e-mail and multimedia, beyond the traditional
voice only services. According to analysts, by the year of 2003, there will be more
than one billion wireless phones with Internet access capabilities [3]. These addi-
tional high-speed data services, in turn, are fueling the demand for wireless cellular
communications.

The rapid growth of the wireless mobile community and its demand for high-
speed communications stand in contrast to the rather scarce spectrum resource
available. It is of growing interest to maximize the capacity of the network system

in the most cost-efficient manner. Therefore, it is essential to employ some feasible
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receiver schemes at the base station to achieve good system performance, and hence
high system capacity.

This research thesis investigates various receiver schemes that can potentially
provide good performance in time division multiple access (TDMA) cellular radio
transmission. The major performance limiting factors in TDMA cellular commu-
nication are the interference and the multipath fading environment. Interference
includes intersymbol interference (ISI) and co-channel interference (CCI); the effect
of interference can be reduced by the use of equalization. The multipath fading
environment where transmission is carried out causes the channel to vary with time
in an unpredictable manner. It is essential to employ some advanced techniques
to estimate the time-varying channel accurately so that the transmitted data sig-
nal can be retrieved at the receiver end with minimum error. Therefore, in this
research thesis, equalization and channel estimation techniques are studied and dis-
cussed, and various combinations of equalization and channel estimation techniques
are investigated in some practical applications. Evaluations of different techniques
are based on the system performance they offer and the complexity for receiver

implementation.

1.2 Literature Survey

In this section, a summary of some of the previous work related to the four sub-
ject areas, namely, equalization techniques, CCI suppression techniques, channel
estimation techniques and strategies dealing with time-varying channels, is pre-
sented. This is not meant to be a comprehensive literature survey. Its purpose is to

provide the readers with the background references on some of the ongoing research
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in the subject areas.

1.2.1 Equalization Techniques

1.2.1.1 Linear and Non-Linear Equalization

Depending on the linearity of the digital filter, an equalizer falls into two cate-
gories: linear equalizer (LE) and non-linear equalizer. The LE is well known for its
simplicity in implementation and analysis. However, it causes noise enhancement at
channel spectral nulls, and it is often not suitable for applications where frequency
selective fading takes place [11].

Non-linear equalizers, such as maximum likelihood sequence estimation (MLSE)
and decision feedback equalization, can more effectively deal with the frequency
selective fading problem. In fact, MLSE is the optimum equalizer in the presence of
ISI and white noise in the sense of minimizing the probability of sequence error [12,
13], given knowledge of the channel impulse response. Despite its optimality, MLSE
has two inherent limitations: the memory and computational requirement for metric
computations, and the decision delay, which makes it difficult to track the fast fading
channels in high-speed mobile communications [11,13-16]. It is suggested that the
computational burden can be eased by reducing the number of states and sequences
in the MLSE detector [17]. The decision delay problem can also be removed by
using the zero-delay tentative decisions extracted from the surviving paths instead
of the final decision at the output of the MLSE, and good tracking performance can
be offered by the adaptive MLSE [14-16,18,19].

Decision feedback equalization is a suboptimum and less complex equalization

technique, compared to MLSE. A decision feedback equalizer (DFE) consists of a
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feed forward filter which is used to minimize the effects of noise and precursors
caused by the future symbols, and a feedback filter whose task is to properly weight
the decision of the previous symbol so that the postcursors caused by the previous
symbol can be cancelled out. In this way, with the correct past decision, a DFE
can completely eliminate the ISI introduced by the selective fading channel and it is
widely used in mobile communication applications. Some of these DFEs are modi-
fied to meet the need of a specific application. Belfiore et al. proposed a distortion
predictive DFE whose feedback filter is a predictor, driven by the difference between
the outputs of the feed forward filter and the decision device [20]. As a result, the
noise and the residual ISI at the output of the feed forward filter can be predicted
by the feedback filter and subtracted from the feed forward filter output. In appli-
cations of fast fading channels, a bi-directional DFE is used to locate the deep fade
and recover data after it occurs [21]. As implied by its name, a bi-directional DFE

operates in both forward and reverse directions.

1.2.1.2 Adaptive Equalization

For the last few decades, adaptive signal processing theory has been well estab-
lished. As suggested by the word adaptive, this type of equalization can self-adjust
to the unknown environment to provide reliable performance. For more background
information, the readers are referred to the textbook by Haykin [22] and papers by
Qureshi [23] and Proakis [12].

Adaptive equalization techniques are widely used in many practical applications
due to their robustness in the sense that they do not require any prior information
of the channel and the transmitted data [11,22]. In mobile radio communication

applications, an adaptive equalizer can adjust not only to the unknown channel,
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but also the time-varying characteristics of the channel [14,16,24,25]. An array of
adaptive equalizers can also be used in flat fading applications to perform diversity
combining to cancel interference [25,26].

In order to obtain the gain provided by diversity combining and compensate
for ISI at the same time, Scott proposed a digital multichannel basedband filter
as an appropriate structure for receivers with both antenna diversity and adaptive
equalization capability [27]. This multichannel baseband filter can also be a DFE
with fractionally-spaced Feedforward filter [27]. This filter structure will be used in

the applications in this thesis.

1.2.1.3 Fractionally Spaced Equalization

In a fractionally spaced equalizer (FSE), the delay between taps is only a fraction
of the symbol duration. An FSE is usually used so that the fractionally spaced
sampling of the input signal to the FSE meets the Nyquist sampling criterion to
avoid aliasing [12].

The use of an FSE has other advantages compared with a conventional T-spaced
equalizer. Simulation results given in the paper by Gitlin et al. [28] have demon-
strated its effectiveness over the T-spaced equalizer. This superior performance can
be explained by the fact that it realizes the optimum linear receiver. In fact, an
FSE combines the functions of a matched filter, which reduces the effect of the
noise, and equalization, which compensates for the ISI, into one single filter struc-
ture [12,23,28]. Consequently, it can compensate for severe delay distortion more
effectively with less noise enhancement and its performance is insensitive to the

sampling phase [23,28].
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1.2.2 CCI Suppression Techniques

The first approach to CCI suppression is the use of diversity techniques. In
this approach, several replicas of the same information signal are transmitted over
statistically independent paths in space, time or frequency, depending on the type
of diversity. Diversity techniques were originally used to combat fading in the
multipath environment [11]. Since the same interfering signals are present in the
received signal from each diversity path, these received signals can be combined
to suppress the interfering signals. Winters first showed that the signals from Ly
receiving antennas can be combined to suppress the interfering signals, by the use
of an optimum combiner [26]. Due to its interference suppression capability, the
system performance offered by the optimum combining technique is superior to the
traditional maximal ratio combining technique where interference at each receiving
antennas is assumed to be independent [26]. Calderbank et al. in a recent paper
reported that time diversity provided by repetitive channel coding can also be used
for interference cancellation [29]. Results from both space and time diversity com-
bining techniques showed that receiver receiving signals from L, different antennas
or time slots can completely eliminate L; — 1 interfering signals and an Lg-fold
increase in user capacity can be achieved [29,30]. Based on these results, Winters
et al. generalized that with Ly + N; antennas in the receiver, N; — 1 interfering
users can be nulled out, and each of the N; users can also benefit from the Ly + 1
path diversity improvement [31]. Space and time diversity can also be combined in
applications of CCI cancellation [29,32].

Instead of eliminating the interfering signals, the multi-user detection techniques
in the second approach to CCI suppression, are used to demodulate all users jointly.

Verdt showed that the optimum multi-user detector consists of a bank of single-user
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matched filters followed by Viterbi algorithm (VA) for all users and its complexity
increases exponentially with the number of users [33]. While the optimum solution
may be prohibitively complex, designing and applying suboptimum solutions to
practical problems is a more attractive research area [34-37]. Suboptimum receiver
structures such as the truncated T-MLSE using only a portion of the path metric,
and T/2-MLSE are reported to offer good interference rejection capability [36].
With only one T'/2-spaced noise whitening filter for each receiving antenna, a T/2-
MLSE receiver is more suitable for implementations [36]. While in these two MLSE
based receivers, perfect channel estimates are assumed to be available for all users in
the system, they can be estimated using the ML criterion with training sequences,
as shown in the paper by Ranta et al., where a joint MLSE (JMLSE) detector is
used with the Viterbi algorithm [37].

CCI cancellation can also be achieved by introducing interference cancellation
into the channel estimation process. This is accomplished by estimating and incor-
porating the impairment correlation matrix, where non-zero off-diagonal elements

allow interference to be cancelled, in channel estimation and tracking [38].

1.2.3 Channel Estimation Techniques

Depending on the availability of the training sequence, channel estimation tech-
niques can be coarsely classified into two categories: non-blind and blind techniques.
When a training sequence is available, estimation of the channel is straight
forward by using one of the criteria for optimization, such as least square estimation
(LSE), maximum likelihood estimation (MLE) or maximum a posteriori estimation
(MAP) [37,39-42]. The LSE method requires no a priori statistical information of

the noise and the channel, whereas the MLE method requires the statistics of the
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noise and it is the best linear unbiased estimator for the estimation problem [42].
When the noise is uncorrelated, both the LSE and MLE yield the same solution.
On the other hand, MAP requires both statistical information on the noise and the
channel, and it is not as robust as the LSE and MLE. The channel can also be
estimated using adaptive algorithms, such as recursive least-squares (RLS), least-
mean-square (LMS) and the Kalman filter algorithm [13,15,16,22,38,43,44]|. The
Kalman filter algorithm is designed for applications of dynamic systems and it is
robust in estimating and tracking the time-varying channels.

For blind channel estimation techniques, there are two well known approaches
in the literature: second- and higher- order statistics-based methods and joint data
and channel estimation (JDCE) methods.

Without a training sequence, the algorithms in the first approach use second-
order cyclostationary statistics of the oversampled received signal [45,46] or higher-
order statistics of the T-spaced received signal [22,47,48] to identify the unknown
channel. Since these statistics convey phase information, they allow recovery of the
phase, as well as the magnitude response of the unknown, possibly non-minimum
phase channel. However, this class of algorithms exhibits slow convergence due to
the fact that large number of samples must be processed in order for the estimates of
the statistics to be accurate. Especially in the case of digital mobile communications,
these algorithms simply may not be able to track the variations of the environment.
Therefore, these blind algorithms may not be suitable for applications where rapid
acquisition is a necessary requirement.

The ML-based JDCE methods are proposed to improve the rate of convergence
in blind system identification, at the expense of computational complexity. The

straight forward, yet exhaustive solution described in the paper by Seshadri [17] in-



1.2 Literature Survey

10

volves two steps: least square channel estimation for all the possible data sequences,
and the selection of the data sequence and its corresponding channel estimate which
maximize the likelihood of the received signal. This solution is optimum yet its com-
plexity grows exponentially with the size of the data record. In his paper, Seshadri
proposed an optimum blind trellis search algorithm in which complexity increases
linearly with the size of the data record [17]. While these optimum solutions may be
prohibitively complex to implement, except for small data alphabet size and small
data record, designing for suboptimum algorithms is an active research area. The
segmental K-means algorithm and the expectation maximization (EM) algorithm
iterate between estimations of channel and data until convergence is achieved [49].
Since both algorithms rely on the quality of the initial guess of the channel, high
error rate led by a bad initial channel estimate is inevitable and global convergence
cannot be guaranteed. A suboptimum blind trellis search algorithm, in which more
than one best estimate of the transmitted data sequence will be retained into each
state, is reported to exhibit superior convergence property and offer excellent per-
formance [17]. In fact, this algorithm can deal with channels with fast fading rate
relative to the symbol rate, and provide reliable performance for the EIA Interim
Standard (IS-54) mobile communication system [14]. The JDCE method proposed
by Chen et al. uses a genetic algorithm (GA) to select populations for channel esti-
mates for each of which a VA is employed to decode data [50]. On the other hand,
the “quantized” channel approach to JDCE operates over a grid in the channel space
that could be made finer by using the ML criterion to confine the channel estimate
in the neighborhood of the unknown channel [51]. This algorithm enables efficient
parallel implementation of VA which is employed to decode data [51]. Both JDCE

methods with GA and with the quantized channel approach have demonstrated
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good convergence properties.

1.2.4 Strategies Dealing with Time-Varying Channels

In mobile communications, the fact that the unknown communication channel
also varies rapidly with time makes reliable transmission of data even more difficult
to accomplish. In the past decades, various strategies have been proposed to deal
with the fast time-varying environment. Some of these strategies are summarized
in this section.

Tracking of the variations in the fast time-varying channel using various adaptive
algorithms is an effective approach to combat fading. Since training is only available
for a very short period during a TDMA time slot, update of the channel information,
and hence the equalizer, relies on the decoded data. Therefore, tracking is usually
decision directed and the performance of a receiver employing such a tracking scheme
depends heavily on the accuracy of the past decisions. These adaptive algorithms
include the well known LMS and RLS algorithms [13,16,24,40,52]. In general, the
LMS algorithm displays better tracking behavior than the RLS algorithm since the
RLS algorithm is model dependent [24]. Haykin et al. proposed extended forms of
the RLS algorithm which demonstrate superior tracking behavior compared with
the standard RLS and LMS algorithm [24]. This can be explained by the fact
that the RLS algorithm is a special form of Kalman filter. By incorporating some
good tracking properties of the Kalman filter into the standard RLS algorithm, the
extended RLS should track better [24]. The Kalman filter is well known for its
excellent tracking capability and it is in fact the optimum linear tracking device
on the basis of second-order statistics [24]. It is also widely used in applications

of tracking fast time-varying communication media and superior performance is
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reported [15,38,44].

A simple way to deal with time-varying channel is the use of a bi-directional
equalizer. It is an equalizer which operates in both forward and reverse directions
to process signal before and after the training sequence. As simple as it is, results
showed that it is an effective strategy [21,53,54], provided that the known training
sequence occurs as often as deep fades [21].

At a moderate fading rate, both the decision-directed tracking strategies and
bi-directional equalization have proven to be effective. However, at a high fading
rate, such as 100 Hz for an application with symbol Rate of 24.3 kHz, these strate-
gies are no longer feasible due to the error propagation problem in the decision
directed strategies [55], and more than one deep fade may occur between two train-
ing sequences in bi-directional equalization. In this case, an increase in occurence
of known channel samples during a time slot is required. This can be achieved by
either increasing the frequency of training at the expense of reduction in system
throughput, or some other means. Lo et al. proposed a block adaptation strategy in
which more interpolated channel estimates are used [55]. These channel estimates
are obtained by interpolating those estimated from training sequences from several
adjacent time slots by using a raised cosine lowpass interpolator [55]. Despite the
inherent processing delay, which could be up to a few time slots, this method offers
good immunity to fast fading and hence better system performance [41,55,56].

Another approach to the fast fading problem involves the subspace expansion
of the time-varying parameters of the channel [57,58]. By expanding the time-
varying channel coefficients onto a set of basis sequences, from which time-invariant
parameters are to be determined, the problem is transformed to a time-invariant

one [57|. The performance offered by such an approach depends on the model of
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the channel, as well as the choice of basis sequences.

1.3 Thesis Contributions

This research thesis mainly focuses on equalization and channel estimation tech-
niques and the goal is to find some combination of these techniques that can provide
good performance for TDMA systems. The contributions of this thesis consist of
practical algorithms and methods developed to achieve this goal, as well as the
theoretical analyses of some of the existing and new methods.

The first contribution is the development of an exhaustive ML blind data, chan-
nel and co-channel estimation method which is an extension of the exhaustive ML
blind data and channel estimation method described by Seshadri [17]. This method
allows the estimation of the co-channel and interfering signal, which could lead to
CCI suppression.

The second contribution is the development of a Doppler frequency estimation
technique using cross correlation of the transmitted and received signal, which allows
successful modeling of the time-varying channel. In the work of Tsatsanis et al. [57],
frequency estimation is accomplished by using the autocorrelation and the fourth-
order statistics of the received signal. By using the cross correlation, accuracy of
the frequency estimation can be improved.

The third and the fourth contributions are the two equalization techniques that
deal with time-varying channels, the displaced equalizer and the curve fitting tech-
niques. The displaced equalizer requires no interpolation like the fixed equalizer
but its performance is better. This equalizer only operates in the forward direction,

whereas the bi-directional equalizer [21] and the MLSE equalizer used in GSM op-
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erate in both forward and reverse directions. The curve fitting technique is more
complex but offers better performance. Both of these techniques are used to deal
with time-varying channels.

The novelty of this thesis is also demonstrated by the formulation of the block
adaption with blind channel estimation strategy to deal with the fast time-varying
channel within a TDMA time slot. This strategy involves combinations of channel
estimation and interpolation methods. In a TDMA time slot, there are usually
one or two known sequences and with the channel estimates obtained from these
sequences, it might be insufficient to predict the time variations between known
sequences. In this strategy, more channel estimates can be obtained together with
small sequences of unknown data by using the ML blind data and channel estimation
method. The time-varying channel during a time slot can then be reconstructed
by interpolating these channel estimates using one of the interpolation methods
and the coefficients of the equalizer can be determined by using the Wiener-Hopf
equations. A similar strategy can be applied to deal with the time variations in the
co-channel as well in order to suppress the CCI.

In addition to the development of methods and algorithms, this thesis also makes
theoretical contributions. The first theoretical contribution deals with the proba-
bility of error analysis of the effect of noise on the ML blind data and channel
estimation method. The derivation of an upper bound for the probability of select-
ing a wrong channel estimate is also presented.

The second and the most important theoretical contribution is the MSE analysis
of a displaced LE with infinite length on fading channels. An expression of the MSE

of the displaced LE on noisy fading channels is also derived.
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1.4 Thesis Organization

The outline of the thesis is given in the table of contents. In this section, the
organization of the thesis is described in more detail.

In Chapter 1, the motivation contrasts the increasing demand for service with
limited bandwidth resource in the existing cellular market, and suggests equaliza-
tion and channel estimation techniques to improve the performance, and hence, the
capacity of a TDMA system. The previous work related to the four subject areas —
equalization techniques, channel estimation techniques, CCI suppression techniques
and strategies dealing with time-varying channels — is summarized in the litera-
ture survey section. The thesis contributions section highlights some of the novel
achievements of this thesis and this section describes how this thesis is organized to
achieve the goal.

Chapter 2 describes a model of the digital wireless communication system which
consists a transmitter, a channel and a receiver. With these models, the statistical
properties of the transmitted data, the noise and the interference are discussed.
Some commonly used models for the multipath fading channel and its variations
are presented. T'wo receiver types, the continuous-time infinite-length LE and DFE
are also considered.

In Chapter 3, the major contributions of this thesis, which involves algorithm
development and theoretical analysis, are described in detail. In the channel es-
timation area, an exhaustive ML blind data, channel and co-channel estimation
technique and a Doppler frequency estimation technique, both extended from the
previous work, are proposed. The sign ambiguity problem and the probability of
error associated with blind data and channel estimation are investigated. The two

proposed equalization techniques dealing with time-varying channels are the dis-
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placed equalizer and the curve fitting equalizer. In order to characterize and equal-
ize the time-varying channel accurately and efficiently, a block adaptation technique
with blind channel estimation is proposed, which involves combinations of different
channel estimation and interpolation techniques. An expression for the MSE of a
displaced LE with infinite duration under A time-varying channel is also derived at
the end of the chapter, as the result of a novel theoretical analysis.

Chapter 4 shows the application of some of the above techniques in the 800 MHz
operation of the EIA Interim Standard 136 (IS-136) TDMA cellular system. This
chapter first shows some background information and a description of the IS-136
system. The performance of three receiver types, namely the adaptive DFE, the
standard channel estimation based DFE and the DDFE are studied and compared.
The complexity associated with each receiver type is also discussed.

Chapter 5 presents the application to the IS-136 system at a carrier frequency
of 1.9 GHz. Compared to the 800 MHz case, the system in this application expe-
riences a Doppler frequency twice as high, and the faster channel variations in this
application makes predicting the time-varying channel more difficult. Performance
of various LE and DFE receivers, including bounds and partial bounds, where per-
fect channel estimation is assumed, as well as the performance with ML blind data
and channel estimation is presented and compared. In order to verify some of the
theoretical analysis performed in Chapter 3, simulation results are also presented
as a comparison, and the difference between theoretical and simulated results is ex-
plained. Complexity of receivers with different channel estimation and interpolation
techniques and different equalizer types is also studied and compared at the end of
the chapter.

Chapter 6 concludes the thesis with a summary of work accomplished in each
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chapter, followed by suggestions for possible extensions of the research topics of this

thesis.



Chapter 2

System Descriptions

The purpose of a communication system is to transmit an information-bearing
signal from one location to another. In digital communications, the digital infor-
mation is converted into analog waveforms that match the characteristics of the
communication channel before it can be transmitted over the channel. This con-
version is often performed at the transmitter. Due to its inherent limitations, the
communication channel is usually corrupted by noise and interference. The goal of
the receiver is to reproduce the original information-bearing signal which is distorted
by the impaired communication channel.

Figure 2.1 shows a baseband model of the digital wireless communication system.
The basic elements of the communication system are shown here: the transmitted
information symbol b,,, the transmitter with a pulse shaping filter with impulse
response p(t), the channel with impulse response ¢(t), the baseband noise 7(t), the
interference v(t), the receiver and the estimated symbol b, at its output. A number
of basic assumptions are made in this model. It is assumed that the signal of

interest and the signals of the interferers are modulated using a linear modulation
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Figure 2.1: Baseband model of a digital wireless communication system

scheme and they are all transmitted at the same symbol rate 1/7 Hz. Furthermore,
the discussions in this chapter are limited to baseband transmission only, and the
conversion between baseband and passband representations is detailed in the work

of Proakis [11].

2.1 Transmitter

The input to the transmitter {b,} is an encoded information-bearing symbol
which is obtained by mapping the binary bits using one of the encoding schemes.
These transmitted symbols are complex valued, in general. They are mutually

uncorrelated with unit variance and zero mean, that is,

Elb,] =0 (2.1)

and

E[bpybn*] = 0%60—m, (2.2)

where l* denotes the complex conjugate of B, 0,2 is the variance of the transmitted
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data and it is unity, and d,, is the discrete-time impulse function defined as

I B (2.3)

1, n=0.

The notation E[M] in Equations 2.1 and 2.2 denotes mathematical expectation.
The transmitter modulates the information-bearing symbol upon an analog real

signal pulse waveform p(t), which shapes the spectrum of the transmitted signal.

For each symbol, a pulse is produced. The signal at the output of the transmitter is

a sequence of pulses centered at nT', with amplitude b,,, assuming linear modulation

schemes [11,59]:

s(t) = Y bup(t —nT). (2.4)

n=—oo

The pulse p(t) is band-limited to W, |f| < W, where W is the channel bandwidth.
Since the communication channel is also band-limited to W, the purpose of pulse
shape is to band-limit the transmitted signal. Therefore, the transmitted signal has

a band-limited frequency response characteristic S(f).

2.2 Channel

As shown in Figure 2.1, the communication channel is modeled by a channel
impulse response c(t), additive noise n(t) and additive interference v(t). It is a

common practice, for convenience, to combine the pulse used in the transmitter
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with the channel impulse response to obtain an overall channel, denoted by h(t):

h(t) = p(t) * (t), (2.5)

where symbol x denotes the continuous-time convolution operation and it is defined

as

[e.°]

H(t)~#(t) = / B(7)é(t —7)dr. (2.6)

— 00

The received signal r(t) consists of three components: the distorted signal at the
output of ¢(t), which conveys the information symbols, the noise and the interfer-

ence. It is given by the following equation:

r(t) = Z bph(t —nT') +n(t) + v(t). (2.7)

n=—oo

In the following sections, the models of the noise, interference and the channel

impulse response are discussed in detail.

2.2.1 Noise

Noise in a communication system generally refers to the unwanted random pro-
cess that introduce distortion to the transmission and processing of the signal of
interest. Its presence is inevitable and it is a limiting factor on the power required
in the transmission of the information-bearing signal over the channel. Noise is
random in nature and it is usually independent of the signal of interest.

Noise may originate from the surrounding environment. Components in the com-

munication system, such as nonlinear amplifiers and quantizers, and other electrical
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devices at the receiver can also introduce noise. It is difficult to analyze, individu-
ally, these different types of noise. Therefore, the noise from different sources are
lumped together, and the net effect is modeled as an additive component to the
received signal. It is commonly referred to as channel noise or front-end receiver
noise [60].

Noise introduced at the receiver input belongs to the class of thermal noise. It
is often statistically characterized as a random Gaussian process with zero mean,

and it is uncorrelated with the transmitted data:

En@®)] = 0 (2.8)

Elbnn"(t)] = Elba"n(t)] =0 (2.9)

Here n(t) is the baseband representation of the noise and it is complex-valued.
In order to simplify the analysis of the system performance, the channel noise is
assumed to be white. This assumption can be justified in practice. This implies
that the channel noise is mutually uncorrelated in time and it has a constant power

spectral density over the entire frequency range:

Eln(to)n*(t1)] = Nod(to — t1), (2.10)

where ty and t; two different points in the time axis. The parameter N, is the noise
power spectral density measured in Watts per Hertz and the power spectral density

of the noise is given by:

®,(f) = No. (2.11)
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Figure 2.2: Model for co-channel interference

Due to the complex nature of the baseband noise, its real and imaginary parts each

have a power spectral density of N,/2.

2.2.2 Interference

In TDMA transmission, the most common system-generated cellular interference
are CCI and adjacent channel interference (ACI). ACI results from the signals which
are transmitted in the frequency channel adjacent to the signal of interest. Often, it
can be minimized through proper receiver filter design and channel assignment [1]
and it is not in the scope of this thesis. Here the main focus is on CCI.

In cellular systems, CCI originates from the frequency reuse plan which allows
the frequency channel to be reused in another cell [61]. This results in signals from
co-channel cells being received in the desired cell. Unlike channel noise, CCI cannot
be overcome by raising the power level of the transmitted signal, since it would
increase the level of CCI for the co-channel cells and ACI for the neighboring cells.
One way to suppress CCI in a cellular system is to use equalization, which will be

discussed in detail in later chapters.
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Figure 2.2 shows a model of CCI [37,62]. {b;x,} is the complex-valued transmit-
ted data sequence of the kth interferer, for £k = 1,2, --- | N;, where N; is the number
of interferers. The subscript ¢ denotes “interference”. The transmitted data of the
interferers, the data of interest and the noise are assumed to be statistically inde-
pendent, and the data of the interferers have zero mean with unit variance, that

is,

Elbirn] = 0 (2.12)
Ebitnbigm’] = 06260 -mOk_q (2.13)
o = 1 (2.14)
Ebubikm’] = Elbp bigm] =0 (2.15)
Ebinn*(t)] = Elbinn(t)] =0. (2.16)

pir(t) is the pulse used in the transmitter and c;x(¢) is the co-channel of the kth
interferer. The impulse response of the kth overall co-channel h;(t) is given by the

convolution of the pulse and the co-channel:

The interference at the input of the desired receiver is the sum of all the individual

interferen