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Abstract

In the ongoing quest for high wireless communications bandwidth e�ciency, adap-

tive arrays intended for the base station are being investigated as a means of allowing

multiple users simultaneous access to a common frequency and time slot. The back-

ground theory for the corresponding spatial division multiple access signal processing

problem is considered. A description of simulations undertaken for the receive array

situation is given, and the results are presented and discussed. The results show that

when comparing the LMS algorithm training time required for di�erent numbers of

users, the e�ect of the received SINR seems to dominate, in apparent contradiction

to what the eigenvalue spread predicts. When examining the training time perfor-

mance for a given number of users, the received SINR and eigenvalue spread are the

dominant factors. A proposal for a prototype hardware implementation of a receive

array system is given, and numerous aspects of its design are considered, including a

discussion of the relevant characteristics of a physical antenna array design proposed

for this system. The material in this project is considered new since there is not a sig-

ni�cant body of work involving experiments with array processing hardware intended

for spatial multiplexing, nor with the analysis and simulation of adaptive arrays in a

fading environment.
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Chapter 1

Introduction

Wireless communications is becoming increasingly widespread. In particular, per-

sonal communications is presently in a growth explosion with the goal of a global

personal communication network where a multitude of types of wireless devices will

have uniform, global access to digital communications data. In high density use areas,

there will be the need to extract as much utilization as possible from a given band-

width by using multiplexing. The multiplexing techniques used or being introduced

at present, consisting of time division multiple access (TDMA), frequency division

multiple access (FDMA), and code division multiple access (CDMA), can each be

augmented by space division multiple access (SDMA). This multiplexing technique

employs an adaptive antenna array either at the portable unit, or more likely, at

the base station. The introduction of this technique has recently become more at-

tractive due to the decreasing cost of digital signal processing hardware, advances in

adaptive signal processing theory, and the previously mentioned increasing capacity

demand. This report assumes that the array is at the centrally located base station.

An extensive list of references regarding array theory is found in [1].

A signi�cant problem in existing multiuser communication systems is inter-user

interference, which can severely degrade the performance and capacity. Even in prac-

tical CDMA systems, which are designed to allow simultaneous cochannel user trans-
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missions, the varying delays of di�erent users can induce non-orthogonal codes. Thus

adaptive arrays would be useful to combat these side-e�ects in such systems by help-

ing to minimize the e�ects of interferers [1].

An array-equipped base station can provide multiple access, where a number of

portable users simultaneously access the base station and are considered mutual in-

terferers. The number of users is limited by the number of elements in the array,

and in practice by the numerical precision of the digital signal processors used with

the array. In addition, the array can be used to suppress interference from other

sources such as users in adjacent cells, users in other radio systems, or even other

types of radiating devices, thereby allowing operation in a high interference environ-

ment. Adaptive arrays can also be used to reduce the e�ects of multipath fading

(by providing diversity) and multipath delay spread (by nulling whichever signals are

causing intersymbol interference). Whatever algorithm is implemented to perform

the adaptation, it must be able to initially acquire the desired and interference sig-

nals and then track them in real time, a task which requires signi�cant processing

power since the environment is continuously changing, to various degrees of severity

depending on the situation.

A receive array, intended for the reverse link, can observe its own output and adapt

its spatial �ltering to the propagation environment in order to suppress interference

and enhance the desired signal(s). This situation has been extensively studied (see [2],

[3], and [4] for references). Multiplexing for the forward link can be handled by the

base station array as well; this situation is complicated by the fact that in general,

in order for the array to adapt itself for transmission, the portables must provide

feedback as to their reception environment. The latter situation has been studied [2].

Adaptive array algorithms can be classi�ed into two main categories: spectral-

based and parametric-based [1]. In the former, some spatial spectrum-like function

is formed that characterizes the parameter of interest. This category can be further

divided into beamforming techniques and subspace methods. Beamforming attempts

to \steer" the array gain to the desired signal; unless the signals are plane or spherical
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waves, the concept of a direction of arrival does not hold, but the essential method

remains the same. Examples of this class of adaptive array are the Bartlett beam-

former, which attempts to maximize the signal power from a given \direction", and

the Capon algorithm, which minimizes the array output power subject to a linear

constraint of some parameter of interest (such as direction of arrival). The LMS al-

gorithm, which is discussed later in this report, is also a member of this class. The

other division within spectral-based algorithms is subspace methods, in which spec-

tral decomposition of the array autocorrelation matrix is used for the analysis. An

example is the MUSIC algorithm, used for direction �nding.

The above spectral-based methods are attractive due to their computational sim-

plicity, but don't always result in su�cient accuracy. Parametric methods more fully

exploit the underlying data model. These algorithms are more e�cient and robust;

however, they usually require a multidimensional search to adapt the array [1].

A di�erent method of distinguishing the algorithm employed in an adaptive array

is whether or not the algorithm operates in array space or beam space, the latter

being the case when the array data are linearly transformed, perhaps to a reduced

dimension space to ease processing speed requirements [5]. The transformation can

also act as a spatial pre�lter, which emphasizes a favorable angular location or some

other spatial characteristic which can enhance the array's ability to reject interference

[1]. Another example is where the transformed space consists of a set of orthogonal

beams [6]; an advantage of this transformation is that the adaptive algorithm can

work with real as opposed to complex values.

The particular array discussed later in this report is intended as an in-building

personal communication system base station array. Thus it operates with a high user

density in an indoor severe multipath fading environment. Only the reverse link,

in which case the array receives, will be considered since as discussed later on, the

forward link is usually a reciprocal problem in the indoor environment.

The remainder of this report will be divided as follows. Chapter 2 discusses the

background theory for spatial array processing and spatial division multiple access, as
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well as some related topics. Following that, Chapter 3 presents the simulation work

performed and an analysis of the results obtained. Chapter 4 describes the design of

the proposed hardware prototype of a receive array system, and Chapter 5 discusses

potential future work pertaining to the simulations and hardware discussions. Chap-

ter 6 summarizes the report, and �nally Appendix A discusses the cross-correlation

among the training sequences used in the simulations.
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Chapter 2

Background

As was discussed in Chapter 1, an adaptive array can be used to select one received

signal out of many, and the terms desired signal and interfering signals are used to

distinguish them, respectively. A condition for this spatial selection is that the desired

signal must have some spatial characteristic that distinguishes it from the interferers.

In the case of plane wave reception, it could be direction of arrival. The array can also

be used to simultaneously distinguish a number of signals, if more than one signal

are considered desired signals. In this case the desired signals are considered mutual

interferers, which can exist in addition to undesirable interferers. This chapter will

discuss these topics, beginning with the theory of an adaptive array used to receive a

single desired signal.

2.1 General Theory of Adaptive Spatial Arrays

Figure 2.1 shows a generalized receive adaptive array. The antenna elements are

arranged in some spatial con�guration, and the elements shown are assumed to include

demodulators and digital samplers, so that the received signal is available in digital,

complex baseband form. The distance between elements in the array is assumed to be
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Figure 2.1: A Generalized Adaptive Antenna Array

about half of one wavelength, since this is true for the proposed array briey described

in Chapter 4.

A transmitter will emit a desired data signal that impinges on the array. A carrier

frequency-dependent propagation vector c(!) is formed whose elements c(!)i are the

complex channel gains from the transmitter to the ith element. In order to adequately

describe the channel with a single vector, the assumption

�mp � BW�1 (2.1)

must hold, where �mp is the maximum di�erential delay due to multipath and BW

is the signal bandwidth [2]. This condition holds in the indoor environment for bit

rates less than about 1 Mbps [7]. A sample of the array at time n is called a snapshot

of the array, and is de�ned as

un = c(!)dn + �n (2.2)

where dn is the data symbol transmitted at time n and �n is the vector of additive

6



noise at the array output. As is shown in Figure 2.1 the array snapshot is linearly

combined by a complex weight vector w, resulting in the complex estimated data

symbol at time n

d̂n = wHun (2.3)

where H means Hermitian transpose.

In an interference environment the interfering signals, each with its own propaga-

tion vector, add with the desired signal at the array. The weight vector is determined

by an algorithm that selects the desired signal from the interference. If plane wave

reception is assumed, this may be done by choosing a w that steers the array to the

desired signal, or if the propagation environment is unknown, an adaptive algorithm

can be used in conjunction with a training sequence to determine a w that selects the

desired signal. This report will emphasize an iterative adaptive algorithm, namely

the least mean square (LMS) algorithm.

The LMS algorithm will choose w in order to minimize the mean square error,

de�ned as

�(w) = E
h
(dn � d̂n)

2
i

(2.4)

which means spatially selecting the desired signal and rejecting interference signals,

optimized in a least squares sense. Figure 2.2 shows a typical array polar gain plot

which results after w has been found. A plot such as this is generated by assuming

some form of propagation such as plane or spherical wave fronts, and then examining

the gain at all angles that results from the set of coe�cients in w. As can be seen

from the �gure, a large lobe of high gain has been steered in the direction of the

desired signal, whereas nulls of zero gain (in practice the gain in a null will be non-

zero due to �nite precision arithmetic in the signal processor) have been placed in

the directions of interfering signals. Since with an M{length vector w there are M

degrees of freedom, a theoretical maximum of M�1 independent nulls can be placed

to eliminate interferers.
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Figure 2.2: Adaptive Array Gain Plot Showing Nulled Interferers

A plane wavefront model can be used in situations where there is a large, relatively

unobstructed path from a transmitter to the receive array. However, in the indoor en-

vironment considered in this report, the distance between transmitter and receiver is

short, and cluttered with many objects which induce multipath, di�raction, shadow-

ing, etc. The signals from a transmitter are not received as plane or spherical waves,

but as a mixture of signals from many directions which add at the receive elements.

Thus the concept of a directional gain plot is not valid [8], but this doesn't deter the

adaptive algorithm from arriving at a solution, as long as the propagation vector of

the desired signal is su�ciently di�erent from those of the interfering signals. In an

indoor system using many antennas in the array, the probability of not being able to

suppress an interfering signal is very small [9].

2.2 Theory Behind Spatial Multiplexing

Figure 2.3 shows a block diagram of a multi-user communication system where spa-

tial multiplexing (or SDMA) is employed to provide an orthogonal channel for each

user. There are N users and M array elements. The frequency dependent channel
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propagation vectors cj(!), for each user j, can be placed into a matrix

C(!) =
8>: c1(!); c2(!) ; : : : ; cN(!)

9>; (2.5)

where C(!) completely describes all the desired signals that are received by the

array, which mutually interfere with each other. The array received signal vector

then becomes

un = C(!)dn + �n (2.6)

where dn is the vector of transmitted signals from the users at time n.

A weight vector is associated with each user, and each one can be adapted to

select a particular user and null the other users' signals. Since each weight vector can

null M�1 user signals besides the particular desired signal, the theoretical maximum

capacity is M users, and N �M . For at Rayleigh fading, the elements of C(!) are

not frequency dependent and the matrix will be denoted as C.

Figure 2.3 shows that in modelling the system, the N data signals are transformed

by the channel matrix C to form the M received signals at the array corrupted by

additive noise at each element. The receiver processor uses the N weight vectors to

recover estimates of the transmitted signals.

Note that if the channel coherence time is low enough, as in the indoor environ-

ment, the same array can be used with the complex conjugates of the receive weights

to transmit with the antenna pattern that was adapted for receiving. Just as the

received signals are spatially isolated, this allows the array to transmit independent
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signals to the portables. The spatial processing is then concentrated at the base sta-

tion, allowing the portables to be simpler. For this time division retransmission to

be able to work, the transmit and receive circuitry must be reciprocal, the transmit

and receive frequencies must be within a coherence bandwidth of each other, and

synchronous time division must be used with all signals, even those in other systems.

When a user is added to the system, each existing user's weight vector must be

immediately retrained in order to spatially accommodate the new user. On the other

hand, when a user is removed, no retraining is necessary at that time. These factors

must be considered when designing a SDMA system, in particular the algorithm for

the addition and deletion of users accessing the array.

2.3 Some Methods of Adaptation

Numerous methods exist to arrive at the optimal weight vector associated with a

given user. Three of them that will be described here are direct measurement and

subsequent inversion of the channel propagation matrix C, recursive techniques, and

so-called direct matrix inversion. All discussion will assume a receive array.

2.3.1 Channel Matrix Inversion

In order to reverse the e�ects of the vector channel, a matrix is required that is

e�ectively the inverse1 of the channel matrix C. The elements of C must be measured

using orthogonal channels, i.e., the users must transmit a known sequence using time

division, frequency division or code division in order to measure each user's channel

propagation vector. Due to noise, multiple measurements have to be made and then

the actual channel is estimated by least squares techniques, such as pseudoinverse

methods [2]. The transmitted data vector can then be estimated as

d̂n = C+un (2.7)

1Without noise the exact inverse, or pseudoinverse if C is non-square, is used.
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where + indicates pseudoinverse. Because of the additive noise present at the array,

this method does not result in the optimal inverse of C in the least squares sense.

2.3.2 Recursive Techniques

First the LMS algorithm is considered. The LMS algorithm for the array consists of

the weight vector update equation

wn+1 = wn + �une
�
n (2.8)

where the error en is given by

en = dn �wH
n un (2.9)

and � is a constant adjustment factor. The LMS algorithm converges near the least

squares solution, with a larger misadjustment for larger �. However, a larger � results

in faster convergence. This algorithm has low computational complexity, (order M)

but the convergence time depends on the eigenvalues of the array spatial autocorrela-

tion matrix R, i.e., on the relative powers of the desired and interfering signals. This

means a weaker signal is acquired and tracked at a slower rate than more powerful

interference. In addition, when the desired signal enters a fade, it will be tracked

slower at a time when accurate tracking becomes more important [4].

For faster convergence rates, the RLS algorithm can be used. It has a higher

computational complexity (order M2, although faster versions exist with order M)

but doesn't depend on the eigenvalues of R. It won't be detailed here. It requires

a matrix inversion, leading to instability issues; however, the recursive structure of

the algorithm allows this to be done implicitly, thus avoiding the order M3 explicit

inversion.

Some discussion concerning the startup of the RLS algorithm is needed. When

applied to the spatial array problem here, startup would occur for instance at the

acquisition phase, or perhaps during tracking if the channel has changed signi�cantly

between training sequences available in the time slots and the autocorrelation matrix
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from the previous training sequence doesn't reect the channel statistics. When

applied to spatial arrays, the RLS algorithm has the same startup problem as in a

transverse (time domain) situation, namely M snapshots are required in order to

make the estimate of R of full rank and thus invertible and hence start the algorithm.

This problem can be overcome using the same techniques available in a transverse

�lter, which are usingM snapshots of the array to estimate R and then performing an

explicit inverse, or setting R to �I where � is a small positive constant and using this

R to start the recursion. Winters [4] indicates that if the autocorrelation matrix in the

RLS algorithm becomes singular then pseudoinverse techniques can be employed, and

reference is made to Dembo and Salz [10] where a recursive pseudoinverse algorithm

is presented to deal with singular matrices for the RLS algorithm startup (although

this pseudoinverse recursion is intended for a transverse �lter startup).

2.3.3 Direct Matrix Inversion

The direct matrix inversion (DMI) method solves the least squares problem, i.e., the

Wiener solution, using estimates of the autocorrelation matrix

R̂ =
1

L

LX
k=1

u(k)uH(k) (2.10)

and cross-correlation vector for user j

p̂j =
1

L

LX
k=1

u(k)d�j(k) (2.11)

where L is the number of samples used. The weight vector for user j is then given by

wj = R̂�1p̂j : (2.12)

Note that R is assumed to be nonsingular; if not, pseudoinverse methods can be used

[4]. About L=2M samples are usually adequate to achieve good results [11, p. 123].

The DMI algorithm is the most computationally intensive algorithm; since it

needs a matrix inversion its complexity is order M3. However, it has the fastest

convergence [4], and its convergence rate is independent of the eigenvalues of R. The
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DMI algorithm is inherently a block algorithm, and a number of methods exist to

modify it for tracking a time-varying channel. One way is to use a sliding window for

the data with a �xed L in (2.10) and (2.11). Another method is to use an exponential

forgetting factor for R̂ and p̂j, i.e.,

R̂(n + 1) = �R̂(n) + u(n)uH(n) (2.13)

p̂j(n+ 1) = �p̂j(n) + u(n)d�j(n) (2.14)

where � is the forgetting factor. This method appears to be a border-line RLS

algorithm, with the major di�erence being the use of an explicit inverse and not the

matrix inversion lemma as in the latter.

2.3.4 Summary of Adaptation Methods

Since the LMS algorithm converges near the optimal least squares solution and is

very computationally simple, it is a logical choice for adapting the array coe�cients

to the channel conditions. If a faster convergence and tracking rate is necessary,

the RLS algorithm can be employed with a computational penalty. However, the

indoor channel may allow the LMS algorithm to be successfully employed since the

coherence time is large enough. In addition, once the propagation environment has

been acquired, the detected symbols may be used for tracking, perhaps making further

training sequences unnecessary. For M = 2 the DMI algorithm has about the same

computational complexity as the LMS algorithm [4], but the M3 complexity growth

of DMI makes it exceedingly complex for larger numbers of array elements.

2.4 The Data-To-Fading-Rate Ratio

The ratio of data rate to fading rate is an important quantity. Since the algorithm

needs the received data symbols to update the array coe�cients, a higher data rate

implies a better ability to keep up with a changing channel. Thus, for a given channel

13



coherence time, a relatively high data rate lets the algorithm adequately adapt and

keep the array output performance within tolerance, assuming the signal processing

hardware can operate at the desired rate. For example, in IS-54, at a mobile speed

of 60 mph the data-to-fading ratio is 300, and in GSM it is about 2000. Experiments

have shown that with eight elements and three mutual interferers, the LMS algorithm

had an adequate tracking performance with data-to-fading-rate ratios down to 25 [4].

In an indoor system such as that emphasized in this report, the data-to-fading-rate is

much higher (possibly as high as 105), indicating that the LMS algorithm would be

suitable, although the antenna redundancy may be lower than in the example stated

above.

2.5 Spatial Diversity Versus Multiplexing

An interesting result concerning the relationship between diversity and multiplexing

in a at Rayleigh fading environment with optimum combining at the receiver is given

in Winters et al. [3]; namely an upper bound for the probability of bit error for the

jth user is given as

Pe;j �
8>>>>:1 + �j

�2d;j

9>>>>;
�(M�N+1)

(2.15)

where as before M is the number of antenna elements and N is the number of mutual

interferers, �2d;j is the power of the complex data symbols for the user, and �j is the

SNR for the user,

�j =
�2d;j�

2
j

N0

where �2j is the variance of the complex Gaussian channel gains in the propagation

vector for the user, and N0 is the noise power at each of the array elements.

This indicates that the probability of error with optimum combining is the same

as maximal ratio combining with M�N+1 antennas and no interferers. Thus the

error rate for a particular user depends only on its own SNR and is una�ected by

the other users. If there are as many users N as there are array elements M , the
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performance behaves as if each user had only one antenna and were isolated from all

other users. Each additional array element adds another diversity antenna for each

user. Thus diversity for each user can be traded for increased system capacity.
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Chapter 3

Simulations

Monte Carlo simulations were undertaken to investigate a multiuser adaptive receive

array, and were intended primarily to investigate the factors inuencing the con-

vergence speed of the LMS algorithm in adapting the coe�cients of the array. The

simulation work is designed to complement future experimental results from the hard-

ware prototype whose design is described in Chapter 4. The experimental methods

will be described �rst, including a detailed description of the simulations, a descrip-

tion of the parameters whose e�ect on the training time will be investigated as well

as some other parameters of interest, and a discussion of the expected results.

3.1 Experimental Methods

3.1.1 Description of Simulations

An adaptive array used for multiple simultaneous access was simulated. The array

has twelve elements, and the number of users accessing it is variable | four sepa-

rate numbers of users were used, namely two, four, eight, and twelve. The channels

from the portables to the array are assumed to be independent, at Rayleigh fading

channels. This is valid since the array is intended to be used in the indoor environ-
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ment and is assumed to have independent fading among the elements by virtue of

its construction (this is further explained in Chapter 4). Thus the elements of the

channel matrix C are independent, zero-mean, complex Gaussian random variables

with variance �2j for the jth user. For the simulations, the elements of C have unity

variance for all users. Complex data symbols are used, there are no ISI e�ects, and

the bare received symbols are processed directly, i.e., there is no temporal �ltering of

the received data symbols.

The transmitters send QPSK symbols of unity variance and zero mean which are

generated as

dn = (an + jbn)=
p
2

where the inphase component an2f�1;+1g and quadrature component bn2f�1;+1g
are taken from the computer's pseudorandom number generator; the generator is

seeded to a di�erent value each time the simulation is run. The correlation between

sequences, which is important in this application because all users are simultaneously

trained, was found to be insigni�cant (see Appendix A). The sequences are intended

to be mutually independent. The symbols received at the array are found using (2.6),

reproduced here for convenience with the frequency dependence of C removed:

un = Cdn + �n : (3.1)

Each element of the noise vector �n is an independent sample from a zero-mean,

complex Gaussian distribution with variance determined as follows. First the matrix

C is chosen, and then the noise variance is computed using a system-wide received

SNR of 30 dB given by

SNR =

MX
i=1

NX
j=1

Pr i;j

M�2�
(3.2)

where Pr i;j is the received power at element i from user j and �2� is the noise variance.

Thus the SNR used to �nd the noise power is the total received power across the entire

array divided by the total noise power in the array.
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All users are simultaneously trained using the LMS algorithm, which can be put

into a matrix version for simplicity by forming a matrix of complex weight coe�cients

W =
8>: w1; w2 ; : : : ; wN

9>; (3.3)

where as before N is the number of users. The weight matrix update equation then

becomes

Wn+1 = Wn + �une
�
n (3.4)

where for the simulations � = 0:001 and where the error vector en is given by

en = dn �WH
n un : (3.5)

The initial value of the weight matrix isW0 = ;MN , i.e., the M�N null matrix. After

W has converged, the output estimated data symbol vector is given by

d̂n = WHun : (3.6)

In order to investigate the training time of each user for a given C, a threshold

square error is used with the training curve, below which the weight vector is said

to have converged. In order to relate this to a bit error rate, an exponentially tight

upper bound from [3] is used, which with high SNR is

(MSE)0j � �1
lnPe;j(C)

(3.7)

where (MSE)0j is the minimum mean square error (MMSE) for user j and Pe;j(C)

is the probability of error for user j based on C. In the simulation, a probability of

error of 10�3 is used to compute the corresponding upper bound on the MMSE. This

MMSE is used as the convergence criterion. A �xed training length of 1000 symbols is

used, and if the square error fails to pass below this value within those 1000 symbols,

the training curve for that user based on the particular C in use is recorded as not

having converged. In order to remove the e�ects of noise, the mean of the square

error for every ten consecutive iterations is examined to see if it has passed below the

criterion. When a curve fails to converge, its training time is recorded as 1000. Note
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that since an upper bound is used to compute the square error criterion, it can be

said that the curve must pass at least below the criterion to result in a BER of 10�3

but exactly how much is not known. However since the bound is exponentially tight

and the SNR is high, this is a minor concern.

The value of � = 0:001 was chosen such that when used with the BER threshold

of 10�3 and training length of 1000 symbols, a reasonable reliability (to be de�ned

below) would result.

To elaborate on the sliding window mentioned above which is used to �nd the

point on the noisy training curve when the curve has passed a threshold, the length

of the window is a trade-o� between high resolution and a long enough window to

remove the e�ects of noise. A window length of ten seemed to provide high enough

accuracy and robustness to noise. In addition, the increment for the window was

chosen to be ten to provide noise immunity and improve the speed of the search

along the curve for the threshold crossing point.

For each of the four numbers of users, a total of 500 channel matrices C are

generated and each is used to train the users' weight vectors. The output for each of

the four runs saved for later analysis is a record of the 500 matrices C, a record of the

training time for each user represented in each matrix C, and the noise variance used

for each C. In addition, the reliability, the calculation of which is described below, is

output for each run.

3.1.2 Parameters of Interest

Reliability

The reliability is de�ned as the percent of instances that the training curves do con-

verge (according to the threshold criterion given above) for each number of users.
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The reliability is calculated as

reliability =
�
1� outages

N � 500

�
� 100%

where outages is the total number of outages over all 500 trials and N users.

Eigenvalue Spread

It is well known that the eigenvalues of the spatial autocorrelation matrix a�ect the

training time of the LMS algorithm [4]. Speci�cally, a larger eigenvalue spread �(R),

de�ned to be the ratio of the maximum eigenvalue to the minimum eigenvalue for

a given propagation and noise environment, results in larger training times, since

unequal eigenvalues cause a distortion of the error surface whose minimum the LMS

algorithm searches for [6].

An autocorrelation matrix with a large �(R) is termed ill-conditioned, and in prac-

tice this can correspond to a large di�erence in received powers of the users' signals

at the array, i.e., a large received power spread. However, a large eigenvalue spread

can also be caused by small angles between the propagation vectors, by correlation

between users' signals, and when the number of users is less than the number of array

elements [12], [13].

It can be shown that the autocorrelation matrix R is

R = �2�IM + �2dCC
H (3.8)

where IM is the identity matrix of size M and �2d is the variance of the transmitted

complex data symbols for all users.
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Received SINR

The received SINR for user k is de�ned to be

SINRk =

MX
i=1

Pr i;k

M�2� +
MX
i=1

NX
j=1
j 6=k

Pr i;j

(3.9)

where Pr i;j is the power received at element i from user j. In other words, the SINR

for user k is the total power received at the array from user k divided by the sum of

the total noise power at the array and the power received at the array from all other

users.

Power Spread

Power spread is de�ned to be the variance of the total received powers from each user

at the array for a given channel matrix C, and is found as

�(Pr) = �2Pr =

NX
j=1

�
Pr j � Pr

�2

N � 1
(3.10)

where Pr j is the total received power for user j, Pr is the mean received power over

all users, and N is the number of users. If there is a large di�erence in received user

powers at the array, the variance of the powers will be large compared with when

the received powers are all similar. Note that eigenvalue spread, received SINR,

and power spread are similar metrics in that they attempt to quantify the relative

power of users' received signals. However, each represents di�erent quantities, and

the e�ect that each has on the LMS algorithm training time will be investigated. The

eigenvalue spread does depend on the users' received powers, but it also depends on

other variables. A user's SINR directly measures that user's power in relation to the

other users' received powers, and the power spread measures the amount of deviation

of all users' received powers from the mean.
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Propagation Vector Orthogonality

An important concept in a spatial multiplexing system is that the propagation vectors

for the users must be su�ciently di�erent from each other and from any interference

present in order for the adaptive algorithm to distinguish and thus spatially isolate

the signals from each other. A good measure of the similarity between two vectors in

M -space (where M as before is the number of array elements) is the angle between

them. For users i and j this is given as

�i j = cos�1

8<
:

Re[cHi cj]q
cHi ci c

H
j cj

9=
; : (3.11)

Ideally each propagation vector will be orthogonal (90 deg) to all other vectors, since

this makes it easiest for the adaptive algorithm to spatially isolate the users' signals,

and the training time should be fastest in this case. The worst case would be parallel

vectors, in which case there is nothing the processor can do to separate the two signals,

at least in a spatial sense.

Correlation Coe�cient

When investigating the relationship between two variables, the correlation coe�cient

is a useful metric of how well one variable is correlated with the other. It will be used

as a quantitative measure of the e�ect that some of the above parameters have on the

training time. The correlation coe�cient is related to linear regression (least squares

linear curve �tting) and is a measure of how well a straight line can be �t to a set of

points.

The correlation coe�cient between variables X and Y is de�ned as

r =
�2
XY

�X�Y
(3.12)

where cXY is the covariance of X and Y and sX and sY are the standard deviations

of X and Y respectively [14]. The correlation coe�cient of a sample population may
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be written as

r =

P
(X �X)(Y � Y )=(n� 1)rP

(X�X)2

n�1

rP
(Y�Y )2

n�1

(3.13)

where X and Y are the sample means of X and Y respectively and n is the number

of elements in the sample.

If the sample points (X; Y ) are perfectly positively correlated (i.e. they lie on a

straight line with positive non-zero slope) then r = 1:0, and conversely when they are

perfectly negatively correlated r = �1:0. As the points deviate from a straight line, r

will approach zero, and when there is no correlation present at all, for instance when

the points form a circle, r = 0 . Note that the correlation coe�cient is di�erent from

the regression coe�cient, where the latter is the slope of the line found from a linear

regression. Thus the correlation coe�cient is not equal to the slope of the regressed

line, but it does indicate the sign of the slope of the regressed line. In addition, it

is not necessary to perform a regression to calculate r, since all that is needed is the

covariance and variance information of the variables.

The relationships to be investigated in this chapter are not assumed to be linear,

and visual inspection will indicate that they are not linear. But with this in mind, the

correlation coe�cient can be used in an e�ort to quantify the degree of relationship

present.

3.1.3 Expected Results

The simulations are designed to investigate how the number of users, the eigenvalue

spread of the autocorrelation matrix, the received SINR, the received power spread,

and the propagation vector orthogonality a�ect the training time of the users in

the system. The results are divided into two groups: inter-user results consider the

e�ect that changing the number of users has on training time, and the smaller scale

intra-user results involve what a�ects the training time for a �xed number of users.
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Inter-User E�ects

It is expected that increasing the number of users will increase the training time

needed for all users, since each user will experience more interference power and

this will slow the convergence of any adaptive algorithm since the interference power

will appear as additive noise to a user being trained. As a direct result of this,

the received SINR for a user is expected to drop as more users are added. Since

the training time will increase with more users, which implies a more ill-conditioned

autocorrelation matrix, the eigenvalue spread �(R) is expected to increase. The power

spread isn't expected to change with increasing users since each user's channel gain

statistics remain constant regardless of the number of users. The propagation vector

orthogonality isn't expected to change either since the vectors are �xed at size twelve

and the channel gain statistics are independent of the number of users.

Intra-User E�ects

For a given number of users, the e�ect that the four parameters (eigenvalue spread,

received SINR, power spread, and propagation vector orthogonality) have on training

time will be investigated. It is expected that a larger eigenvalue spread will result in

a larger training time, and a smaller SINR will result in a larger training time. A

larger power spread should result in a larger training time, and propagation vector

angles closer to 0 deg or 180 deg (closer to parallel) are expected to result in a larger

training time. The SINR is expected to have the largest e�ect since the training time

of the LMS algorithm depends directly on the relative received power of a given user.

The e�ect of the eigenvalue spread may not be as pronounced since it doesn't depend

on the particular user being considered but is based on all users' received powers.

The eigenvalue spread, power spread and the received SINR results are intended

to investigate the near-far problem, which is the detrimental e�ect that a variation of

received user powers has on a multiple access wireless system. In the present context,

it is the reduced convergence rate for the LMS algorithm that results when a user's
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signal is weak compared with the other signals present. Note that since one power

spread metric is obtained for the entire C matrix, it is used to examine whether

the power spread has a general e�ect on the training time for all users for a given

C. In addition, since the eigenvalue spread depends on more than just the received

powers, it may not be the best metric to use when examining the near-far problem,

but examining the eigenvalues will be of interest nonetheless.

3.2 Simulation Results

The simulation results primarily show how a number of factors inuence the LMS

algorithm training time. In the following sections the results are described and dis-

cussed.

3.2.1 E�ect of Number of Users

In order to examine the e�ect of the number of users on the training time, the average

training time over all users and all 500 channel matrices was computed for each

number of users and plotted in Figure 3.1. As expected, increasing the number of

users increases the training time due to the fact that there is more interfering power

(a lower SINR for each user) which slows the LMS algorithm down. The graph seems

to follow somewhat of an exponential curve, with large increases in training time as

the number of users approaches the theoretical maximum of twelve for this array. The

number of iterations needed for convergence for the LMS algorithm should be about

�ve to ten times the number of coe�cients to be trained [15]. The absolute training

time for the lower number of users appears to agree with this, but the training time

for the larger number of users exceeds this approximation considerably, perhaps due

to the higher interference levels there.

Table 3.1 shows the reliabilities for various numbers of users. Only the twelve

users situation results in a reliability less than 100%, namely 94.4%. These results
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Figure 3.1: E�ect of Number of Users on Training Time

should only be considered relative to each other since the simulation parameters don't

necessarily reect a practical system. However, the parameters were chosen to keep

the reliability results greater than about 95%, which is a typical value of a practical

system. As expected, the reliability degrades with increasing numbers of users.

Number

of Users Reliability (%)

2 100.0

4 100.0

8 100.0

12 94.4

Table 3.1: Reliability for Various Numbers of Users
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Figure 3.2: Histograms of Autocorrelation Matrix Eigenvalue Spread

3.2.2 E�ect of Eigenvalue Spread

Figure 3.2 shows histograms of the eigenvalue spread of R for two, four, eight, and

twelve users along with the mean spread for each number of users. Interestingly, the

mean value of the spread becomes less as the number of users increases.

Figure 3.3 is a plot of training time versus �(R) for the various numbers of users.

The ordinate value is the mean of the training times for all the users found for a

given C. The correlation coe�cient r is shown on the graphs. For each number of

users, a moderate correlation exists indicating that the average training time increases
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Figure 3.3: E�ect of Eigenvalue Spread on Average Training Time

with �(R) as expected. The curves are too noisy to identify any particular type of

curve, although in part (d) of the �gure, the curve is perhaps attening out as �(R)

increases, indicating that for twelve users as �(R) increases to larger values (past

about 2000) the training time may not signi�cantly increase.

Figure 3.4 is also a plot of training time versus �(R) except that the ordinate

now consists of the individual training time for each user as opposed to the average

training time found for each matrix C. The correlation coe�cient r is shown on each

graph, and the values of r are much smaller than for Figure 3.3.
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Figure 3.4: E�ect of Eigenvalue Spread on Individual Training Time

3.2.3 E�ect of Received SINR

Figure 3.5 shows plots of training time versus SINR for each number of users. The

abscissa in this �gure is the SINR for each user, and the ordinate is the training time

for each user, hence the labels \individual" on the graphs. A clear relationship is

seen for all numbers of users in which decreasing SINR results in increasing training

time. The correlation coe�cient r is shown on the graphs; for all four plots they show

that there is signi�cant correlation, and more correlation than was observed for the

eigenvalue spread results. In Figure 3.5(d) many curves do not converge before the

1000 iterations limit below an SINR of approximately {10 dB.
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Figure 3.5: E�ect of Individual SINR on Individual Training Time

Figure 3.6 also shows plots of training time versus SINR; however here the abscissa

is the average SINR over the users for any given C and the ordinate is the average

training time over all the users for a given C. The correlation coe�cients for these

graphs are considerably smaller than in the previous �gure.

It should also be noted that the \hard" lower limit of the SINR, most pronounced

in Figure 3.6(a), can be explained by examining, without any loss of generality, the

average SINR function for two users, which neglecting noise is

SINRave(P1; P2) =
1

2

�
P1

P2
+
P2

P1

�
P1; P2 � 0 (3.14)
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Figure 3.6: E�ect of Average SINR on Average Training Time

where P1 and P2 are the received powers for user 1 and 2 respectively. This function

is greater or equal to one, and thus the average SINR's that are plotted in Figure

3.6(a) are limited to greater or equal to 0 dB.

3.2.4 E�ect of Received Power Spread

Figure 3.7 shows the individual training time versus the power spread for the four dif-

ferent numbers of users; the ordinate is the training time of each user. No discernible

relationship can be seen. Figure 3.8 shows similar results, but the ordinate is the
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Figure 3.7: E�ect of Received Power Spread on Individual Training Time

average training time among all users for a given C. Here as well no relationship is

seen. Thus power spread as measured by variance appears to have little or no e�ect

on the rate at which the LMS algorithm converges for the spatial array.

3.2.5 E�ect of Propagation Vector Orthogonality

Figure 3.9 shows plots for each number of users consisting of training time versus

the angles between propagation vectors. The abscissa is the average angle between

propagation vector j and all the other propagation vectors. The ordinate is the
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Figure 3.8: E�ect of Received Power Spread on Average Training Time

training time for user j. No relationship can be seen through the noise, which would

indicate that the vector angles don't have any signi�cant inuence on the training

time. The angle mean and standard deviations are shown for each number of users on

the graphs. The mean angle is 90:0 deg for all four plots, and the standard deviation

drops from 12:5 deg for two users to 3:6 deg for twelve users. This indicates that the

spread of angles around the mean decreases with more users.
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Figure 3.9: E�ect of Propagation Vector Orthogonality on Training Time

3.3 Discussion of Results

Discussion of the dominant e�ects on training time will be divided into inter-user

e�ects (when the number of users is varied) and intra-user e�ects (when the number

of users is �xed).

3.3.1 Inter-User E�ects

Since it is known that lower values of eigenvalue spread �(R) result in higher rates of

the LMS algorithm convergence, the lower values of �(R) that result from increasing
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the number of users don't directly a�ect the training time since the training time

increases with increasing numbers of users. Even though more users means more

interference power for a given desired signal, �(R) becomes lower. The fact that

the mean �(R) becomes lower with increasing numbers of users can be explained by

examining in more detail what the eigenvalues of R represent.

The number of eigenvalues is equal to the number of elements in the array, and

the eigenvalues and the corresponding eigenvectors can be divided into two groups:

signal eigenvalues with associated eigenvectors, and noise eigenvalues with associated

eigenvectors. (A detailed discussion of the eigenstructure of the spatial autocorrela-

tion matrix won't be given here, but su�ce it to say that the signal eigenvectors form

an orthonormal basis for the signals received at the array [16].)

The signal eigenvalues can be arranged as

�1 � : : : � �N > �2�

and the noise eigenvalues are represented as

�N+1 = : : : = �M = �2�

[1]. The sum of the signal eigenvalues is equal to the total power received at the array

from the users' signals (neglecting the noise components), and each signal eigenvalue

is equal to some value representing a portion of the total signal power (but not

necessarily any one user's received power) plus the noise power �2� present at an array

element, provided all elements have the same noise power.

The noise power �2� is found after each channel matrix C is generated by requiring

the SNR to be 30 dB, as previously explained. As more users are added, the value of

�2� must be decreased, on average, in order to account for the increasing total signal

power being received at the array. Since for two, four, and eight users the minimum

eigenvalue is equal to �2�, this accounts for the decreasing mean �(R) as the number

of users is increased from two to four, and then from four to eight. When the number

of users is increased from eight to twelve, the value of �(R) decreases much more than
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the decrease from two to four and four to eight users. This large decrease is due to

the fact that with twelve users the minimum eigenvalue is considerably larger than

�2�, since it has an added signal component.

By examining the abscissa scales of the plots in Figure 3.5 it can be seen that the

SINR drops with increasing number of users, whereas examining the abscissa scales

of Figures 3.7 and 3.9 shows that the power spread and propagation vector angles,

respectively, don't change signi�cantly for di�erent numbers of users. Thus the SINR

must have the dominant e�ect on training time for di�erent numbers of users.

3.3.2 Intra-User E�ects

The received SINR results are used to examine the e�ects that the received power

of a single user relative to the other users' received signals has on training time, and

the results show a signi�cant correlation. However, there was no relationship seen

for power spread (based on variance of received powers). Thus for this system the

near-far problem makes its presence known by slowing the convergence rate for a

user when that user has a low relative power, but has no apparent general e�ect on

training time when there is a large variance in received users' powers.

As shown in Figure 3.5, for a given number of users the SINR appears to have

the greatest e�ect on the LMS algorithm training time. A lesser e�ect results from

the eigenvalue spread �(R) which from Figure 3.3 is correlated with training time,

although less signi�cantly than for the SINR results. The other two e�ects examined,

namely power spread and propagation vector angles, don't have any e�ect on the

training time for a given number of users.

Looking at the propagation vector orthogonality results, the deviation of the angles

about the mean of 90 deg for all four numbers of users isn't large enough for any

vectors to become anywhere near parallel. The averaging e�ect (each point represents

the average of the angles between one user's propagation vector and each of the

other users' propagation vectors) may hide some angles that represent near-parallel
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vectors, but most angles are near 90 deg. The fact that the vectors have length twelve

appears to be bene�cial in keeping the vectors near-orthogonal since there are twelve

dimensions in which the vectors can di�er. In other words having twelve elements

results in excellent orthogonality among propagation vectors, assuming the vector

elements are complex Gaussian distributed. As the number of users increases, the

spread of the angles around 90 deg decreases because there are more angles being

averaged (there are N�1 angles in the average, where N is the number of users).

Examining the eigenvalue spread and SINR results, and comparing whether or

not averaging was used in the results, it can be seen that for the eigenvalue spread,

averaged training times in Figure 3.3 were much more correlated than the individual

data in Figure 3.4; in contrast for the SINR results, in Figure 3.5 the individual data

showed a strong correlation whereas in Figure 3.6 where averaged data is used the

correlation is small.

This set of observations can be explained by noting that the eigenvalue spread is

the ratio of the largest eigenvalue to the smallest eigenvalue, and since the eigenvalues

represent a power with contributions from most if not all users' signal powers, the

spread has little or no individual information contained in it. Thus a plot using

average training time is better suited than one using individual training time, since

the average accounts for all the users. Conversely, the SINR is de�ned for one user

only, and so a plot of individual training time versus SINR is better suited than one

of average training time.
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Chapter 4

Hardware Design and System

Proposal

A prototype hardware system is proposed that will test the feasibility of a receive

array used for spatial multiplexing. Although simulations can provide valuable infor-

mation about a system, eventually the system will have to be built in order to verify

the simulation results and work out practical problems not experienced in the sim-

ulations. No amount of simulating can replace implementation, and the simulation

results described in Chapter 3 will complement the experience and results gained from

implementing the prototype. This chapter describes the components of the system in

detail and discusses relevant topics.

4.1 Overall System Design

The hardware system proposed is intended as a proof of concept for a multiuser system

using an antenna array to implement spatial multiplexing in the indoor environment.

The prototype implementation will have a data rate that is kept very low (in the

single kbps range) in order to simplify the hardware design and avoid any signi�cant

multipath delay spread. In other words the important concept to be investigated is
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the spatial processing and multiplexing. A number of aspects of the prototype will

be unrealistic: for a system to be useful it must have a larger data rate which may

induce intersymbol interference caused by delay spread, especially if the data rate is

greater than 1 Mbps; and the data-to-fading-rate ratio of the prototype will be very

low and this may preclude any realistic experiments on the tracking performance of

the array. However, having acknowledged these simpli�cations, the experience gained

from just the static multiplexing will be valuable.

The prototype will operate at a carrier frequency of 1.7 GHz. This frequency is

chosen in order to keep the array small and because future personal communication

systems (PCS's) will operate in this range. Figure 4.1 shows a block diagram of the

proposed system. It consists of a DSP in a host computer which will send data to

a number of portable transmitters through a cable. The transmitters will simultane-

ously operate and send the data over the wireless channel. The signals are received

by the array, and fed back into the DSP. Thus the system is somewhat academic

since the DSP knows what it will be receiving, but this simpli�es the training process

DSP

level
setter modulator power

amp

performance
metric

interface
logic A/D convertor

LP filter  &
buffer  &

level setter
demodulator

LO

evaluation board evaluation board

evaluation board

custom board

custom board

x8

x12

Figure 4.1: Prototype System Block Diagram

39



and eliminates the need for symbol synchronization problems to be solved. The DSP

will perform the adaptation to the current environment and then as the �gure shows

produce a performance metric such as the bit error rate using the converged weight

vectors. The modulation will be QPSK and demodulation will be coherent. This

form of demodulation is readily implemented due to the availability of a synchronized

carrier as described below. Each part of the system shown in the �gure will now be

discussed.

4.1.1 Digital Signal Processor and Host Interface

The DSP is a TMS320C30 which is a RISC processor with 32 bit oating point

arithmetic. This should be adequate for the task. The DSP is housed in a Macintosh

host computer, and the interface to the outside world is provided by the National

Instruments NB-DIO-32F host interface board which is also in the host computer.

The interface board has four data ports, each containing eight bits capable of input

or output. Two of these ports will be dedicated to sending out data. Since the data

symbols are intended for QPSK modulation they each contain two bits, and thus a

total of eight transmitters can operate simultaneously by having the interface board

send parallel data from the two interface ports.

4.1.2 Transmitter

The transmitter section takes the TTL level data from the host interface and trans-

mits it using a modulator and power ampli�er. The modulators are intended to be

localized, and the RF signal will be sent from each modulator to its antenna via

coaxial cable. The components of the transmit section are described below.

40



Level Setter

The output from the host interface is TTL and the corresponding voltage levels must

be set to those required by the modulator. A simple op-amp circuit is suggested that

allows the o�set and amplitude of the data signal to be controlled. The modulator

described in the next section requires a single-ended signal with an o�set of 3 Volts

and maximum peak-to-peak level of 2 Volts. If the maximum eight modulators are

used, since each transmitter is I/Q and thus requires two parallel bits, a total of

sixteen op-amp based level setters would be required.

Modulator

Two modulators were investigated for this system, the RF Micro Devices RF2422

2.5 GHz Direct Quadrature Modulator and the NEC UPC8104GR Upconverter And

Quadrature Modulator. Both are available in IC form. Since the RF2422 is single

stage whereas the UPC8104GR is two stage, the RF2422 was chosen for simplicity's

sake. It requires a single 5 Volt supply and has an on-chip RF quadrature network

(phase splitter) which can provide the correct quadrature signals over the frequency

range of the device. It can be purchased on a preassembled evaluation board, which

makes it easy to include in the system, i.e., it is intended that for this prototype, the

evaluation boards will be used directly, thus avoiding any RF design work (the same

applies for the power ampli�ers and demodulators). It has a 50 
 output.

The local oscillator (LO) input power is rated as low as {5 dBm (experiments

showed it could probably go even lower without problems). The LO for both the

modulators and demodulators will come from the same signal generator, using a

large signal splitter. With twelve demodulators and the maximum eight modulators

this requires a twenty way splitter, which will drop the LO by at least 13 dB. The

modulators will be located at a central location along with the signal generator, so

there will not be much loss getting the signal from the splitter to the modulators.
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Since a typical signal generator can produce +17 dBm, this leaves adequate signal

power at the modulator LO input.

By feeding all modulators and demodulators from the same LO generator, and

if they are both single stage, this will keep the system phase synchronized over ex-

tended periods of time. If more than one generator were used, they could be phase

synchronized using the synchronization circuitry provided with the generators, but

this method has a tendency to drift and this setup would then be unacceptable.

Power Ampli�er

The power ampli�er chosen is the NEC UPC1678P Medium Power Broadband Am-

pli�er. It has a rated saturated output power of 18 dBm at low frequency, and the

worst case output power at 1.7 GHz is taken to be 8 dBm. It uses a single 5 Volt

supply and has a 50 
 input and output. The evaluation boards are not available

for purchase, but the evaluation board mask is available and can be used to easily

construct the boards. The IC's are available in quantity and are free as samples.

4.1.3 Receiver

The receiver section takes the signals from the antenna elements and by way of twelve

I/Q demodulators converts the signals into complex baseband. The resulting 24

signals are �ltered and sampled before being sent to the DSP via the host interface

board.

Demodulator

Two demodulators were investigated, namely the NEC UPC2766GR Wideband IQ

Demodulator and the RF Micro Devices RF2903 Integrated Spread Spectrum Re-

ceiver. The RF2903 is two stage and the UPC2766GR is single stage; both are rated

to only 1 GHz. The UPC2766GR was chosen since it only requires one LO which
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simpli�es the system and eliminates the LO synchronization problem previously dis-

cussed. The device was tested at 1.7 GHz and found to operate nearly within speci�-

cation. The fact that the device operated well out of the rated frequency range may

be a chance occurrence, and it may be required to test many devices in order to get a

batch of twelve that function well at 1.7 GHz. As with the power ampli�er the assem-

bled evaluation board for this IC can't be purchased, but the board mask is available

so the boards can be constructed. The IC's are available free as samples. Similar to

the modulator, the LO power for this device can go down to at least {5 dBm without

any problem.

An issue with the UPC2766GR is that the circuit design provided for the eval-

uation board has a phase splitter used to generate the quadrature LO's necessary

for I/Q demodulation that is designed for a frequency of 440 MHz (the UPC2766GR

does not have an on-chip splitter like the RF2422). Since the circuit is to be operated

at 1.7 GHz in this system, the resulting LO signals would not be equal amplitude or

in quadrature, which would degrade the system performance since the signal proces-

sor requires true quadrature signals to perform optimal array processing. The phase

splitter network can be easily redesigned to operate correctly at 1.7 GHz.

Low Pass Filter, Bu�er, and Level Setter

The 24 output channels of the demodulators have to be conditioned before entering the

analog to digital converter (ADC). Most importantly, the signal from the demodulator

must be �ltered to reduce noise and to prevent aliasing. A simple �rst order low pass

RC �lter should be satisfactory, and the cuto� frequency is proposed to be around

5 kHz. The signal must also be bu�ered and have its o�set and amplitude adjusted to

match the ADC input range, which is zero and 20 Volts respectively. Everything can

be built around a single op-amp; thus there would be 24 op-amps in total required

for this section. If better �ltering is required a second order active RC �lter could be

used, but this would require at least two op-amps in order to accommodate the level

setting function as well.
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Analog to Digital Converter

An extensive search was conducted for a suitable ADC. The Analog Devices AD7874

was chosen. It has the ability to simultaneously sample and hold four analog inputs

and convert all four samples to 12 bit digital numbers at about 29 kHz. This maximum

sample frequency is more than adequate for the proposed system. It has a �10 Volt
input range and �5 Volt power supplies. A total of six of these ADC's would be

needed to simultaneously convert all 24 signals. The digital data is read out on a bus

one sample at a time after conversion is completed. This device has the need for an

analog reference input but the analog reference output of one of them can be used to

drive the remaining �ve inputs.

Interface Logic

The interface logic is designed to transfer the sampled signal data from the ADC's

to the DSP memory through the host interface board. Figure 4.2 shows the circuit

designed for this task. A brief explanation of its operation will be given here. There

are four eight bit wide ports on the NB-DIO-32F, and each port can be set to either

input or output. For this system two ports are set to input and two to output. Twelve

of the bits from the two input ports are used to read the sampled array data. The

sixteen output bits are reserved for the transmit data output. One more output bit is

necessary for the convert start signal to the ADC's, and so one of the \extra output

signal" bits on the NB-DIO-32F is used for this.

The interface logic is designed to transfer the data to the host interface board using

handshaking, and the NB-DIO-32F host interface is set to level mode handshaking.

This allows an unattended transfer to the DSP memory through the host interface;

the DSP can request a direct memory access (DMA) transfer to a designated memory

location and all 24 numbers will automatically appear there.

The ACK and REQ lines shown in the �gure are connected to the corresponding

handshaking bits on the NB-DIO-32F, and the CNV T line is connected to the above
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mentioned extra output bit on the NB-DIO-32F, to be controlled by the DSP in order

to start the ADC conversion.

The two 74161 counters and the 74138 demultiplexer act as a chip select decoder

to select which AD7874 is on the bus (the data bus is not shown). In the quiescent

state, the one-shot output Q is high. When the CNV T signal comes in from the

DSP, the 74161 counters are reset, the 74279 latches are reset and the AD7874's start

their conversion. As each AD7874 �nishes, it sets its corresponding latch, and once

all the AD7874's have �nished the conversion, the REQ goes low which triggers a

handshake read. The host interface acknowledges the bus read by setting ACK high

which increments the counters and triggers the one-shot. Note that the counters are

set up so that the divide-by-four output is used as the chip select since there are four

reads per AD7874. When the one-shot output Q goes high, REQ goes low and the

cycle is repeated until the host interface has transferred all 24 numbers.

4.2 Power Budget Analysis

A power budget analysis was completed to ensure the system will have an adequate

SNR at the input to the ADC [17]. Figure 4.3 shows a block diagram with the

parameters relevant to a power budget analysis shown. For the analysis only one

transmitter/receive element pair is considered, and the antenna gains are assumed

to be unity. As indicated in the modulator section above, the worst case output

power from the power ampli�er is taken to be 8 dBm. Assuming there are 20 m of

coaxial cable from the output to the transmit antenna and that the cable has a loss

of 1 dB/m, the radiated power is {12 dBm.

The desired SNR at the ADC is 20 dB which was chosen to ensure a low bit error

rate. As shown in the �gure, 1 m of coaxial cable will connect an array element to

the corresponding demodulator, with a loss of about 1 dB; the noise �gure of this

cable is then 1 dB as well. The demodulator has a rated noise �gure of 24 dB. The
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Figure 4.3: Power Budget Analysis of Proposed Prototype System

combined noise �gure of the cable and demodulator is found as

F = F1 +
F2 � 1

G1

(4.1)

where F1 = 1:26 is the noise �gure of the cable, G1 = 1=F1 is the gain (attenuation)

of the cable, and F2 = 251 is the demodulator noise �gure. Thus the combined noise

�gure is

F = 1:26 +
251� 1

1=1:26
(4.2)

= 316 � 25 dB : (4.3)

The noise oor for the antenna is the standard resistive thermal noise power spectral

density of {174 dBm/Hz (at Room Temperature). The bandwidth of the receiver

section is limited to 5 kHz by the lowpass �lter, and so the noise power of the receive

antenna becomes {137 dBm.

Since the input to the ADC must have an SNR of 20 dB, by the de�nition of

noise �gure the required SNR at the antenna must be 20+25=45 dB. The minimum

received signal power at the antenna then becomes

Pmin = 45 dB + (�137 dBm) (4.4)

= �92 dBm : (4.5)
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By using the free space attenuation for 20 m of AFS = �63:5 dB [18], the minimum

transmit power is

(Ptx)min = AFS + Pmin (4.6)

= 63:5 dB + (�92 dBm) (4.7)

= �27 dBm : (4.8)

From before, the worst case transmit power is {12 dBm which leaves about 16 dB

of margin in the transmit power. This margin could easily be used up by a fade or

shadowing e�ect, for instance, but this is inevitable and the array processing algorithm

helps to overcome this by optimally combining the array signals.

The above 20 m used to �nd the free space loss is used because this is likely

the typical maximum distance from a transmit antenna to the receive array; this is

also why the length of the cable from modulator to transmit antenna is set to 20 m.

Figure 4.3 also shows a Pmax = �55:5 dBm at the receive antenna, which corresponds

to the worst case transmit power of {12 dBm attenuated over 2 m of free space, the

attenuation of which is {43.5 dB. This would correspond to an approximate maximum

power received assuming worst case transmit power, if the transmit antenna were

placed close to the receive antenna.

The �gure also shows a GAGC =35 dB as a gain range of the demodulator. This

gain is set using an analog gain control input pin on the demodulator, and this is

set for maximum gain on the evaluation board provided with the demodulator. It is

suggested that the gain be left at maximum for all the demodulators in the system.

Measurements of the device indicated that output saturation began to occur at an

input RF power of about {20 dBm; thus demodulator saturation doesn't seem to

be a problem since with the rated saturation power of the power amp of 18 dBm

the received power would only be about {45 dBm over 2 m of free space. Even if

saturation occured, this probably wouldn't be much of a problem since the phase in

the QPSK modulated signal would still be available to the adaptive algorithm as a

signal characteristic to be used to provide spatial separation.
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4.3 Proposed Antenna Array

A physical design for the array has been proposed with a total of twelve elements. The

elements are designed to be uncoupled by about 20 dB which is intended to reduce

the fading correlation of the elements. Thus the probability that a given element is

in a fade does not depend on whether other elements are in fades. When elements

are combined for diversity, independent fading is optimal since any fading correla-

tion present among array elements increases the probability of having the combined

signal fade as a result of the elemental fading. Since the proposed array has indepen-

dent fading, the use of the independent fading model in the simulations described in

Chapter 3 is justi�ed. The elements in the proposed array are spaced about a half a

wavelength apart.
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Chapter 5

Future Work

This report provided a proposal for a prototype hardware system to investigate spatial

multiplexing using an antenna array, and results were provided from simulations of

the proposed array operation. The following are some suggestions for the direction

of future work in these areas.

5.1 Simulations

The simulations completed for this report assumed a at Rayleigh fading channel.

Recall that the simulator generates a matrix C whose elements are independent,

zero mean, complex Gaussian variable samples; this simulates the Rayleigh fading

model, in which the gain envelope is Rayleigh distributed and the phase is uniformly

distributed. The Rayleigh model is typically used for outdoor propagation, where no

line of sight between the transmitter and receiver exists. This is the motivation for

using zero mean random variables. The indoor channel is usually modelled with the

Rician fading model, where the addition of a direct path often found in the indoor

environment from transmitter to receiver adds a mean to the random channel gain;

the channel gain envelope becomes Rician distributed and the phase is no longer

uniformly distributed.
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The Rician model could be applied to an ideal uniform plane array1 by choosing

a complex value cmean;j for user j and adding cmean;j to each element of cj, which

from before is the propagation vector for user j. If this were done for each user j,

this would simulate a direct path from each user to the array. For the proposed array

described in Chapter 4, the mean channel gain from a given user probably isn't the

same for each array element as it is in the uniform plane array, and a more complex

model may be required to account for this.

The simulations described in this report were not designed to investigate the

tracking performance of the LMS algorithm for the array system, since the adaptable

weight vector wj for each user j was initialized to zero before adapting to each channel

matrix C. Thus the results reected acquisition performance. It would be valuable

to simulate the tracking abilities of the system; this would mean choosing a data-

to-fading-rate ratio to de�ne the fading rate of the system. The value of the ratio

would then be the number of symbols available to train with before a new matrix

C is generated, i.e., before one coherence time has elapsed and the channel has thus

completely changed. In a practical system, only a fraction of those symbols would be

available for a training sequence, since most symbols in a time slot are dedicated to

data. The value of wj for each user j would not be reinitialized when training begins

for a newly generated matrix C, but would be kept the same as when training was

stopped for the previous channel matrix.

5.2 Hardware

The hardware prototype will be built, although the design presented in this report

is only a suggestion for its construction. The main purpose of the prototype is to

examine the potential of static spatial multiplexing by itself, without complicating

factors such as dynamic environments and ISI being present. The low data-to-fading-

1A uniform plane array is de�ned to be an array of omnidirectional monopole elements equally

spaced in a planar matrix above a ground plane.
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rate ratio may make studying the e�ects of a dynamic channel on the acquisition

phase impossible, and realistic tracking experiments may be di�cult. Because of the

low symbol rate, accurately measuring the BER may require a length of time on

the order of hours (for the part of the BER curve where the BER is low), and the

propagation environment would have to be kept extremely stable since at 1.7 GHz it

doesn't take much movement, either by one of the antennas or by an object in the

channel environment, to radically change the propagation vector. Perhaps a better

measure of the performance after adaptation would be the mean square error since

this could be acquired in a shorter period of time. Ultimately, a full duplex system

should be constructed in order to test both array transmission as well as reception.

52



Chapter 6

Summary

The background theory for interference cancelling using an adaptive array was pre-

sented. The logical progression of this method to spatial multiplexing where a number

of mutual interferers are spatially separated and thus isolated using array process-

ing was then introduced. A number of array adaptation methods were described;

the LMS algorithm was chosen for the simulations described in this report due to

its computational simplicity. The results of a proof described in the literature were

presented, namely that for each antenna added to an array being used for spatial

division multiple access, one more degree of diversity is available to each user.

The simulations completed for this report were described. Their purpose was

primarily to investigate what a�ects the LMS algorithm training time for a static

environment. Speci�cally, the number of users was varied between two, four, eight

and twelve in order to examine the e�ect on training time that varying the numbers

of users has (the inter-user e�ects) and also what a�ects the training time for a �xed

number of users (the intra-user e�ects).

The results show that when varying the number of users, the received SINR dom-

inates, i.e., increasing the number of users typically decreases the SINR for a given

user, which slows down the convergence rate for the LMS algorithm. This result was

expected since adding more users increases the noise as seen by any one user.
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As for the intra-user e�ects, the received SINR dominates the training time. The

eigenvalue spread shows some correlation with training time, but the relationship is

not nearly as pronounced as for the SINR. Two other e�ects were examined, namely

the power spread (the variance of received powers for the various users) and the e�ect

of the orthogonality of the propagation vectors; neither of these factors showed any

e�ect on convergence speed.

A hardware prototype system design was given, with a detailed description of

each component in the system. The prototype is intended as a proof of concept of

a spatial multiplexing system using state of the art, readily available components.

Only the receive array half will be constructed, with the transmit side left for future

work. A twelve element array will be used, and a number of portable transmitters

will be available to provide the signals. A DSP will drive the system. It will send

out random data to be modulated and transmitted by QPSK. The signals received

by the array and subsequently demodulated will be sampled and fed back into the

DSP to be used in an adaptive algorithm with the data that was transmitted used as

the training sequence. After training, the converged weight coe�cients will be used

to obtain a performance metric, perhaps the mean square error.
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Appendix A

Correlation Between Training

Sequences

Because simultaneous training is used, the mutual correlation between the training

sequences becomes important since any correlation present will slow down the con-

vergence of the algorithm and may increase the misadjustment after convergence has

occured. In an experiment to investigate the correlation between any two of the 1000

symbol training sequences that were used for training, no signi�cant correlation was

found. These results will be described shortly, but �rst the random number generator

used for the simulations will be discussed.

The function rand() in Matlab uses the pseudorandom number generator described

by Park and Miller [19]. Speci�cally, the prime modulus multiplicative linear congru-

ential generator with multiplier 16807 and prime modulus 232�1 is used directly to

produce a pseudorandom sequence of uniform distribution and period 232�2. This

period (approximately 4:29�109) is signi�cantly larger than the periods of codes used
in present communications systems, and for practical purposes can be considered in-

�nite. For the simulation described in this report which is implemented in Matlab,

the amplitude of the output from rand() is shifted so that it's output range is centred

at zero; positive and negative samples are then mapped to �1 and +1 respectively
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to form bipolar bits for the training sequences. For multiple users being trained, two

samples from rand() are taken to form one QPSK symbol for the �rst user, then two

more samples for the next user, and so on, until all users have their �rst training

symbol. Then the process is repeated for all remaining training symbols.

From before, the inphase and quadrature bipolar bit components are, respectively,

an and bn. The training sequence for a given user can then be represented as

fa1 b1 a2 b2 : : : an bn : : : a1000 b1000g ;

which represents 1000 QPSK symbols since there are two bits per symbol. If sj(i) is

used to represent element i from the above training sequence for user j, the cross-

correlation between the sequences for user 1 and 2 is de�ned as

%1;2 =

2000X
i=1

s1(i)s2(i)

2000
:

Note that the correlation is normalized by 2000 so that if a sequence is correlated

with itself, the autocorrelation is unity, and cross-correlation between two sequences

will lie between positive and negative unity.

To investigate the correlation between training sequences in the simulation, 104

pairs of sequences were generated and their cross-correlation measured. The sequences

were generated exactly as in the simulation when there are two users present. The re-

sults, namely the mean, maximum, minimum, and standard deviation of the resulting

104 values, are shown in Table A.1.

Statistic Value

mean �2:50� 10�4

max 8:40� 10�2

min �8:40� 10�2

std. dev. 2:22� 10�2

Table A.1: Correlation Between Two Training Sequences (Statistics for 104 Trials)
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The mean correlation is extremely low, and will not a�ect the convergence of an

adaptive algorithm using these sequences. The maximum, which has the same mag-

nitude as the minimum, is about 300 times the mean value, but is still insigni�cant.

The standard deviation shows that the spread of the values around the mean is large

compared with the mean, but when considered in an absolute manner is insigni�cant.

Although the correlation is very low, some aspects of the sequences should be

considered. The pseudorandom number generator is seeded to a di�erent value each

time, which may mean the sequence taken for various simulation trials will occur in

vastly di�erent places in the entire sequence available. This correlation experiment

only considered a very small part of the entire sequence. There may be particular

sequences that could be chosen which would have have large cross-correlations, but

on average the correlation is probably small, as shown by this experiment.

Another noteworthy aspect is that this experiment involved the cross-correlation

between two sequences, whereas in the simulation up to twelve simultaneous sequences

are present, and the correlation among them all must be considered. Since the se-

quences are generated in parallel, i.e., the �rst element of all the sequences is found

before the second, etc., the correlation characteristics of this particular pseudoran-

dom generator may be di�erent depending on how many simultaneous sequences are

being used.

If simultaneous training of this type is used in a new commercial system design,

orthogonal training sequences could be used, but if applied to an existing system, the

sequences of symbols available for training may not necessarily be orthogonal. The

reduction in performance because of this must be accounted for when implementing

a SDMA system using simultaneous training.
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