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Abstract 
 
     This thesis focuses on evaluating an effective type of Position Location (PL) system 

for cellular phones. 

     Due to the inadequacy of existing Large-Scale-Fading (LSF) models, a new model is 

developed. This new LSF model introduces random changes called Splashes-Of-Change 

(SOC), in the root-mean-square delay spread of channel impulse responses over small 

regions of a cell. The new LSF model is called the SOC LSF Model (SOCLSFM) and 

includes propagation delay, path loss, exponentially distributed power delay profiles, 

and log-normal shadowing.  

     Strength-Of-Arrival (SOA) PL simulations were used to evaluate the SOCLSFM. 

SOA PL alone is often not sufficiently accurate because of the multipath. A multilayer 

Levenberg-Marquardt-trained feed-forward Neural Network (NN) was introduced and 

successfully improved accuracy compared to SOA PL. Impulse responses from the 

mobile to the base stations, as well as extracted features of impulse responses, are the 

inputs to the NN.  
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SOAŷ  the y coordinate of SOA PL estimate of MS. See Figure 4.2 

NNSOAy +ˆ  the y coordinate of the PL estimates of the integrated scheme.  
  See Figure 4.3 
 
 z the parameter of the z transform 

α  the exponential coefficient. See Equation (2.2) 

1α  the positive exponential coefficient 

1α ′  the exponential coefficient of first power delay profile.  
 See Figures (4.4) and (4.5) 
 

2α ′  the exponential coefficient of second power delay profile.  
 See Figures (4.4) and (4.5) 
 

3α ′  the exponential coefficient of third power delay profile.  
 See Figures (4.4) and (4.5) 
 

2,1α  the two possible solutions of the exponential coefficient.  
 See Equation (2.6) 
 

nα  the new exponential coefficient 

pa  1aa p = , old positive exponential coefficient 

kδ  error term for each output neuron. See Equation (F.4) 

ε  the mean error of PL estimation. See Equation (3.16) 

γ  the scalar size. See Equation (F.10) 

)(tQη  the quadrature phase component of a complex baseband Gaussian 
process. See Figure A.5 

 
 



 xx 

)(tτη  in-phase component of a complex baseband Gaussian process.  
  See Figure A.5 
 
λ  wavelength of light 

µ  the path loss coefficient 

π  Ludolphian number, 3.1415926…  

σ  standard deviation. See Equation (2.8) 

Hσ  the standard deviation of the height of one splash. See Equation (2.9) 

τσ  RMS delay spread. See Equation (2.5) 

)(yσ  activation function. See Equation (F.2) 

τ  the first moment of power delay profile. See Equation (2.3) 

2τ  the second moment of power delay profile. See Equation (2.4) 

∞  infinite 

% percent 

• +♦  • plus ♦ 

• - ♦  • minus ♦ 

• 
–  • divided by ♦ 
♦   

•∈♦  • belongs to ♦ 

•♦  • raised to the power ♦ 

•T  matrix transpose of • 

•<♦  • less than ♦ 

•   square root of •  

|•|  absolute value of • 

 [•♦] interval from • to ♦ 

[ ]•E    mathematical expectation of • 

→←•   by • transform 

∑•
b

a

  sum of • from a to b 

 



1 

 

Chapter 1 Introduction 

1.1 Background 

During the past few years competition among telecommunications industries has 

been very intense.  Mobile network operators are looking for new ways to improve their 

products and services and yet stay profitable. The operators compete with each other to 

provide customers with highly personalized service and in this context, cellular phone 

location systems have become a focus of intense research and development. 

A cellular phone location system has potential applications, which benefit both 

industry and customers. The potential applications of location-based services [Drane98] 

can be broadly classified into four major categories: location-based information, 

location-sensitive billing, emergency services, and location tracking. Figure 1.1 shows 

some of the Position Location (PL) applications under the four categories. 

 

 

 

 

 

Figure 1.1 PL-based applications 

The Enhanced 911(E-911) service, especially the location estimation, forms the main 

focus of this research. A recent study of wireless location by the State of New Jersey 

indicates that wireless E-911 calls accounted for 43% of all E-911 calls received during 

the trial [State of NJ97]. Location information for wireless E-911 calls permits rapid 

response which can help in situations where callers are disoriented, disabled, unable to 
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speak, or do not know their location [Caffery98]. 

Besides providing emergency services, the position location allows location-sensitive 

billing. The network operators provide differential tariffs depending on the location of the 

mobile. Location tracking is used to update personal location information, or the long-

term monitoring of mobile phone positions.  It also provides excellent input to the 

planning of the cellular network, for improving the network performance [Drane98]. 

Section 1.1 will briefly introduce the requirements of location applications, mobile-

aided and network-aided location techniques, three networked-aided basic existing PL 

techniques, the radio systems, and some problems existing in PL.  

1.1.1 Position Location Requirements 

It is always desirable to achieve the highest possible accuracy in location 

applications. However, the requirements in different applications may differ due to 

various reasons such as the cost and the technology. The emergency applications, such 

as E-911 and other applications based on location-sensitive billing would all require 

high accuracy. However, other location applications requiring lesser accuracy such as 

fleet management, can utilize lower-accuracy location techniques [Caffery98]. 

1.1.1.1 General FCC requirements for Enhanced 911 

The accuracy requirement of E-911 location service is an important area of research, 

and the impetus for the development of cellular location techniques comes from the 

accuracy requirement of E-911 services. 

In 1996, the US Federal Communications Commission (FCC) required that every 

wireless service provider including cellular, provide location information to 911 public 

safety services, Public Safety Answering Points (PSAPs). A directive (FCC Order 94-
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102) [FCC97] mandated two phases of implementation of E-911 technology by wireless 

service providers.  Phase II, beginning in October 2001, requires carriers to identify the 

location within 125 m at least 67% of the time [Koshima00]. 

The desired features of a cellular E-911 system are summarized as the following 

[Koshima00]: 

• the FCC requirement is met (<125 m accuracy for 67% of all measurements), 

• the coverage should be comparable to cellular systems, 

• seamless integration with existing Base Stations (BSs), 

• low-cost location receiver equipment, 

• expandable, scalable and reliable, and 

• an interfacing with existing E-911 terrestrial networks. 

1.1.1.2 Specific FCC requirements for mobile-aided and network-aided techniques 

A radio location system can be a mobile-aided PL system, network-aided PL system, 

or hybrid PL system [Zagami98]. 

In a mobile-aided PL system, the Mobile Station (MS) uses signals transmitted by 

the BSs to calculate its own position using a device such as a Global Positioning System 

(GPS) receiver embedded in the mobile handset. The drawbacks of this system include 

the high cost for developing a suitable low-power and economical integrated technology 

for use in the handsets, and the cost for deploying new handsets. 

In a network-aided PL system the BSs measure the signals transmitted by the MS 

and relay them to a location centre for processing. This has the advantage of not 

requiring any modifications or specialized equipment in the MS handset, thus 

accommodating the large pool of handsets already in use by the existing cellular 
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networks. Infrastructure required for implementation will not be prohibitively expensive. 

The hybrid PL system combines different aspects of mobile-aided and network-aided 

positioning architectures.  

The FCC later amended the location accuracy requirements for phase II to the 

following [FCC97]: 

 

 

 

Note that the accuracy requirement of a mobile-aided location solution is different in 

the FCC regulations from a network-aided. Because of the drawbacks of non-network 

technologies, cellular carriers generally favor the use of a network-aided approach. So 

the non-network technologies will not be discussed further. 

1.1.2 Methods of Network-Aided Position Location Techniques 

There are many economical PL systems, which are implemented based on the three 

basic existing network-aided PL methods: signal Strength-Of-Arrival (SOA), Angle-Of-

Arrival (AOA), Time-Of-Arrival (TOA) measurements, or their combinations 

[McGuire94]. The SOA technique will be discussed later in Section 1.2.2.  

1.1.2.1 Angle-of-arrival 

The AOA location method uses simple triangulation to locate the MS. The receiver 

BSs measure the direction of received signals (i.e. AOA) from the MS using directional 

antennas or antenna arrays. AOA measurements at two BSs will provide a position fix 

but the accuracy of the position estimation depends on distance and geometry between 

the MS and two BSs, as well as multipath propagation. As a result, more than two BSs 

• Mobile-Aided Solution 

50 m for 67% of the calls 

150 m for 95% of the calls 

• Network-Aided Solution 

100 m for 67% of the calls 

300 m for 95% of the calls 
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are normally needed to improve the location accuracy [Caffery98]. 

This method suffers in the indoor Non-Line-Of-Sight (NLOS) environment. 

Surrounding objects or walls usually block the Line-Of-Sight (LOS) signal path, which 

is the clear path from the receiver to the transmitter. As a result this method is useful for 

macro cellular cells, and may be impractical for micro cellular cells.  

1.1.2.2 Time-of-arrival 

The TOA method is based on estimating the propagation time of the signals from an 

MS to multiple BSs. Once the TOAs are measured, the distances between the MS and 

BSs can be simply determined by the radio speed (speed of light). The MS’s position is 

given by the intersection of the circles with BSs at the center once the radial distances 

are calculated [Caffery98].  

An extension of the TOA technique is the Time Difference of Arrival (TDOA), 

which measures the TDOAs of a signal received at multiple pairs of BSs. The MS’s 

position is given by the intersection of the hyperbolae. 

The TOA method requires high-resolution timing measurements. Compared to TOA, 

the advantage of TDOA is that it does not require knowledge of the transmit time. 

Instead, time synchronization among multiple BSs is required. However, for both TOA 

and TDOA, LOS propagation conditions are necessary to achieve high accuracy. 

1.1.3 Radio Systems 

Pagers, cordless and cellular phones are the common mobile radio systems. However, 

the cellular system is the only one that provides high quality service [Rappaport96]. 

With thousands of cellular phone calls going on at any given time within a city, it 

certainly would not be possible for everyone to talk on the same channel at once. 
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Therefore, several different techniques were developed by cellular phone manufacturers 

to assign the available bandwidth into many channels, each of which is capable of 

supporting one conversation. The technique that allows many mobile users to share the 

bandwidth is called multiple access. The cellular systems are based on three existing 

Frequency Division Multiple Access (FDMA), Time Division Multiple Access 

(TDMA), and Code Division Multiple Access (CDMA) techniques [Viterbi95].  

1.1.3.1 Frequency division multiple access 

FDMA assigns individual channels to individual users. Each user is allocated a 

unique frequency band or channel and these channels are assigned on demand for users 

who request service. During the period of the call, no other user can share the same 

frequency band. FDMA is used in all analog cellular systems. 

FDMA systems are often regarded as the least efficient cellular system since only 

one user can access a particular channel at a time. Analog signals are particularly 

susceptible to noise. As a consequence, analog cell phones must use higher power 

(between 0.3 and 3 watts) to achieve an acceptable call quality. Due to these 

shortcomings, FDMA is being replaced by newer digital techniques [Lee97]. 

 1.1.3.2 Time division multiple access 

TDMA systems divide the radio channel into time slots. In each slot only one user is 

allowed to either transmit or receive. Each user occupies a cyclically repeating time slot. 

Therefore, a channel may be regarded as particular time slot that reoccurs every frame. 

While TDMA is a good access technique, it is still somewhat inefficient.  TDMA has 

limited flexibility for varying digital data rates (high quality voice, low quality voice, 

pager traffic) or accommodations for silence in a telephone conversation. TDMA also 
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requires strict signaling and time slot synchronization [Lee97].  

1.1.3.3  Code division multiple access 

CDMA provides increased capacity [Gilhousen91] and has been selected as the 

Interim Standard 95 (IS-95) by the U.S. Telecommunication Industry Association 

[TIA/EIA99]. IS-95 systems encode each call as a coded sequence across the entire 

frequency spectrum. Each conversation is modulated in the digital domain, with a unique 

code (called a pseudo-noise code) that makes it distinguishable from the other calls in the 

frequency spectrum. Using a correlation calculation and the code the call was encoded 

with, the digital audio signal can be extracted from the other signals being broadcast by 

other phones on the network [Garg97].  

CDMA offers far greater capacity and variable data rates depending on the audio 

activity. CDMA has the complexity of deciphering and extracting the received signals, 

especially if there are multiple signal paths (reflections) between the MS and BS (called 

multipath interference). CDMA has many other advantages, but it still has some 

drawbacks. Its performance suffers from power variations with distance between the BS 

and MS, termed the near-far problem.  However, this problem can be overcome by 

CDMA power control [Rappaport96]. The near-far problem and power control concepts 

will be explained in Section 1.1.4. 

In this thesis CDMA is selected as an example of a cellular radio system in view of 

its popularity, efficiency and adoption as an interim industry standard. The most 

important aspect of CDMA for this thesis is the modeling of channel impulse responses, 

which is developed in Chapter 2.  
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1.1.4 Problems in Position Location Systems 

Sources of errors in wireless location systems include multipath propagation, 

multiple access interference, and variation of power with distance.  

1.1.4.1 Code division multiple access power control 

In CDMA systems, users create interference among each other in which strong users 

with higher received powers (short MS-BS distances) can overwhelm the communication 

quality of the weak users with lower received powers (long MS-BS distance) 

[Mizusawa96]. The non-zero correlation between their codes aggravates the interference.   

In order to combat the near-far problem, power control must be implemented in MSs. 

This power control assures that all transmissions from the MSs within the cell are 

received with the same signal power at the BS. An MS close to a BS will have a reduced 

transmitter power. Consequently, other BSs in neighboring cells will receive a low-

power signal from the MS.  

The power control scheme, which reduces the power transmitted by the MS to the 

neighboring BSs, however, makes it difficult for the neighboring BSs to find the 

distances between the MS and BSs when the SOA estimation scheme is employed. The 

PL estimation will be inaccurate. Thus the power control presents a major problem for a 

reliable and accurate geolocation of mobile phone users [Knopp95]. 

 1.1.4.2 Multipath 

     Multipath is the primary source of inaccuracy in the SOA or AOA estimation 

schemes [Caffery98]. Multipath effects may be caused by inhomogeneity of the 

atmosphere, reflections from natural barriers such as hills and cliffs, and man-made 

obstacles such as buildings, and tunnels. The total received field strength is the sum of 
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contributions arising from the individual multipath components (reflected, diffracted, 

and mixed). As a result, the received power is subject to rapid fluctuations, and several 

versions of same signal may arrive at different time instants. This causes inaccuracy in 

the PL estimation scheme.  

1.1.4.3 Multiple access interference 

In a CDMA system, many MSs in the system transmit signals in the same frequency 

band. This produces a high level of interference among the transmitted signals. A signal 

from an MS, which has to be located, can be obscured by the signals from other MSs, 

especially if the interfering signal strength is higher. In CDMA, multipath interference 

can only be rejected if the multipath arrives with a delay of at least one chip interval of 

the CDMA code.  Multipath arriving within the chip interval can introduce errors in PL 

estimation [Mizusawa96].   

1.2 Literature Review 

The work described in this thesis is multidisciplinary in nature borrowing techniques 

from various disciplines including estimation theory, communication theory, statistics, 

and digital signal processing. The radio channel fading models are reviewed first, 

followed by PL estimation using the SOA technique. Finally related applications of 

Neural Networks (NNs) are discussed.  

1.2.1 Radio Channel Fading Models  

Radio channel models traditionally focus on predicting the average Received Signal 

Strength (RSS) with respect to distance from the MS, as well as the variability of the 

signal strength in close spatial proximity to a particular location. There are two typical 

radio channel models, Large-Scale-Fading (LSF) and Small-Scale-Fading (SSF) models.  
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1.2.1.1 Large-scale-fading 

The LSF model predicts the mean signal strength for very large BS-MS separation 

distances (several hundred meters or thousands of meters) [Rappaport96]. This is 

important for predicting received power levels in cells. Adaptive antennas or power 

control may compensate for large-scale path losses. Also the LSF model represents an 

average signal power attenuation or path loss due to motion over large areas. This 

phenomenon is affected by prominent terrain contours such as hills, forests, billboards, 

and clumps of buildings. The receiver is often represented as being shadowed by such 

prominences. The statistics of the LSF model provides a way of computing an estimate 

of the path loss as a function of the distance [Liberti97].  

In general, current LSF models can be classified as outdoor or indoor fading models. 

Some commonly used outdoor fading models are the Longley-Rice model, the Durkin 

model, the Okumura model, the Hata model, the Walfisch and Bertoni model, and the 

wideband Personal Communications Service (PCS) micro-cell model [Rappaport96]. 

The outdoor fading model is dominated by the large-scale path losses. However this is 

not the case for the indoor fading model. The indoor fading model can only cover a very 

small area, and the variability of the environment is much greater for a much smaller 

range of MS-BS distances [Rappaport96]. The indoor fading model may include the 

partition losses, log-distance path losses, the Ericsson multiple breakpoint model, and 

the attenuation factor model [Rappaport96]. For simplicity of analysis, the LSF models 

developed in the thesis will be applied only in the outdoor fading environment.  

However, a variety of deficiencies are explored by studying these existing outdoor 

propagation models. They are explained in the following sections. 
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      The first deficiency is a lack of impulse responses in models. In a radio 

communication system, the channel determines how the electromagnetic propagation of 

a signal from a transmitter is received. It is possible to express the channel in terms of its 

impulse response, which is the signal that would be received if an impulse were to be 

transmitted. The impulse response characterizes the wideband radio system and contains 

all information, especially the multipath of the transmitted signal, necessary to analyze 

or simulate any type of radio transmission through the channel [Rappaport96].  

      The second deficiency is a lack of large-scale correlation among impulse responses. 

Large-scale correlation of impulse responses is caused by objects in the environment. 

For example, consider all the coefficients of all the BS-MS impulse responses both near 

to a building and far from a building. Those coefficients of the impulse responses where 

the MS is near the building will have a higher correlation compared to impulse 

responses where the MS is far from the building. 

The third deficiency is geographical dependence. A geographical database, which 

contains a map of buildings and terrain features, is required to develop accurate 

propagation models in specific regions. The computational expense is enormous and 

sometimes cannot be avoided. 

For example, the Longley-Rice model is based on a geographic database and is 

complex. It does not consider multipath and hence does not employ impulse responses in 

the model implementation [Rice67]. The Durkin’s Model is simple in the LOS 

environment, but in the NLOS environment, it is too complicated [Dadson75]. The 

Okumura and Hata models are simple. They are ideal in an urban area, but they do not 

employ impulse responses [Okumura68, Hata90].  Ray tracing techniques employ large-
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scale correlated impulse responses, but require a geographic database [Schaubach92].     

The existing outdoor LSF models mostly suffer from one or both of the problems of 

complexity and absence of impulse responses. A newly regenerated fading model, 

termed the Splashes-Of-Changes LSF Model (SOCLSFM), is based on the simple 

features of current outdoor LSF models, has impulse responses with large-scale 

correlations, but does not have the complexity of models with geographic databases. In 

Chapter 2, the SOCLSFM will be described in detail. 

1.2.1.2 Small-scale-fading 

The SSF model characterizes the rapid fluctuations of the RSS over very short travel 

distances or short times [Rappaport96]. Compared with the LSF model, the SSF model 

exhibits much more rapid fluctuations of received signals over a short travel distance or 

time. This fluctuation is caused by constructive and destructive interference between two 

or more versions of the same signal [Liberti97]. 

The theory of the SSF model and simulation results are described in Appendix A. 

Appendix A also contains the results of an investigation about the suitability of the SSF 

model for this thesis. The results of simulations show that there is no large-scale 

correlated multipath in the SSF. Therefore, an LSF model is more suited for an NN-

based location system which uses multipath properties to improve performance.  

1.2.2 Position Location Estimation using Strength-Of-Arrival Techniques 

PL using SOA is a well-known location estimation method that uses a known 

mathematical model describing the path loss attenuation with distance [Figel69, Hata80]. 

Since a measurement of signal strength provides a distance estimate between the MS and 

BS, the MS lies on a circle centered at the BS. By using multiple BSs, the location of the 
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MS can be determined from the intersection of the circles [Caffery98]. However, 

practical propagation conditions especially in urban area are far from ideal. Although the 

signal-level contours are no longer circles and are not centered at the BSs, they can be 

used for location estimation by finding the location that produces the best fit between the 

predicted and the measured value. 

Compared to other PL techniques, the SOA method has less accuracy than the time-

based and AOA methods. However, it is easier to implement and has the advantage of 

not requiring any significant modifications or specialized equipment in the MS handset 

or BSs. On the other hand, the AOA method requires antenna arrays to determine the 

AOA of the signal, and the time-based TOA and TDOA techniques need timing 

measurements. The SOA technique is relatively independent of the modulation and 

multiple access method used in the network. This makes it attractive for indoor and 

micro-cell location applications for low cost MSs [McGuire94]. In CDMA cellular 

systems, the MSs are power controlled to combat the near-far effect. Therefore, for SOA 

systems, it is necessary that the transmitted power of the MSs be known and be 

controlled with reasonable accuracy. IS-95 provides BSs with the ability to poll the MSs 

received powers. Due to these advantages, the SOA method is chosen for PL estimation. 

In Chapter 3 its performance and results of evaluation using the SOCLSFM is presented.  

For practical SOA location systems, LOS seldom exists between MSs in buildings or 

urban areas. In other words, there exists unknown signal path loss and multipath 

between the transmitter and receiver. Multipath fading and shadowing have major 

adverse effects on signal strength measurements. Additionally, the SOA method can 

only provide good performance in the region where the distances between the BSs is 
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small [McGuire94]. Therefore, a lack of precision with the SOA method is a problem. 

Poor accuracy associated with the SOA method is overcome by including an NN with 

the SOA method.  

1.2.3 Applications of Neural Networks 

“A neural network is an interconnected assembly of simple processing elements, 

units or nodes, whose functionality is loosely based on the animal neuron. The 

processing ability of the network is stored in the inter-unit connection strengths, or 

weights, obtained by a process of adaptation to, or learning from, a set of training 

patterns.” [Gurney96]. NNs are often good at solving problems that do not have an 

algorithmic solution or for which an algorithmic solution is too complex to be found. 

Individual neurons of an NN are connected from the input pattern to the outputs. 

Inputs and interconnection weights are processed by a summation function (typically a 

weighted summation) to yield a sum that is passed to a nonlinear function (typically a 

sigmoid nonlinearity). The output of the nonlinearity is the output of the neuron or nodes. 

An NN uses a training procedure to adjust the input weights on each neuron such that 

the output of the network is consistent with the desired output. The process consists of 

presenting the given data to each input node and the correct or desired response to each 

of the network's output nodes. Once the network is trained, input data, which the NN has 

not previously encountered, termed the test or blind data, is presented to the NN. The 

output node gives the desired estimate [Gurney96]. 

NNs are increasingly employed to solve real world problems of considerable 

complexity. Although one may apply an NN for interpretation, prediction, diagnosis, 

planning, monitoring, debugging, repair, instruction, and control, the most successful 
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applications of NNs are in categorization and pattern recognition, which includes speech 

and image processing. 

Basically, most applications of NNs fall into the following five categories [Zahedi93]:  

prediction, which uses input values to predict some output, classification, which uses 

input values to determine the class to which the input belongs, data association, like 

classification, recognizes data that contains errors, data conceptualization, analyzes 

inputs so that grouping relationships can be inferred, and data filtering, which smoothes 

an input signal. 

The NN may be a single layer or multilayer perceptron. Multilayer perceptrons are 

feedforward NNs, which are commonly used in speech and image recognition. Because of 

the presence of hidden layers, the multilayer perceptron has the ability to realize any 

arbitrary nonlinear input-output functional relationship governing the data. These types of 

NNs are trained off-line, using a large set of known input-output data. Once trained, the 

network weights are frozen and test data can be run through the NN [Scalero92]. In this 

thesis, PL estimation is based on an integration of a feed forward NN and the SOA 

method.  

Similar to speech or image processing using the NN, where the input pattern of 

speech or image data is fuzzy and unclear, and the input patterns to the NN obtained 

from the SOA method are also less accurate. By training the NN with input data, which 

may be inaccurate, and the output data, namely the MS’s location, which is accurate, the 

problem of location inaccuracy stemming from the input SOA estimate is overcome. In 

PL, obtaining a relationship governing the input, namely SOA, and the output data, 

namely the location of the MS, is generally non-linear. An NN, in view of its ability to 
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model non-linear relationships, is preferred to the traditional statistical technique, which 

cannot handle as easily non-linear relationships.  

The integrated SOA-NN technique will be covered in Chapter 4. 

1.3 Thesis Contributions 

The two main contributions of this thesis are, first, the development and evaluation 

of the SOCLSFM and, second, PL technique using a integration of SOA and an NN. 

1.3.1 Splashes-Of-Changes Large-Scale -Fading Model 

The existing LSF models are either complicated, missing impulse responses, unable to 

handle multipath, or dependent upon a geographic database. This thesis introduces the 

SOCLSFM, which is based on adding, step-by-step, several radio propagation effects and 

features into channel impulse responses. The Splashes-Of-Changes (SOC) effect, which is 

caused by delayed or reflected signals from multipath fading, is introduced in the last step. 

The SOCLSFM overcomes the deficiencies of the current LSF models. It is simple and 

geographically independent. 

1.3.2 Strength-Of-Arrival and Neural-Network Integrated PL Technique 

The SOA location estimates are improved by processing the SOA estimates by an 

NN. By using an NN, there is no need to use different methods depending upon the 

position of the MS. Although SOA and NN are two widely known techniques, 

integrating these two techniques has proved to be efficient in PL estimation. 

1.4 Thesis Outline 

The thesis is organized in the following way. In Chapter 2, a description of three 

concepts related to the SOCLSFM radio channel model and results of its evaluation are 

given. The five steps to create the SOCLSFM model and the results of evaluation are 
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presented in terms of both received power and Root-Mean-Square (RMS) delay spread. 

In Chapter 3, an SOA-based PL estimation model is developed so as to evaluate the 

SOCLSFM, and the detailed descriptions of the current SOA estimation technique and 

algorithms used in the PL system are provided. The location estimation performance of 

the SOA method is demonstrated using three criteria. Finally, the simulation results of 

the SOA technique, which show its poor performance, are given.  

In Chapter 4, the general NN structure as well as the NN learning and training 

algorithms are introduced, as well as how the SOA and NN techniques are integrated. 

The simulation results cover different NN architectures. The performance of the NN 

during training and testing are given. The accuracy of the integrated PL technique is 

investigated. Simulation results show the superior performance of the integrated scheme. 

In Chapter 5, the conclusion of the thesis is presented by summarizing the results of 

the proposed PL estimation scheme. Future work in the area of PL estimation is outlined. 
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Chapter 2 Splashes-Of-Changes Large-Scale Fading Model 

2.1 Introduction 

The rationale for a new and improved SOCLSFM was presented in Chapter 1. The 

traditional outdoor LSF models are realistic but very complicated. The SOCLSFM has 

sufficient complexity to exploit the large-scale correlation or multipath. 

This chapter introduces the SOCLSFM for the PL estimation and details of the 

techniques involved in the implementation of the model. The SOCLSFM is a 

comprehensive model generated in five steps: random coefficient values, propagation 

delay, exponential power delay profile and RMS delay spread, path loss and log-normal 

shadowing, and SOC in RMS delay spread. Implementation of each step is based on 

adding new features to the previous step. The Path-Loss-Based LSF Model (PLBLSFM) 

is created using only the first three of five steps of the SOCLSFM. The PLBLSFM is a 

simple model and is used only to show that the SOA-based PL estimation technique has 

been implemented correctly; the PL estimation error should be zero. 

Relevant literature and fundamental concepts employed in developing the 

SOCLSFM are described in the following sections of this chapter. 

2.1.1 Outdoor Fading Environment 

The outdoor fading environment forms the basis of the mathematical model 

discussed in Section 2.2. Generating outdoor fading models involves the following 

concepts: 

• Multipath refers to the various propagation paths, which the transmitted signal takes 

before reaching the receiver. The transmitted signal is subject to random phase, 

amplitude change and time delay as it traverses the various paths. 
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• Impulse Responses with random coefficients. 

• Propagation delay is the difference between the time instant a signal departs from a 

BS to the time instant the signal arrives at an MS. The time delay is directly 

proportional to the MS-BS distance [Garg96]. 

• Power delay profile  is a plot of the average power versus time of the impulse 

responses. 

• RMS delay spread is a measure of the width of the power delay profile.  

• Path loss denotes the average loss of signal power with the distance between the MS 

and the BS [Rappaport96]. 

•  Log-normal shadowing relates to vast changes in the received power at locations 

having the same MS-BS distance [Rappaport96]. 

• SOC is caused by obstacles in the BS to MS propagation path. It causes changes in 

RMS delay spread.  

These concepts of the outdoor fading models are presented in detail in Section 2.2. 

2.1.2  Multipath Propagation 

Multipath propagation or multipath occurs both in LOS and NLOS environments, 

although more often in NLOS. The radio signal from an MS is reflected from objects in 

the propagation path, and is scattered throughout the area. The scattering phenomenon is 

very complex. At the BS, radio signals from the MS arrive via a number of different 

paths. The actual signal picked up by the receiver antenna is a combination of all of 

these different signal components. It is therefore convenient to characterize a multipath 

radio signal in terms of its impulse response. The random phase and amplitude of the 

different multipath components cause fluctuations in the strength of the received signal. 
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Another effect of multipath is time dispersion caused by multipath propagation delay. 

Signal components are subject to different time delays as they take different paths from 

the transmitting to receiving station. A component taking a shorter path will arrive 

earlier than that taking a longer path. Multipath signals which arrive at the receiving 

station usually cause time dispersion [Garg96]. This is considered in Section 2.2. 

2.1.3 Discrete-Time Impulse Response 

A bandlimited sampled time-invariant channel impulse response can be expressed as 

a function of time, where the time delay axis is divided into equally-spaced time delay 

segments [Rappaport96]. The received signal in a multipath channel consists of 

components that are characterized by varying fading effects [Rappaport96]. A useful 

statistical description of the fading is given by the discrete-time power delay profile, 

which gives the average energy or power, in each impulse response coefficient. 

Furthermore, the discrete-time model allows for Digital Signal Processing (DSP) 

techniques. 

2.2 Development and Statistical Evaluation of the Model  

In this section, the development and statistical evaluation of the channel model is 

presented. The five steps of the model were summarized in Section 2.1. In this section, 

the model is described in detail. 

2.2.1 Random Coefficient Values 

Consider the signal propagation around a BS. It can be represented by a Two-

Dimensional (2-D) image as shown in Figure 2.1. A square grid with a width of 50 m 

denotes the spatial sampling of the 2-D signal propagated by the BS. The choice of a 50 

m separation distance, D, between two grid points (spatial sampling points) is a trade-off 
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between the total number of samples over a circular area of radius R, 2000 m, and the 

resolution. The larger the separation is between grid points, the smaller the total number 

of samples, and the poorer the resolution. However, the complexity of design is 

considerably decreased because of fewer sample points. 

 

 

 
 
 
 
 
 
 
 

 

Figure 2.1 The 2-D SOCLSFM solution 

Each grid point is the location where the propagated signal from the BS is received. 

A signal transmitted from the BS traverses various paths before arriving at the sample 

point and forms several signal multipath components (the reflected waves) received at 

different times. The propagation channel from the BS to this sample point is 

characterized by a discrete-time impulse response. An example of an impulse response 

with 16 taps of components is presented in Figure 2.1, in which the first three 

components have zero power received. The impulse response completely captures the 

behavior of the channel multipath effects.  
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Figure 2.2 Contour plot of mean received power with random coefficient values 

To develop the SOCLSFM, the first step is to produce random coefficient values at 

each tap of all the impulse responses throughout the cell. The number of impulse 

responses in a cell is 6561; see Figure 2.1. The mean received power is an important 

statistic, and is the sum of the squared magnitudes of the individual complex taps in the 

channel impulse responses. Figure 2.2 illustrates the contours of mean received power 

with random coefficient values generated for all 6561 impulse responses; the power 

received is expressed in dB. All of the important parameters employed in the generation 

of the impulse responses are listed in Table 2.1. N is the width, in samples, of each 

impulse response and is also the number of resolved multipath components. N is 

arbitrarily chosen to capture only multipath signals which travel a distance less than or 

equal to 2R. N is calculated by: 
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BS

It is assumed that all the impulse responses around the BS have the same number of taps, 

N. 

Table 2.1 Some parameters involved in the random coefficient values generation 

Parameters Values 

The velocity of light or radio signal (c) 2.998×108 m/s 

The bandwidth of CDMA (IS-95)(wc) [Rappaport96] 1.25 MHz 

The width of square grid (D) 50 m 

The radius of the circle range around BS (R) 2000 m 

The number of taps in impulse responses (N) 16 

 
2.2.2 Propagation Delay 

 

 

 

 

 

 

 

 

 

Figure 2.3 Contour plot of mean received power with propagation delay 

Propagation delay is a measure of the time required for the radio signal to travel 

from the BS to an MS and it characterizes the MS-BS channel propagation path. The 

MS-BS distance is a major factor which affects propagation delay. Longer distance 

results in longer time for signals to be received. The propagation delay is represented by 
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a time delay parameter in the each impulse response. An example of an impulse 

response is given in Figure 2.1, where the impulse response taps are zero over the initial 

time interval corresponding to the propagation delay. If the propagation delay is set to 

‘2’, the impulse response will be zero over the time interval [0 2]. As a consequence, the 

received powers of taps will be zero until the time instant, ‘2’.  

The second step in the procedure to generate the SOCLSFM is to zero the beginning 

of impulse responses according to the propagation delay. Another consequence of this 

step is that the mean received power, RSS, is lower at the cell boundary, as indicated in 

Figure 2.3. 

2.2.3 Exponential Power Delay Profile and Root-Mean-Square Delay Spread 

Power delay profile is generally represented as the plot of relative received power as 

a function of excess delay with respect to a fixed time delay reference [Rappaport96]. 

Excess delay is the relative delay of a multipath component as compared to the first 

arriving component [Rappaport96]. The time delay reference is time delay of the first 

arriving component, usually set to ‘0’. 

In practice, the power delay profile is obtained by averaging a large set of impulse 

responses. The typical power delay profile is exponential and is commonly used to 

model an outdoor environment (urban, suburban, and rural areas). The mean excess 

delay (the first moment of the power delay profile) and RMS delay spread are multipath 

channel statistics that can be determined from a power delay profile. The main 

parameter, namely the RMS delay spread, is the second central moment of the power 

delay profile.  

In micro-cellular channels, the value of the RMS delay spread is usually smaller and 
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rarely exceeds a few hundred ns. Seidel and Rappaport reported delay spreads in four 

European cities of between 50 and 300 ns [Rappaport96]. 

Typically, the RMS delay spread measured in an NLOS indoor environment is 

approximately 50 to 250 ns [Medbo99]. However, in an LOS outdoor environment (rural 

area), this value is reduced to approximately 10 to 100 ns. NLOS often occurs in 

wireless communication systems, and a value of 100 ns is generally assumed for the 

RMS delay spread, as it represents an average RMS delay spread for the indoor and the 

outdoor environments. An RMS delay spread of 100 ns was chosen for the LSF model in 

the outdoor urban area.  

An effective way to set the RMS delay spread in the exponential power delay profile 

is to set the parameterα , the exponential coefficient. The exponential coefficient α  is an 

analytical function of the RMS delay spread ( τσ ). The derivation of α  given the RMS 

delay spread, τσ , of 100 ns, proceeds as follows: 

Excess delay, k, is defined as the relative time delay of the kth multipath component 

as compared to the first arriving component (k = 0). 

The exponential power delay profile kP  is given:   
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The first moment of power delay profile (mean excess delay) is: 
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The second moment of power delay profile is: 
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The RMS delay spread is: 

       ( )22 ττσ τ −= .       (2.5) 

By combining Equations (2.2) to (2.5), two possible solutions, 2,1α , of the 

exponential coefficient may be found. The solutions are a function of τσ , as defined in 

Equation (2.6), 
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The detailed computation of 2,1α  is described in Appendix B. 

The positive exponential coefficient, 1α , is chosen. Thus, the exponential power 

delay profile is: 

    k
k eP 12α−= ,        (2.7) 

where k indicates the excess delay. Given cw×= ns100τσ , 1α  was found to be 2.09. 

Figure 2.4 is the plot of the power delay profile in Equation (2.7).  

 

 

 

 

Figure 2.4 Discrete-time exponential power delay profile ( 09.2:1α , τσ : 0.125) 
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In Appendix B, the derivation of 1α  was based on the z transform, where the 

variable k in the formulas given by Equations (2.3) - (2.5) defined on an infinite set. 

However, in a physical system, k takes on finite integer values, }1, ,1,2,0{ −NK , (N = 

16 in the simulation as indicated in Figure 2.4). 

RMS delay spread contours measure the time width of reflected waves, and are 

defined by Equations (2.3) - (2.5). It is probably the most important single measure for 

the time width of a multipath radio channel. 

The third step in the procedure to generate the SOCLSFM is to include the effect of 

the power delay profile. It is included simply by taking the power delay profile from 

Figure 2.4, shifting it in time, and multiplying by the impulse responses from step two. 

For example, in Figure 2.4, the value of Pk  at k = 0 multiplies the value of h(3) in Figure 

2.1; the value of Pk at k = 1 multiplies the value of h(4); this pattern is continued. 

Figures 2.5 and 2.6 present the results of mean received power, and RMS delay 

spread contours, respectively, after the inclusion of the exponential power delay profile. 

Comparing Figure 2.3 and Figure 2.5, it can be seen that the exponential power delay 

profile decreases the mean received power and it is evenly spread around the BS. RMS 

delay spread contours are computed using Equation (2.5). Figure 2.6 shows the RMS 

delay spread contours. The values of RMS delay spread are shown in the range from 0.2 

to 1.4. It shows a random and even distribution of RMS delay because the impulse 

responses are random. 
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Figure 2.5 Contour plot of mean received power after adding the exponential power 

                      delay profile 
 

 

 

 

 

 

 

 

 

Figure 2.6 Contour plot of RMS delay spread after adding the exponential power 
             delay profile 

 
2.2.4 Path Loss and Log-Normal Shadowing 

A theoretical propagation model is obtained by including the effect of path loss as a 

function of distance for the received signal power. Both theoretical and measurement-

BS
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based propagation models indicate that the average received signal power attenuates or 

decreases logarithmically with the distance. However, a model that takes only the path 

loss into consideration, does not account for the effect of the propagation environment.  

For example, clutter of objects along two different propagation paths having the same 

BS-MS distance may be vastly different [Rappaport96]. As a result, actual path loss for 

the two paths will be different. However, the path loss predicted by the formula based on 

the distance will be the same. To simulate the effect of clutter, log-normal shadowing is 

added to the path loss. The modified formula for path loss, which takes into account the 

distance as well as the effect of the environment (e.g. clutter of objects in the 

propagation path) is derived in terms of the path loss exponent (n) and a Gaussian- 

distributed random variable termed the log-normal shadowing ( σX ). The modified path 

loss formula in Equation (2.8) is a combination of the path loss formula relating path 

loss with distance and an additive term (which is the log-normal shadowing):  

( ) σX
d
d

ndPathLdPathL s
dBsdB +





+=

0
log10)( 0  .  (2.8) 

 sd  indicates the MS-BS separation distance. d0  denotes the close-in reference distance. 

( )sdPathLdB  is the path loss power in dB. n is the path loss exponent, which depends on 

the surroundings and obstacle type Xσ is a Gaussian random variable having a standard 

deviation of σ. 

As mentioned in Section 2.1, the large-scale path loss model without shadowing is 

referred to, in this thesis, as PLBLSFM. The variance of path loss depends highly on the 

environment. The path loss exponent, n, in the NLOS environment, outside of buildings 

often varies from 2.7 to 4. However, this value is smaller (1.6 – 1.8) in the LOS indoor 
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environment [Rappaport96]. Based on experiments, the standard deviation σ was found 

to be around 11.8 dB in urban areas [Rappaport96]. 

To evaluate the large-scale path loss model given by Equation (2.8), parameters in 

the formula are assigned reasonable values as listed in Table 2.2. The term 

)( 0dPathLdB is arbitrarily assigned a reference value of 0 dB.  

Table 2.2 Parameters selected in path loss and log-normal shadowing 

Parameters Values 

The reference distance (d0) 10 m 

The reference path loss at distance d0 ( )( 0dPathL dB )     0 dB 

Shadowing variance (σ ) 11.8 dB 

Path loss exponent (n) 4 
 
The fourth step in creating the SOCLSFM is to include the effects of path loss and 

shadowing. This is done by evaluating Equation (2.8) for ( )dPathLdB  to obtain specific 

numerical values for each location in the cell; shown in Figure 2.1. These numerical 

values are assigned to be the energy of each of the impulse responses obtained from step 

three.  

The numerical values of path loss, with shadowing, are shown in a contour plot in 

Figure 2.7. Setting the path loss does not change the RMS delay spread since the RMS 

delay spread is already normalized by the power. The RMS delay spread contours would 

be the same as Figure 2.6. The mean received power, which is displayed as contours, 

decreases logarithmically (obeying the path loss with distance formula) from the BS to 

the cell boundary with vastly different shadowing at each contour edge, as shown in 

Figure 2.7.   
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Figure 2.7 Contour plot of mean received power after adding path loss and 

                              log-normal shadowing 
 
2.2.5 Splashes-Of-Change in Root-Mean-Square Delay Spread 

The received signal may be subject to reflection, diffraction, and scattering from 

surrounding buildings or other obstacles. This phenomenon of so-called multipath 

propagation produces SOCs in the RMS delay spread. The LSF model is adjusted using 

the experimental data to include the SOCs in the RMS delay spread. This is the fifth and 

final step to generate the SOCLSFM.  

SOC refers to changes made to RMS delay spread contours. Previously generated 

RMS delay spreads are random. In step three to generate the SOCLSFM, the constant 

exponential coefficient, 1α , from Equation (2.7) was assigned to all the channel impulse 

responses. In the multipath environment, the signal transmitted from a BS is received by 

the MS via multiple propagation paths. The transmitted signal may encounter obstacles, 

and, as a result, the received signal is subject to distortion including multipath depending 

upon the position, size and shape of the obstacles. The larger the number of obstacles 

BS
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spread randomly around the BS, the greater the number of reflected waves received by 

the MS located beside the obstacles. Each SOC in RMS delay spread, which will be 

introduced in step five, corresponds to a set of obstacles in the propagation path.  

SOCs are put in by increasing the exponential coefficient, 1α , at the power delay 

profiles of the impulse responses over a small area of the cell called a “splash”. This 

effect, termed SOC, assumes that the various types of obstacles are randomly distributed 

in the cellular area. The SOC effect is simulated by assuming that 1α  is varied as a 2-D 

Gaussian random variable over the splash, which results in “bell-curve changes” in the 

RMS delay spread contours [Soma99]. The SOCs in RMS delay spread will not change 

the path loss generated in step four. 

 SOCs in RMS delay spread are generated using the following six elements: 

• Element 1: Choose the location of one splash 

Since an SOC occurs at random, a uniformly distributed random point, ( )rr yx , , is 

chosen inside a circular area of radius 2000 m for locating the center of the splash. 

• Element 2: Generate the height of one splash, H 

A 2-D bell curve's height, H, is a Rayleigh Random Variable (RV). The mean of the 

RV is set to 0.2=sH , [ ]HEH s = , where [ ]E  denotes mathematical expectation 

[Iyanaga80]. The standard deviation, Hσ , is derived from sH  using    

π
σ 2

sHH = .       (2.9) 

A sample point from the distribution of H is generated using a standard numerical 

technique [Knuth81]. 

• Element 3: Generate the width of one splash, W 
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The width of one splash, W, is a Rayleigh RV with a mean 10=sW  m. A sample 

point from the distribution of W is generated [Knuth81]. 

• Element 4: Generate the shape of the splash, ),( yxBc using rx , ry , H and W. 

The shape of the splash is based on a 2-D circular Gaussian probability density 

function, ),(, yxP yx , given by 
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where ( x , y ) are the coordinates of the center of the distribution and σ is the standard 

deviation [Iyanaga80]. Generalizing Equation (2.10), the shape of the splash is given by   
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where coordinates x and y are variables. The coordinates take values at grid points, 

which are 50 m apart, within the circular area of radius 2000 m.    

• Element 5: Generating the randomness of the splash, ),( yxRc using ),( yxBc  

),( yxBc  and ),( yxRc are used in combination to increase the RMS delay spread 

throughout the splash. The increases are statistically higher in the center of the splash, as 

determined using ),( yxBc , but the increases must also be random within the splash, as 

determined using ),( yxRc . ),( yxRc  is a set of sample points from independent 

Rayleigh RVs with mean ),( yxBc . 

• Element 6: Increasing the RMS delay spread of impulse responses in one splash  

By using the randomness ),( yxRc  from step five, with the previous RMS delay 
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spread ( sPD ),( yx ), a modified RMS delay spread ( sND ),( yx ) is obtained, 

),()),(1(),( yxPDyxRyxND scs += .    (2.12) 

In step three, the exponential coefficient as denoted using 1α . For clarity of 

presentation in this section, let 1αα =p . Based Equation (2.6), for the old exponential 

coefficient ( pα ), the new exponential coefficient ( nα ) can be expressed in terms of 

sND , as indicated in Equation (2.13): 
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For every sampling point with the coordinates (x, y), a modified impulse response 

( )(khn ) is generated using the corresponding exponential coefficients given by 

Equations (2.6) and (2.13).  )(khn , which relates to the power delay profile in Equation 

(2.7), is computed as 

( )khekh p
k

n
pn )(2)( αα −−= ,      (2.14) 

where )(khp is the previous impulse response, and k is the excess delay, 

}1, ,1,2,0{ −= Nk K . 

Elements 1 to 6 generate one SOC in RMS delay spread. However 10 SOCs are used 

in the SOCLSFM. Figure 2.8 shows the results of the 10 SOCs. 
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(a) Contour plots of ),( yxBc (Element 4)          (b) Contour plots of ),( yxRc (Element 5) 

 

 

 

 

 

 

 
(c) RMS delay spread contours for )(khp         (d) RMS delay spread contours for 

)(khn (Element 6) 
 

Figure 2.8 Generating 10 SOCs in the RMS delay spread with many stages 

The 10 bell curves for each ),( yxBc  are shown in Figure 2.8 (a), with varying 

widths, amplitudes and locations in the cellular area. Contour plots of ),( yxRc  are 

presented in Figure 2.8 (b), which shows the randomness in RMS delay spread changes. 

Figure 2.8 (c), the previously established RMS delay spreads from step four, is provided 

in contrast to Figure 2.8 (d). Figure 2.8 (d) contains the RMS delay spread contours with 

BSBS



 36 

 

the 10 SOCs applied in step five. Figure 2.8 (d) shows the final form of the RMS delay 

spread used in the SOCLSFM.  

The mean received power of an impulse response is modified by Equation (2.14). 

However, the mean received power must remain unchanged. By re-normalizing the 

mean received power of every impulse response, the mean received power contours 

remain the same shown in Figure 2.7.   

2.3 Summary 

In Chapter 2, five steps to develop a new LSF channel model called the SOCLSFM 

for the outdoor fading environment are presented. Impulse responses collect all the 

information used for describing the SOCLSFM inside a multipath environment. The 

model is developed sequentially in five steps. Although the previous four steps do 

provide enough information about the channel, they do not consider the SOC effects, 

which are critical to introduce correlation among impulse responses. Adding SOCs is a 

new approach in developing an LSF model. Chapter 3 presents SOA-based PL 

estimation using both the PLBLSFM and SOCLSFM.  
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Chapter 3 Evaluation of Fading Models using  

Strength-Of-Arrival Techniques 

3.1 Introduction 

In this chapter, the existing SOA technique is applied to evaluate the fading models 

(PLBLSFM, SOCLSFM) introduced in Chapter 2. The PLBLSFM and the SOCLSFM 

are used and the algorithms for the PL estimation using the SOA technique are 

introduced. For simplicity of analysis, it is assumed that the channel allocated to the 

users requesting the PL service is stationary. The SOA-based PL estimation is 

accomplished in two stages. The first stage involves the estimation of the received 

power by each BS through the use of a path-loss technique which computes the loss of 

power of the signal traversing a particular path. The estimated SOAs are transformed 

into range difference measurements between BSs. The range difference measurements 

form a set of difference equations. The second stage utilizes efficient algorithms to 

produce an unambiguous solution to this set of equations, from which the estimate of the 

PL is obtained. The performance evaluation of the SOA-based PL estimation scheme is 

presented. Both the PLBLSFM and the SOCLSFM are considered, and the limitations of 

using the SOA technique alone are discussed.  

Sections 3.2 and 3.3 introduce the model and algorithms respectively. 

3.2 Strength-Of-Arrival-Based Scheme 

The SOA scheme consists of the PLBLSFM and SOCLSFM fading models and the 

PL estimation. 

3.2.1 Splashes-Of-Change Large-Scale-Fading Models for Three Base Stations 

Assuming a 2-D spatial geometry, the signal levels from three BSs are described by 
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the PLBLSFM or the SOCLSFM. For simplicity, only the SOCLSFM is illustrated. 

Chapter 2 described the SOCLSFM centered around one BS. However, three 

SOCLSFMs are required, each centered around its respective BS; see Figure 3.1. All the 

SOCLSFMs are generally described in terms of fixed parameters which govern the 

statistical behavior of the random aspects of the SOCLSFM. However, the SOCLSFM is 

a time-invariant model and is location dependent. Many generated model parameters are 

random. As a result, at each time of generation of the SOCLSFM, a so-called unique 

propagation set is formed.  We restrict the number of BSs to the minimum required for 

an unambiguous PL estimation, namely three. Figure 3.1 shows the three fading models, 

each having a radius of 2000 m around the BS. The three BSs are presumed to be 

located at each corner of an equilateral triangle, whose coordinates are BS1 = (0 m, 0 m), 

BS2 = (0 m, 1500 m), and BS3= (750 m, 1299 m), respectively. Each side is 1500 m in 

length, and the stationary MS users are assumed to be located within a shaded circular 

area of radius 866 m centered at (750 m, 433 m). The center of the shaded area coincides 

with that of the triangle, as shown in Figure 3.1.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.1 The configurations of the PL model over three BSs 
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3.2.2 Development of Strength-Of-Arrival-Based PL Estimation Scheme  

An overview of the SOA-based scheme is as follows. The three impulse responses 

derived from the SOCLSFMs and the true MS location coordinates are fed to the SOA-

based PL estimation scheme. The output of the SOA-based PL estimator is the estimate 

of the location co-ordinates of the MS. The estimation error is computed from the true 

and the estimated location co-ordinates and the performance of the estimator is analyzed 

in terms of the mean-squared estimation error.  See Figure 3.2.  

 

 

 

 

 

 

Figure 3.2 SOA-based PL estimation scheme  

The detail of the SOA-based scheme is as follows: 

• Repeat the following steps for each BS with different MS’s relative coordinates, 

respectively: 

1. The signal propagation around three BSs is sampled uniformly in a 2-D space, 

where the sample points are located at the vertices of squares 50 m wide. An MS can 

be possibly located within the four sample points represented by the corners of the 

square. Impulse responses at these four sample points can be obtained from the 

SOCLSFM. 

2. The impulse response at the MS is computed from the interpolation of the 
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impulse responses at the corners of the square. 

3. The power of the impulse response is computed. 

• Using the set of difference equations governing the range difference measurements, 

three circles are drawn. 

• The points of intersection of the three circles can form one or two triangles. The 

estimate of the MS location is obtained weighting the centers of the triangles. 

 The SOA scheme is described in detail in Section 3.3. 

3.3 Mathematical Formulation of Strength-Of-Arrival-Based Scheme  

This section describes the mathematical formulation of the SOA-based PL scheme.  

3.3.1 Received Power Estimation using Three Propagation Sets 

3.3.1.1 Mobile at some random location 

It is presumed that the MSs are scattered uniformly inside a circle with a radius of 

866 m and centered at the coordinate (750 m, 433 m). Let the coordinates of the MS 

positions be indicated by ( )yx, . 

3.3.1.2 Measurement of received powers and development of range difference equations 

Using the mathematical model governing the signal path loss with distance, the three 

received powers, denoted P1, P2 and P3, are given by  

ndP −= 11 µ ,        (3.1a) 

ndP −= 22 µ , and       (3.1b) 

ndP −= 33 µ ,        (3.1c) 
 

where d1, d2 and d3 are the distances from the MS to three BSs; µ  is the path loss 

coefficient and n is the path loss exponent. 
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 In order to estimate the received powers from each of the three propagated signals, 

the impulse response is computed from an averaging of the impulse responses at the 

sample points of the square grid using coordinate shifting and interpolation. The 

absolute coordinates of the three propagation sets are centered at the three BSs, having 

coordinates (0 m, 0 m) at each BS, and three circles having a 2000 m radius, as shown in 

Figure 2.3. An MS has three different relative coordinates for each absolute coordinate. 

As illustrated in Figure 3.3, the MS’s relative coordinate for BS1 is )m100,m100( , the 

MS’s relative coordinate for BS2 is (-1400 m, 100 m), and the MS’s relative coordinate 

for BS3 is (-650 m, -1199 m). Three relative coordinates are used to identify the three 

different impulse responses, namely MS-BS1, MS-BS2 and MS-BS3. 

 

 

 

 

 

 

 

 

Figure 3.3 Relative coordinates of an MS  

As mentioned before, the impulse responses are identified at the grid points located 

at the vertices of a square 50 m wide. The impulse response of the channel at the MS, 

which is located inside the square, is computed by interpolation of the four impulse 

responses at the vertices of the square.   

BS3

BS1 BS2
(0,0) (0,0)

(0,0)

MS

(100,100) at BS1
(-1400,100) at BS2
(-650,-1199) at BS3
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Figure 3.4 An impulse response at an MS estimated in a square pattern 

Figure 3.4 shows the grid points located at coordinates (x1,y1), (x1+D,y1), (x1,y1+D), 

and (x1+D, y1+D). The impulse responses 1h′ , 2h′ , 3h′ , and 4h′ , are identified at these 

points respectively, where D is the width of the square (D = 50 m). The MS is located at 

the coordinate (x, y), and the distances from the MS to the four grid points are l1, l2, l3, 

and l4. 

The impulse response where the MS is at (x, y), hc, is obtained by interpolation as  

       44332211 hwhwhwhwhc ′+′+′+′= ,     (3.2) 

where w1, w2, w3, and w4 are the weights. The weights are computed from the distances 

to the four vertices, l1, l2, l3, and l4, and the width of the square, D, as follows: 
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where 44131211 ,...,,, aaaa are the 16 constraints that need to be determined to create the 

interpolator. The 16 constraints are obtained from the MS positions at the four grid 
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points, with four constraints on the weights at each point. The constraints at ),( 11 yx  are 

)2()()()0(1 14131211 DaDaDaa +++= ,    (3.4a) 

)2()()()0(0 24232221 DaDaDaa +++= ,    (3.4b) 

)2()()()0(0 34333231 DaDaDaa +++= , and    (3.4c) 

)2()()()0(0 44434241 DaDaDaa +++= .    (3.4d) 

The constraints at ),( 11 yDx +  are 

)()2()0()(0 14131211 DaDaaDa +++= ,    (3.4e) 

)()2()0()(1 24232221 DaDaaDa +++= ,    (3.4f) 

)()2()0()(0 34333231 DaDaaDa +++= , and   (3.4g) 

)()2()0()(0 44434241 DaDaaDa +++= .    (3.4h) 

The constraints at ),( 11 Dyx +  are 

)()0()2()(0 14131211 DaaDaDa +++= ,    (3.4i) 

)()0()2()(0 24232221 DaaDaDa +++= ,    (3.4j) 

)()0()2()(1 34333231 DaaDaDa +++= , and   (3.4k) 

)()0()2()(0 44434241 DaaDaDa +++= .    (3.4l) 

The constraints at ),( 11 DyDx ++  are 

)0()()()2(0 14131211 aDaDaDa +++= ,    (3.4m) 

)0()()()2(0 24232221 aDaDaDa +++= ,    (3.4n) 

)0()()()2(0 34333231 aDaDaDa +++= , and   (3.4o) 

)0()()()2(1 44434241 aDaDaDa +++= .    (3.4p) 

Equations (3.4a) to (3.4p) can be solved for 44131211 ,...,,, aaaa , and substituted into 

Equation (3.3) to get the weights, 
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2
3

2
2

4 −+= .      (3.5d) 

With the method to obtain one interpolated impulse response, ch , now described, this 

method can be repeated for all three BSs. In summary, the MS-BS1 impulse response, 

called 1h , can be obtained by: 

• using the MS's relative coordinates to get 1h′ , 2h′ , 3h′ , and 4h′ , 

• finding w1, w2, w3, and w4 from Equations (3.5a), (3.5b), (3.5c), and (3.5d), 

• finding ch from Equation (3.2), and  

• assigning this ch  to 1h . 

Similarly, the MS-BS2 impulse response, called 2h , and the MS-BS3 impulse response, called 

3h , are obtained. There detail graphs in generating these impulse responses are shown in 

Appendix C. From 1h , 2h , and 3h , their respective powers 1P , 2P , and 3P , may be obtained. 

Equations (3.1a), (3.1b), and (3.1c) can be transformed into three range difference 

equations, as expressed in Equations (3.6a), (3.6b), and (3.6c), 
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Since 321 and,, PPP  are known, assigning 
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Substitute Equations (3.7a), (3.7b), and (3.7c) into Equations (3.6a), (3.6b), and (3.6c) to 

get: 
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2 dad = ,        (3.8a) 
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3 dad = , and       (3.8b) 

2
2

2
3

2
3 dad = .        (3.8c) 

 Each of the above equations describes a circle, and the intersections are used to find 

the MS’s location. Ideally, the circles intersect at a point. Practically, the intersections 

form a region and the MS’s location is estimated from that that region. Section 3.3.2 

gives the details. 

3.3.2 Position Estimate of MS  

3.3.2.1 Solutions to the three range difference equations   

 

 

 

 

 

 

Figure 3.5 The MS-BSs related graph 
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The first of three pairs of circles considered is from BS1 and BS2. The coordinates 

of BS1, BS2, and the MS, and the length of one side of the isolates triangle formed by 

three BSs, d, are indicated in Figure 3.5. Equation (3.8a) represents a circle, between 

BS1 and BS2, whose equation is 

     ( ) ( ) ( ) ( ) ][ 222
1

22 000 −+−=−+− yxaydx .     (3.9) 

Simplifying we get 
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The coordinate at the center, ( )11 , cc yx , and the radius, r1, of the circle are given by 
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Similarly Equation (3.8b) represents a circle between BS1 and BS3, whose 

coordinate at the center ( )22 , cc yx  and whose radius, r2, are  
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and Equation (3.8c) represents a circle between BS2 and BS3 whose center, ( )33, cc yx , 

and the radius, r3 , are   
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The PL estimate of the MS is computed from the intersection points of the three 

circles. The estimate is a weighted average of these intersection points.  

3.3.2.2 Computation of the position location estimate of mobile station  

      How the three circles intersect greatly influences the PL estimate of the MS. 

Appendix D illustrates the influence of the points of intersection. In the case where the 

circles do not intersect, we can use an approximate method by generating a fictitious 

point of intersection by giving one of the received powers small increments until the 

circles intersect at a point, as explained in Appendix D. The PL estimate is the centroid 

of the triangle formed by the three points of intersection, 

321 3
1

3
1

3
1ˆ xxxx ′+′+′= ,      (3.14a)  

321 3
1

3
1

3
1ˆ yyyy ′+′+′= ,      (3.14b) 

where x̂ and ŷ are the coordinates of the PL estimate of the MS and ( ),, 11 yx ′′  ( )22 , yx ′′  

and ( )33 , yx ′′  are the coordinates of the points of intersection of the circles. 

3.4 Results of Evaluation 

      In the simulations in this thesis, four parameters relevant to the performance are: 

• tN , the total number of MS positions that are evaluated, 

• lN , the number of MS locations where the PL scheme could locate the MS, 

• oN , the number of outages, meaning the number of MS positions where the PL 

scheme failed to locate the MS, and 

• aN , the number of MS positions where the distance between the true and 
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estimated position is less than or equal to 125 m. 

Some important relationships are: 

             tol NNN =+ , and                                                                           (3.15a)   

             la NN < .                   (3.15b) 

In order to evaluate the SOA-based PL estimate, three performance criteria are applied. 

They are based on the FCC’s E-911 PL requirement (<125 m accuracy for 67 % 

measurements) described in Chapter 1.  

The first criterion is the mean error (m) of estimation (ε ): 

( ) ( )∑
=

+=
lN

i
iiii

l
yyxx

N 1

22 -ˆ-ˆ1ε ,      (3.16) 

where x̂ and ŷ indicate the coordinates of the estimate, and (x, y) are the coordinates of 

the true MS position.  

The second criterion is the percentage (%) of the time location estimate cannot be 

determined ( outageP ): 

%100×=
t

o
outage N

N
P        (3.17) 

The third criterion is the percentage (%) of estimations with errors less than 125 m 

( %P ): 

 %100% ×=
l

a

N
N

P        (3.18) 

The parameters used in the SOCLSFM are the same as those indicated in Chapter 2. 

Additional parameters used in the simulation are provided in Table 3.1.  
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Table 3.1 Parameters of SOA-based PL estimation 

Parameters Values 

The distance between BSs (d) 1500 m 

The square pattern length (D) 50 m 

Path loss exponent (n) 4 

Total numbers of MS locations simulated ( tN ) 50 

50=tN  MSs were chosen to evaluate the performance of the SOA-based PL 

estimation scheme with the SOCLSFM. 50 locations are enough to provide an 

acceptable variance on the performance criteria, as illustrated in Appendix E. 

The results of the evaluation of the SOA-based PL estimation using both the 

PLBLSFM and the SOCLSFM are illustrated in Figure 3.6 and Figure 3.7, where the 

random locations of 50 MSs denoted by “*”, the 50 estimated PLs denoted by “o”, and 

three BSs denoted by “BS”. The performance measures are presented in Table 3.2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6 The SOA-based PL evaluated using the PLBLSFM  
                                       (50 MS locations, Mean error: 1.9 m) 
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Figure 3.7 The SOA-based PL evaluated using the SOCLSFM  
(50 MS locations, Mean error: 176.3 m)  

Table 3.2 Performance measures for SOA-based PL evaluated using  
the PLBLSFM and the SOCLSFM 

SOA-based PL evaluated  
using the PLBLSFM 

SOA-based PL evaluated  
using the SOCLSFM 

=ε 1.9 m =ε 176.3 m 

=%P 100.0 % =%P 39.6 % 

=outageP 0.0 % =outageP 4.0 % 

 

The PLBLSFM is a fading model that allows for ideal performance. The SOA-based 

PL using the PLBLSFM gives good performance in all the locations. This demonstrates 

that the SOA-based PL estimation scheme is correct. Theoretically, in the absence of 

multipath and shadowing, a PL estimate with the PLBLSFM should give zero estimation 

error, that is in Figure 3.6 and Table 3.2, ε  should be zero. However, in the simulation, 

in some of the cases, the circles did not intersect, and an approximate estimate was used 

by creating fictitious points of intersection by increasing the received power. Although 
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the approximation resulted in a non-zero value of the performance measure, the error 

was small compared to the size of the cell.  

SOA-based PL estimation using the SOCLSFM gives worse performance compared 

with that of the PLBLSFM, as illustrated in Figure 3.7 and Table 3.2. However, 

propagation is subject to multipath as well as shadowing, as is commonly encountered in 

practice. Thus the SOCLSFM is a more realistic model.  

The results of the evaluation have shown that the SOA-based PL estimation using 

the SOCLFSM by itself cannot yield good performance. The expected accuracy of the 

estimate using this method does not meet the E-911 PL requirements described in 

Chapter 1. There is a need to introduce a new approach to improve the performance of 

the SOA-based scheme. 

3.5 Summary 

The SOA method is a well-known technique in estimating the PL in a wireless 

channel. This chapter theoretically describes the SOA-based PL estimation scheme using 

the SOCLSFM. Mathematical formulation and the results of the evaluation are presented. 

For completeness, PL estimated performance based on the SOA using both the 

PLBLSFM and the SOCLSFM are evaluated. The performance of the SOA-based PL 

scheme using the PLBLSFM was shown to be superior as the PLBLSFM represents 

ideal conditions. However, in practice, the SOCLSFM is more realistic. Large mean 

errors in the PL estimate using the SOCLSFM are caused by the multipath and 

shadowing. PL estimation using only SOA-based scheme generally gives poor 

performance, as shown by the SOA-based PL scheme using the SOCLSFM. There is a 

room for improving the SOA-based method.  
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Chapter 4 Position Location for Strength-Of-Arrival  

and Neural-Network Techniques 

4.1 Introduction 

In this chapter, an accurate PL estimation scheme that integrates SOA and NN 

techniques is presented. The proposed PL estimation scheme is a hybrid of the traditional 

SOA scheme and an NN-based estimation scheme. The radio channel model uses the 

SOCLSFM. The NN is a multilayer feed-forward network, and uses the efficient 

Levenberg-Marquardt (LM) algorithm for training. The input to the NN is formed of  

• PL estimates obtained using the SOA-based scheme with the SOCLSFM, 

• three impulse responses estimated from the SOCLSFM, and 

• features extracted from the impulse responses. 

The output of the NN is a PL estimate integrating the input data.  

An appropriate NN architecture was determined by essentially selecting different 

architectures and choosing the one whose performance was applicable to the problem. 

The number of hidden layers and the number of nodes in each hidden layer were varied, 

and the network configuration, which gave a minimum mean error in the PL estimation 

with respect to NN training phase, was selected. After the NN architecture was selected, 

two kinds of integrated schemes were evaluated by extensive experimentation using 

simulated training and test data, which contained various channel environments 

including multipath and shadowing.  

The simulation results show an improved performance of the proposed integrated 

scheme, especially when the propagation channel is subject to multipath and shadowing.  

4.2 Integrated Strength-Of-Arrival and Neural-Network PL Estimation 

The motivation behind the integration of the SOA and NN schemes is to exploit the 
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training abilities of the NN to overcome the deficiencies of the SOA scheme in handling 

different channel environments. This, hopefully, will improve the performance of the PL 

estimation scheme to a level acceptable to the FCC.   

In this section, the NN architecture, the training and training of the NN, and the two 

integrated schemes are discussed. 

4.2.1 Neural-Network Structure 

General NN architectures are composed of the following [Haykin99]: 

• Feed-forward connection 

• Lateral connection 

• Time delayed connection 

•  Feedback connection 

An NN with a feed-forward structure and at least one hidden layer has the ability to 

approximate any nonlinear functional relationship, if the data is sufficiently large and 

representative. In other words, a multilayer feed-forward NN can approximate any 

arbitrary input-output function.  

In view of this, a multilayer feed-forward NN is chosen for the PL estimation. The 

problem solved by the NN is to approximate a function that relates the inputs, namely 

features involved in the SOA estimation, and the outputs, namely the PL estimated by an 

integrated system. A multilayer feed-forward NN is shown in Figure 4.1. 

 
 
 
 
 
 
 

 

Figure 4.1 A fully connected multilayer feed-forward NN 
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In Figure 4.1, the neurons are grouped in layers. There are X input signals, Y hidden 

nodes, and two output signals. There may be many hidden layers between the input and 

output layers. In this figure only one hidden layer is shown. 

4.2.2 Neural-Network Training Methods  

The NN must undergo a training process before it can approximate a correct input-

output function, that is to say, the NN can generate a correct output to a given input only 

after it has learnt [Mitchell97]. The algorithm that is designed to adjust the weights of 

the network connection in the training process is called the NN training algorithm.  

4.2.2.1 Neural-network training algorithm — backpropagation  

The NN training process can be simply classified as unsupervised or supervised. 

Unsupervised training is used when a clear link between input pattern and ideal output 

values does not exist [Warner96]. Supervised training involves providing an NN with 

specific input and ideal output values and allowing it to iteratively reach a solution 

[Mitchell97]. In this thesis, since the ideal outputs, namely the true PLs of the MSs, are 

available during the training phase, a supervised training scheme is employed. 

Compared with other training methods, such as Hebbian training, optimal estimation and 

competitive training, backpropagation is the most commonly used supervised algorithm 

for a multilayer feed-forward network. Details of the backpropagation training algorithm 

are provided in Appendix F.  

4.2.2.2 Neural-network training algorithm — Levenberg-Marquardt 

Since the backpropagation training algorithm was first popularized, there has been 

considerable research on methods to accelerate the convergence of this algorithm 

[Hagan94]. Many algorithms focus on standard numerical optimization, that is, using 

alternative methods for computing the weights associated with network connections. The 
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most popular algorithms for this optimization are the conjugate gradient and Newton’s 

methods.  Newton’s method is considered to be more efficient in the speed of convergence, 

but its storage and computational requirements go up as the square of the size of the 

network [Hagan94]. The LM algorithm is an approximation to Newton’s method [Moré77]. 

The LM algorithm is efficient in terms of high speed of convergence and reduced memory 

requirements compared to the two previous methods. In general, with networks that contain 

up to several hundred weights, the LM algorithm has the fastest convergence [Hagan94]. 

This advantage is especially noticeable if accurate training is required, and hence is 

employed herein. The LM algorithm is presented in Appendix F. 

4.2.3 The Integration of Strength-Of-Arrival and Neural-Network Techniques 

The SOA-based PL estimation scheme, which is described in Chapter 3, is shown in 

Figure 4.2. Given an ideal fixed MS coordinate ),( yx , three SOCLSFM propagation sets 

are used to obtain three impulse responses (h1, h2 and h3). The impulse responses are 

used to obtain the PL estimate, denoted )ˆ,ˆ( SOASOA yx .   

 
 
 
 
 
 

 
Figure 4.2 Block diagram of the SOA-based PL scheme 

The integrated SOA and NN scheme is shown in Figure 4.3. Part of the integrated 

scheme is the SOA-based PL scheme. The impulse responses implicitly contain the 

features characterizing the channel. It was found that satisfactory performance could be 

achieved by extracting only a few features from the impulse responses. These features are 

the mean delay and power delay profile. Other features, such as RMS delay spread, are not 
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considered explicitly in integrated estimation scheme. Compared to having no feature 

extraction, the mean delay input to the NN provides a significant improvement in the 

performance of the integrated scheme, as described further in Appendix G. The greater the 

number of inputs to the NN, the more complex is the NN and, as a result, the longer it 

takes to train the NN. The integration of the SOA and the NN techniques is obtained by 

applying to the NN, the PL estimates from the SOA-based scheme, the mean delays, and 

the three channel impulses responses.  

 
 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.3 The first integrated scheme of SOA and NN techniques 

As shown in Figure 4.3, called the first integrated architecture, the NN has 53 inputs: 

• three 16-tap impulse response sets (h1, h2 and h3) from the SOA estimation inputs,  

• three mean delays ( 1d ′ , 2d ′  and 3d ′ ) associated with the impulse responses, and  

• the coordinate of the PL estimate using the SOA scheme , )ˆ,ˆ( SOASOA yx . 

The NN outputs are the coordinates of the PL estimates of the integrated scheme, 

denoted )ˆ,ˆ( NNSOANNSOA yx ++ . Later in this chapter, there are further references to Appendix 

G and Appendix H; these appendices contain results for this integrated architecture. 

     Figure 4.4 shows the second integrated scheme which was considered. There is a 
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block which accepts three impulse responses, and puts out power delay profile. The 

details of this block are shown in Figure 4.5, where 1α ′ , 2α ′ , and 3α ′  are the 

exponential coefficients of each power delay profile. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 The second integrated scheme of SOA and NN techniques 

 

 

 

 
Figure 4.5 Using h1, h2 and h3 to calculate power delay profile 

The NN as shown in Figure 4.3 and Figure 4.4 is a multilayer feed-forward NN, 

which employs LM algorithm for training. Figure 4.6 shows the NN architecture. It has 

one input layer, one hidden layer, and one output layer. The hidden and output layers 

each have neurons. Each neuron is comprised of a set of weights, summers, and transfer 

functions. The weights are denoted by { )( p
jiw }. The outputs of the summers are passed to 

nonlinear transfer functions. A tangent sigmoid type nonlinear function is employed 

herein. The outputs of the hidden layer’s nonlinear blocks are fed to the neurons in the 

output layer. There are two neurons in the output layer and the transfer function is linear.   
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Figure 4.6 The multilayer feed-forward NN 
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The subscripts p, i, and j identify pattern, layer, and node, respectively. X denotes the 

number of the inputs, which in our case is 53.  Y is the number of neurons in the hidden 

layer. The input pattern of the NN is denoted as )( p
ix . The output of a summer and a 

transfer function block are denoted )( p
iS  and )( p

ia , respectively. The desired network 

output is expressed as )( p
id .  The two errors at the output of the network are 1e and .2e  

The backpropagation and LM algorithms are described in Appendix F. 

The training of the NN proceeds as follows [Scalero92]: 

• Step1: Initialize the weight vectors )( p
jiw  randomly according to the Nguyen-Widrow 

algorithm [Nguyen90], described in Appendix G. 

• Step2: Run a training pattern through the network. 

• Step3: Evaluate the error signals and use them in the backpropagation algorithm.  

• Step4: Update the weight vectors )( p
jiw  using the LM algorithm. 

• Step5: Repeats step 2 to 4 for all the input and output patterns in the training set. 

Simulation results of the proposed integrated scheme are presented in Section 4.3.  

4.3 Performance Evaluation 

 The size of the network depends on the number of layers and the number of neurons 

per layer. For obtaining the best performance, an optimal number of hidden layers and 

neurons per hidden layers must be determined. The NN training and the evaluation of the 

proposed scheme are given in Section 4.3.1, Appendix G, Section 4.3.2 and Section 4.3.3. 

4.3.1 Determination of Optimal Size of the Neural-Network  

The number of hidden layers, the number of neurons in each layer, the type of 

transfer function, the connections between layers, and the connection weights, determine 
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the architecture of an NN. The architecture which yields the best performance depends 

on the type of problem handled by the NN. For example, a 21–15–3 network, with 21 

inputs, 15 neurons in the hidden layer, and three outputs, is the best architecture for 

solving the Cholesterol data set problems [Demuth97].  

The performance of the NN is evaluated using the mean error performance criteria 

described in the section on the SOA scheme. It is the average error distance between the 

estimated locations from integrated scheme and the true MS locations. A series of 

experiments were performed to determine the mean error for different NN sizes. As 

random initialization of the weights is employed, the average performance of the NN 

algorithms is evaluated by using several different sets of initial weights and biases. For 

each NN size, eight different experiments were performed with randomly chosen initial 

weights. Eight experiments were found to be sufficient to obtain an acceptable 

performance in terms of the mean variance of the mean error, as shown in Appendix G.  

Table 4.1 The mean error – average over eight experiments for each NN architecture 

The number of   
hidden layer(s) The architecture Mean error (m) 

Zero 53–2 82.2 
53–5–2 77.8 

53–10–2 75.6 

53–20–2 70.5 

53–25–2 72.3 

53–30–2 73.8 

53–50–2 78.7 

 One 

53–100–2 85.3 

53–20–15–2 236.46 
          Two 

53–30–20–2 182.56 
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Table 4.1 provides the mean errors for the NNs with zero, one, and two hidden 

layers and a variable number of neurons in each layer. The NN is presented with 

identical input patterns for each of the chosen architectures. The input patterns to the NN 

were identical for each experiment associated with a given NN architecture. The number 

of input patterns presented was 1500 and its justification will be given in Section 4.3.2.  

From Table 4.1, it is obvious that the mean errors are relatively small with one 

hidden layer. With one hidden layer, the error reaches a minimum value when there are 

20 neurons in the hidden layer, also as shown in Figure 4.7. Additional results for 2, 5 

and 10 hidden layers are given in Appendix G. It is for this reason that the number of 

hidden neurons, Y, is set to 20 and the evaluation of the proposed scheme is based on the 

53–20–2 NN of the first integrated scheme shown in Figure 4.6 and Figure 4.3. 

     

 

 

 

 
 
 
 

 
 
 

 
Figure 4.7 Mean error with the integrated scheme and one hidden layer  

4.3.2 Neural-Network Training 

The multilayer feed-forward NN with one hidden layer, 53 inputs and two outputs is 

trained by presenting sufficiently large and representative patterns. The patterns were 
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split into training and test patterns. The NN was trained with training patterns, that is to 

say, the network weights were determined using training patterns. After the NN was 

trained, its performance was evaluated using the test patterns, which were not presented 

during the training phase. The details about the training patterns are given in Appendix 

H. The number of training patterns, TN, was 1500. Having TN greater than 1500 did not 

significantly improve the performance, while less than 1500 patterns degraded the 

performance.   

The performance measures employed in the NN training are the same as those used 

in the SOA-based scheme described in Chapter 3. The performance measures include the 

mean error, denoted ε, the percentage of errors less than 125 m, denoted P%, and the 

outage of the PL estimation scheme, denoted Poutage. The performance measure is given 

in terms of an average over all the patterns rather than in terms of the estimation error 

for each individual pattern. 

The training phases of the first and second integrated schemes are described in 

Sections 4.3.2.1 and 4.3.2.2, respectively.  

4.3.2.1 The training phase of the first integrated scheme 

The training patterns were applied to the first integrated scheme shown in Figure 4.3, 

and the results are shown in Table 4.2.  

Table 4.2 The comparison of the training performance of the SOA-based scheme and  

the first integrated scheme  

Performance measures of  
the SOA-based scheme  

Performance measures of   
the first integrated scheme  

=ε 175.9 m =ε 71.6 m 

=%P 36.0 % =%P 80.1 % 

=outageP 1.9% 
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Also illustrated in Table 4.2 is the performance of the traditional SOA-based scheme. 

Table 4.2, clearly shows the superiority of the first integrated scheme.  

4.3.2.2 The training phase of the second integrated scheme 

The training patterns were applied to the second integrated scheme shown in Figure 

4.4, and the results are shown in Table 4.3. Also, the performance of the traditional 

SOA-based scheme is presented. 

Table 4.3 The comparison of the training performance of the SOA-based scheme and  

the second integrated scheme  

Performance measures of  
the SOA-based scheme  

Performance measures of   
the second integrated scheme  

=ε 175.9 m =ε 66.1 m 

=%P 36.0% =%P 85.5 % 

=outageP 1.9% 

 
Similarly, Table 4.3 shows the superiority of the second integrated scheme. 

Comparing Table 4.2 and Table 4.3, the PL performance is improved when the second 

integrated scheme is employed. 

4.3.3 Position Location Accuracy of the Integrated Techniques  

Once the NN’s training phase is completed, the trained NN may be used to estimate 

the PL when input data not seen during the training is presented. During the testing 

phase, the NN is presented with TM random sets of inputs, the true MS positions. TM is 

much less than the number of training patterns TN. Unlike the training phase, the testing 

phase does not involve known outputs, namely the true PLs of the MSs. However, 

during the testing phase, the NN is presented a reduced number of similar inputs, namely 

the PL estimates using the SOA, the impulse responses or power delay profiles, and the 

mean delays. The outputs are the estimated PLs of the MSs. The test size, TM, is selected 
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to be 50. This size is determined so that the variance of PL estimates is sufficiently small, 

as described in Appendix H. 

 

 

 

 

 

 

 

 

 

Figure 4.8 PL results of the SOA-based scheme  
                 (50 MS users, Mean error: 173.6 m) 

Sections 4.3.3.1 and 4.3.3.2 present the results obtained from the first and the second 

integrated schemes, respectively. The accuracy improvement is discussed in Section 

4.3.3.3. For the SOA-based scheme, Figure 4.8 indicates the random locations of 50 

MSs, the 50 estimated PLs, and three BSs. This figure is presented for evaluating the PL 

performance of the SOA-based scheme. The same MSs’ locations, shown in Figure 4.8, 

are used to test the first and second integrated schemes. 

4.3.3.1 The performance of the first integrated scheme  

The performance of the first integrated scheme is evaluated by simulation. Figure 4.9 

indicates the 50 random PLs of the MSs, and the corresponding estimated PLs using the 

first integrated scheme. For both the SOA-based scheme and the first integrated scheme, 

Table 4.4 provides a summary of the performance measures of 50 MS locations.  
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Figure 4.9 PL results of the first integrated scheme  
         (50 MS users, Mean error: 74.4 m) 

Table 4.4 The performance comparison of the SOA-based scheme  
and the first integrated scheme 

 

SOA-based sche me First integrated scheme  

=ε 173.6 m =ε 74.4 m 

=%P 35.4 % =%P 81.2 % 

=outageP 4.0 % 

 
4.3.3.2 The performance of the second integrated scheme  

Similar to the previous simulation results, Figure 4.10 provides the true locations and 

the location estimates of the second integrated scheme. Table 4.5 shows the accuracy 

improvement of the second integrated scheme, compared to the SOA-based scheme.  
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Figure 4.10 PL results of the second integrated scheme 

        (50 MS users, Mean error: 65.8 m) 

Table 4.5 The performance comparison of the SOA-based scheme and  
the second integrated schemes 

SOA-based scheme  Second integrated scheme  

=ε 173.6 m =ε 65.8 m 

=%P 35.4 % =%P 85.4 % 

=outageP 4.0 % 

 
4.3.3.3 The accuracy improvement in the integrated techniques 

Outage occurs in all the simulations. For a particular scheme, outage is the number 

of MSs which cannot be located, divided by the number of successful estimates. Poutage 

in Tables 4.4 and 4.5 is 4.0%, which implies that two of 50 MSs cannot be located. For 

these two MSs, both the SOA-based scheme and the integrated schemes fail to estimate 

their PLs. As indicated in Figures 4.8, 4.9 and 4.10, the locations MS24 and MS46, could 

not be estimated. 
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From the results presented in Section 4.3.3.1, the first integrated scheme has superior 

performance compared to the SOA-based scheme. In Table 4.4, the first integrated 

scheme has a mean error,ε , which is 57% less than that the SOA-based scheme. The 

first integrated scheme also has a 46% increase in the number of MSs within 125 m of 

the true MSs locations ( %P ). This shows that the first integrated scheme, when 

implemented with a properly trained NN, meets the FCC requirements for an E-911 

system. If we zoom in on individual MS locations, for most of the MSs such as MS37 in 

Figure 4.9, the estimates deviate slightly from the true PLs. As shown in Figure 4.8 and 

Figure 4.9, the deviation in the estimated location of MS37 is smaller for the first 

integrated scheme compared with the SOA-based scheme.  

Similar to Section 4.3.3.1, the results of evaluation of the second integrated scheme 

are presented in Section 4.3.3.2. Compared to the SOA-based scheme, Table 4.5, 

indicates an improvement of 62% inε , and a significant improvement in %P  of 50%. 

Figure 4.8 and Figure 4.10 also show this improvement. The PL estimates are very close 

to the actual in most cases.  

The second integrated scheme has better performance than the first integrated 

scheme, as shown in Figures 4.9 and 4.10. Comparing the results presented in Tables 4.4 

and 4.5, the performance improvements measured in terms of ε  and %P  are 8.6 m and 

4.2%, respectively. This shows conclusively that the second integrated scheme is 

superior to the first.  

4.4 Summary 

In this chapter two novel integrated PL estimation techniques based on combining 

the traditional SOA-based method and the NN technique are presented. The NN 
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structure, the training strategy, and the network training algorithms are explained. The 

experimental procedure to determine the NN size is given. Simulation results of the NN 

training phase associated with the integrated schemes are given. The results of the 

training as well as the test phases are presented. The performances of the first and 

second integrated scheme are investigated. The results show that the power delay 

profiles are the preferred input to the NN, compared to the alternative, using impulse 

responses. Since RMS delay spread is part of the power delay profile, it is expected that 

including RMS delay spread as an input to the NN will not significantly improved the 

performance.    

Based on the simulations using the SOCLSFM, the proposed integrated schemes 

show superior performance in a multipath environment and meet the FCC requirements. 
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Chapter 5 Conclusions 

5.1 Conclusions      

A novel scheme to estimate the location of a mobile station is proposed, as well as a 

new radio channel model, the SOCLSFM, to evaluate that scheme. The scheme 

integrates the traditional SOA-based estimation and an NN with a view to overcome the 

poor performance of the traditional scheme.  

The first contribution of this thesis is the SOCLSFM. It is a relatively simple radio 

channel model which accounts for path loss, shadowing, an exponential power delay 

profile, propagation delay, and RMS delay spread. The most important feature about the 

model is that it includes SOC in RMS delay spread. The SOC introduce correlation 

among impulse response coefficients and thus the SOC provides valuable information 

for an NN. This model was the foundation for comparing the SOA-based PL estimation 

scheme with the integrated SOA and NN scheme. 

The second contribution is the combined SOA and NN scheme. The proposed 

integrated scheme is shown to meet the FCC requirements based on extensive simulation. 

Besides the SOA-based estimates, the NN is presented with the channel characteristics 

including its impulse response and mean delay. Thanks to the ability of the NN to learn 

from examples, various signal propagation characteristics of the channel, especially 

those affecting the performance of the SOA, the proposed scheme overcomes the 

inaccuracies in the SOA estimates in the face of channel variations. Furthermore, the 

RMS delay spreads of the SOCLSFM provide additional information in improving the 

integrated PL scheme accuracy. The proposed scheme presents a new approach to 

wireless service providers using CDMA technology to meet the FCC E-911 regulation. 
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5.2 Future Work 

The SOCLSFM used in this thesis puts in only increases in the splashes of RMS 

delay spread. However, some decreases could also be made.  

Improving the channel models or using channel information that better represents the 

real-world mobile radio channel would provide a more realistic simulation. 

Besides the multipath and shadowed environment features of the SOCLSFM, which 

appear to be major limiting factors in the performance of the SOA-based estimation, 

other factors that affect the inaccuracies need to be addressed. One such factor is the 

type of solution of the SOA equations. 

Since the training of the NN directly affects the performance of the integrated 

scheme, it is important that an appropriate training algorithm be employed. Although the 

traditional LM training algorithm has proven to be effective in this thesis, it may be 

beneficial to investigate other algorithms, especially those proposed by Bogdan M. 

Wilamowski and Yixin Chen [Wilamowski98]. In a one hidden layer NN, those 

algorithms are more efficient and require less computation memory to converge 

compared to the LM algorithm. 

Examples presented to the NN during the training and the testing phases are crucial 

to the performance of the estimation scheme. A technique to select a sufficient and 

representative data set should be the focus of further study. A smaller representative set 

may result in poor performance, while a large representative set would require a longer 

time to train.   
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Appendix A: Limitations of SSF Model PL Solution 

 
A.1 Introduction 

Compared with the LSF model, the SSF model has much more rapid fluctuations of 

received signals over a short travel distance or period of time [Rappaport96]. These 

fluctuations are caused by constructive and destructive interference between two or more 

versions of the same signal. 

SSF is also called Rayleigh fading, scintillation or fading. SSF changes due to 

multipath reflection caused by the superposition or cancellation of multipath propagation 

signals, the speed of the transmitter or receiver and the bandwidth of the transmitted 

signal. If the received signal has an LOS component, the fading envelope is given by a 

Rician PDF (Possibility Density Function). 

The suitability of SSF model simulation is investigated in this section. The factors 

that influence SSF are the motion of the transmitter and receiver and multipath in the 

received signal. To simulate an SSF model, a set of impulse responses is generated 

around the BS in a grid pattern with 50 m between points. 50 m was chosen to avoid a 

large set of sample points inside the 2000 m radius area around BSs. Every component 

inside impulse responses are also called multipath components or taps, which represents 

the energy of every piece of multipath waves received from a same transmitted signal. A 

Rayleigh fading channel model is described by impulse responses, and the channel 

model takes into consideration both the motion of the transmitter or mobile and the 

multipath propagation in NLOS environment. 

The radio signals transmitted by the controlling BS must be correlated to distinguish 

them with other transmitted signals or noise by other BSs or unknown instruments.  
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However, the signals simulated by the sampling impulse responses of SSF model are not 

correlated beyond a 50 m distance. Thus a location system using a multipath radio 

channel model needs an LSF model to have large-scale correlated multipath. 

A.2 Small Scale Fading Model Simulation 

A Rayleigh fading simulated example using the model of Clarke or Gans’ model was 

developed based on the method described by Rappaport [Rappaport96]. This section 

presents the simulation results for the SSF model, and judges its suitability for PL.      

Figure A.1 presents the fading channel manifestation used in the simulation. 

 

 

 

 

 

 

 

Figure A.1 Fading channel manifestation 

A.2.1 Gans’ model of the Doppler spectrum 

Mobile communication systems experience Rayleigh fading and is modeled for a 

particular speed of the mobile by having the spectral shaping filter take the form of the 

Doppler filter with the maximum Doppler spread specified by the mobile speed. 

Given a moving mobile, the signals from the BSs that are assumed to have the 

following properties: 

• The multipath arrives from all directions with random phases. 

Fading channel
manifestations

Fading channel
manifestations

LSF due to motion
over large area

LSF due to motion
over large area SSF due to small changes

in position

SSF due to small changes
in position

Mean signal
attenuation vs.

distance

Mean signal
attenuation vs.

distance
Variations about

the mean

Variations about
the mean

Time spreading of
time signal

Time spreading of
time signal Time variance of

the channel

Time variance of
the channel

Time delay
domain

description

Time delay
domain

description

Frequency
domain

description

Frequency
domain

description
Time domain
description

Time domain
description

Doppler shift
domain

description

Doppler shift
domain

description

Fourier
transforms

Fourier
transforms

Duals

Duals



80 

 

-100 -80 -60 -40 -20 0 20 40 60 8 0 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
ag

ni
tu

de
, 

H
(f

),
 W

at
t/

sq
rt

(H
z)

Frequency, f, (Hertz)

• The received power is uniformly distributed with respect to the angle of arrival. 

A baseband power spectral density, distribution of received power with respect to 

frequency, can be expressed as [Rappaport96]: 
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where rP is the mean received power by mobile, mf is the maximum Doppler shift 

given by 

             
λ
v

fm =  ,         (A.2) 

 v is the velocity of mobile, and λ  is the wavelength of light. 

Assuming Pr is 1 watt, and v is 50 km/hr, an illustration of Gans’ model is presented 

in Figure A.2. 

 

 

 

 

 

 

 

Figure A.2 A Gans’ model  

A.2.2 Samples of an impulse response 

When a set of Rayleigh–faded baseband channel impulse responses is produced 
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using the Gans’ model, a single impulse response is generated at first. This is done in the 

continuous-time continuous-frequency domain, as indicated in Figure A.2, and 

conversion to the discrete-time continuous-frequency domain is required. Figure A.3(a) 

presents one discrete-time baseband channel impulse response in time domain and its 

Fourier transform in Figure A.3(b). Parameters for simulation are provided in Table A.1: 

Table A.1 Parameters used in SSF simulation 

Parameters Values 
The velocity of light (c) 2.998×108 m/s 
The velocity of the MS (v) 50 km/hr 
The bandwidth of the radio channel 799 (fc) 848.97 MHz 
The received power assumed (Pr) 1 Watt 
The length of sampled distance (D) 50 m 
The radius of the circle range around BS (R) 2000 m 

 
 

 

 

 

  

 

 

 

Figure A.3 Samples of an impulse response  

(a) Impulse response in time domain (b) Impulse response in frequency domain 

A.2.3 The outputs of one parallel line based on Gans’ model  

The model of the radio channel is presented in Figure A.4. Each component or tap of 
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impulse responses can be determined by values obtained from 50 m grid scale sampling 

of Gans’ model for each point. 

 

 

 

 

 

 

 

 

Figure A.4 Radio channel model around one BS 

One Rayleigh-faded baseband channel impulse response of taps is generated by the 

procedure as shown in Figure A.5, where )(tIη  and )(tQη  represent the in-phase and 

quadrature phase components of a complex baseband Gaussian process. The outputs of 

the system are Rayleigh-faded baseband channel impulse response taps which pass 

through the Doppler filter. 

 

 

 

 

  

 

Figure A.5 The implementation steps of one impulse response  
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However, each impulse response generated by above procedure is in the continuous-

time continuous-frequency domain, a discrete-time continuous-frequency model is 

required to be realized by computers, as the realization block diagram provided in Figure 

A.6. 

 

 

 

 

 

 

 

Figure A.6 Procedure to produce CTCF and DTCF fading signal through Gans’ model 

 

 

 

 

 

 

 

 

 
Figure A.7 One tap of Rayleigh fading signal at baseband 

(a) Sampled signal (b) Subsampled signal 

When a complex wide-sense-stationary Gaussian noise is sampled for a long 
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sampling period, a sampled fading signal at baseband can be generated through low pass 

filter. The output discrete-time Rayleigh-faded signal at baseband and its both sampled 

and subsampled signals are shown in Figure A.7 (a) and Figure A.7 (b). 

The Rayleigh-faded signal is generated by Gans’ model. However, when the signal 

has been sampled over a longer period, there will be a problem of collecting too much 

sampling data inside a huge cellular area. In Section A.3, this problem will be discussed 

as the limitation of the SSF model in the PL estimation.  

A.3  Small Scale Fading Model Limitation 

A correlated-in-time signal is required for the multipath PL model implementation.  

However, if a long sampling distance (50 m) is chosen, or a long sampling time period is 

taken, the subsampled signal has to be correlated over the measurement. If the signal is 

not correlated, an NN-based PL model’s implementation using an SSF model is not 

effective. Table A.2 indicates the correlated distance for Gans’ model, as well as other 

parameters used in finding the distance. 

Table A.2 Some factors in the SSF model sampled signal simulation 

Parameters Value 

The sampling time period 12.7 ms 

Distance over the sampling period 0.18 m 

Number of samples over which 
“Gans’” signal is correlated* 10  

Total distance over which “Gans’” 
signal is correlated 1.76 m  

 
                                                 

* The number of samples over which Gans’ model is correlated: Once we get the sampling time period 
calculated (12.7 ms), arbitrarily go out 10 zero crossings of the Doppler spectrum’s time response (sinc 
function). Assume the signal is weakly correlated after 10 zero crossings, the corresponding time is: 

127=uncT  ms, so the distance over Gans’ model correlated is: uncunc vTd = =1.76 m. 
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The total distance over which Gans’ signal is correlated  is 1.76 m, but in our case a 

signal needs to be correlated over a much larger distance, for example, 50 m. Figure A.8 

(a) and Figure A.8 (b) provide the autocorrelation for the two sampled and subsampled 

Rayleigh-faded signals in Figure A.7 (a) and Figure A.7 (b) respectively. Figure A.8 (b) 

shows a case that Gans’ signal is not correlated until more than 127 ms. 

 

 

 

 

 

 

 

 

 
Figure A.8 Autocorrelation of Rayleigh fading model 

(a) Sampled signal (b) Subsampled signal  

The SSF model’s signals are not correlated over a large distance. Therefore, a NN 

location system using multipath needs an LSF model.   
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Appendix B: Find Exponential Coefficient in Power Delay Profile 

The first moment of the power delay profile (mean excess delay) is defined as: 
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The second moment of power delay profile is given by: 
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The RMS delay spread is calculated using: 

 ( )22 ττστ −= .       (B.3) 

The exponential power delay profile kP  is given:   
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To calculate the relationshipα   with given RMS delay spread, substitute Equation (B.4) 

into τ  in Equation (B.1), τ  is derived as: 
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Combine Equation (B.6) and Equation (B.5), τ  can be given as the following: 
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By substituting Equation (B.4) into 2τ  in Equation (B.2), 2τ  is derived as: 
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By substituting Equation (B.10) and α2ez =  to Equation (B.9), 2τ is in the form: 
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RMS delay spread can be derived by substituting Equation (B.11) and Equation 

(B.8) into Equation (B.3): 
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and combining Equation (B.12) and Equation (B.13), RMS delay spread is obtained: 
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The final exponential coefficient with respect to RMS delay function is achieved as 

Equation (B.17). 
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Appendix C: Three Block Diagrams of Generating Impulse 

Responses for SOA-based PL Scheme 

 

 

 

 

 

 

 

Figure C.1 The block diagram of generating impulse response h1 for the  
        SOA-based PL scheme 

 

 

 

 

 

 

 

 

Figure C.2 The block diagram of generating imp ulse response h2 for the  
        SOA-based PL scheme 
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Figure C.3 The block diagram of generating impulse response h3 for the  
        SOA-based PL scheme 
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Appendix D: Detailed Explanations of the Proximate Problems in 

SOA Simulation 

 
D.1 How circles intersected may result in proximate inaccuracies  

How the circles intersect is important to find the MS’s location. There is an 

interesting phenomenon shown in Figure D.1.  

 

 

 

 

 

 

 

 

 

Figure D.1 SOA-based scheme estimated by three circles  
      where MS’s coordinate is (1300, 500) 

As shown in Figure D.1, the centers of the circles happen to lie in the same line, the 

extended sides of the BSs’ triangle, and the three circles have two intersections. The 

estimated MS position must locate inside one of the two intersections. In the case that 

the circles do not intersect, which usually occurs in SOA evaluated on the SOCLSFM, a 

proximate method might be used to approach the actual MS location. With this method 

one of the received powers for each BS is manually increased by small increments until 
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finally the circles intersect. Larger received power at MS results in larger radius of the 

circle, which is demonstrated as following.     

Three range difference equations are defined in Chapter 3: 
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Since 321 and,, PPP  are the known variables in Equation (D.1), denoting 
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Through the derivation in Section 3.3.2, Chapter 3, the radiuses of three circles are 

obtained, 
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In Equation (D.3a), if 1a is increased, obviously 1r  will be enlarged. Similarly, the 

larger 2a  or 3a  in Equation (D.3b) and (D.3c), the larger 2r  or 3r  respectively. As 

indicated in Equation (D.2a) and (D.2b), 1a  and 2a  can be enlarged by only increasing 

the received power P1 at BS1, and similarly 3a  can be enlarged by increasing received 

power P2. Therefore, if the circles 1 and 2 do not intersect, we can either increase 1r  or 

2r , resulting in manual increments in the received power P1; If circles 1 and 3 do not 

intersect, increasing either 1r  or 3r  is necessary, which leads to increment in P1 or P2. 

Similarly, increment in either P1 or P2 leads to larger 2r  or 3r  if circle 2 and 3 do not 

intersect. 

D.2 Equally received powers result in proximate inaccuracies 

For the Equations (D.2a), (D.2b) and (D.2c), another problem possibly exists. If any 

two of P1, P2 and P3 are equal, such as P1=P2, P1=P3, or P2=P3, which results in 1a = 1, 

2a =1 or 3a =1 respectively.  For Equations (D.3a), if 1a =1, 1r  will be infinite, as well as 

2r and 3r  in Equation (D.3b) and (D.3c). If this happens, we simply assume that 1r , 2r  or 

3r  has a very large value accordingly. 

In general, the inaccuracies in SOA-based algorithms are caused by the above two 

problems in Section D.1 and D.2. These inaccuracies do not primarily affect the 

estimated PL for SOA evaluating on SOCLSFM, for they are usually within a distance 

of a few meters, as illustrated in Section 3.4. However, log-normal shadowing and SOC 

features in the SOCLSFM leads to much bigger PL estimation errors, usually more than 

a hundred meters. 
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Appendix E: Determination of Number of  

MSs in SOA-Based Scheme 

 
Among three SOA performance criteria, mean error is the average performance that 

measures the mean distance between estimated MS locations and true MS PLs, and it is 

the major criteria that indicates the average distance error over an unknown number of 

MSs. The value of this number is commonly determined by the minimum size of a mean 

errors group with a relative stable variance compared to other groups of larger size. 

Variance is a measure of dispersion of a set of data points around their mean value, the 

mathematical expectation of the average squared deviations from the mean [Winer91]. 

On the other hand, it measures the “variability” (volatility) from an average, which can 

be analyzed to obtain the best chosen number of the MSs. If the statistical significance 

of the differences of means can be assessed, a more accurate comparison can be made 

between different mean errors groups. Statistical differences are assessed through an 

analysis of variance. The relationship between measurements of the variance of each 

group provides the information needed in determining whether the difference between 

groups is significant. If not, the size of corresponding group is selected to be the number 

of the MSs chosen in SOA-based scheme.    

In the simulation, the sizes of mean errors groups are assumed to be {2, 5, 10, 50, 

100}, and these groups are randomly chosen within the 100 SOA mean errors provided 

in Table E.1. For instance, for the group with size of 2, the group is {200.2, 46.1}, and 

for that of size 5, {21.7, 113.7, 46.1, 159.2, 91.2}. By calculating each group’s 

corresponding variance, the figures of variances with respect to the groups’ size are 

illustrated in Figure E.1, E.2, E.3 and E.4, in which different random mean errors are 
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chosen in all groups for every attempt. 

Table E.1 100 mean errors (m) of SOA-based scheme on the SOCLSFM 

200.2 127.9 46.1 63.6 91.2 440.2 160.3 27.9 176.2 220.8 
202.3 226.8 296.1 121.8 83.8 176.8 338.0 203.4 83.5 107.6 
160.5 403.0 104.2 93.3 157.3 199.4 236.9 153.5 83.2 119.1 
201.4 128.8 193.6 21.7 70.7 177.7 52.8 83.6 23.2 320.0 
136.8 121.4 131.5 394.3 134.4 128.1 221.4 171.5 98.9 129.8 
221.8 365.3 113.0 276.8 171.9 188.0 104.3 155.0 195.5 143.1 
546.3 271.5 87.8 113.7 156.8 49.6 148.8 497.8 74.4 148.1 
122.4 216.7 152.9 130.2 149.1 159.2 159.0 308.9 89.6 136.3 
190.5 260.6 132.6 230.4 140.1 191.6 155.4 168.5 138.1 126.6 
264.0 113.7 116.8 84.8 153.6 361.3 64.1 66.5 222.9 217.3 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.1 Variance for mean errors in SOA-based PL estimation (Attempt # 1) 
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Figure E.2 Variance for mean errors in SOA-based estimation (Attempt # 2) 

 

 

 

 

 

 

 

 

 

 

Figure E.3 Variance for mean errors in SOA-based PL estimation (Attempt # 3) 
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Figure E.4 Variance for mean errors in SOA-based PL estimation (Attempt # 4) 

From the above figures, a group size of 100 does not appear to have a significantly 

influence on the mean error variances for a group with size 50. Since 50 is the minimum 

number that the corresponding variance starts to remain relative constant, it is regarded 

as the optimal number of MSs plotted in the limited area in SOA-based scheme. In our 

simulation, the average performance is trustful over the sampling number of 50. 
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Appendix F: Backpropagation Learning and LM Training Algorithms 

 
F.1 Neural Network Learning Method —  Backpropagation   

There are various learning methods for multilayer NN networks. In feed-forward 

NNs, backpropagation is one of the methods. Backpropagation is an abbreviation for the 

backwards propagation of error.  Figure F.1 provides a fully connected feed-forward NN 

example with 53 inputs, one 20 neurons hidden layer, and 2 outputs. A more detailed 

connected figure is specified in Figure 4.4. 

 

 

 

 

 

 

 

 

Figure F.1 A fully connected feed-forward 53-20-2 NN example 

The following are the steps of using the backpropagation algorithm in a NN 

[Hsiung99, Gurney96, and Gallant93]: 

• Create a fully connected feed-forward network with a specified number of inputs, 

hidden, and output sigmoid units.  

• Initialize all weights { }jiw ,  in the network to small random values, where i, and j 

identify the layer and node. 

• Repeat until the algorithm converges. For example, until weight changes and 
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changes in the mean squared error, ε , become sufficiently small.  

1. Forward propagation step: Take the next training example, feed the input vector 

through the network and compute every neuron in the network. This is done by 

computing the weight sum coming into a neuron and then applying the sigmoid 

function, 

( )xwo
rr

σ= ,      (F.1) 

where the x
r  vector denotes the activation of previous layer, the w

r
 vector denotes 

the weights linking the neuron unit to the previous neuron layer, and o is activation 

of each unit. In the Equation (F.1), the activation function is: 

( )
ye

y
−+

=
1

1
σ .      (F.2) 

2. Compute the square error of the network: This step is done by taking the sum of 

the squared error of every unit in the output layer, 

( ) ( )∑ ∈ −= outputsk kk otwE 2

2
1r

,    (F.3) 

where t denotes a target value in the target vector (The target vector is associated 

with the training sample, the input vector.), and o denotes the activation of a neuron 

in the output layer. 

3.   Backward propagation step: Start with the outputs, make a backwards pass 

through the output and intermediate cells. It is computed as the following: 

For each output neuron k, calculate the error term kδ as: 

( )( )kkkkk otoo −−= 1δ       (F.4) 

The error term is related to the partial derivative of each weight with respect to the 
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network error. 

For each hidden node h, calculate the error term as: 

( )∑ ∈−= outputsk kkhhhh woo δδ 1      (F.5) 

where h is an integer, between 1 and the number of hidden layer. The hidden node 

error term depends on the error terms calculated for the output units. 

4.  Update each network weight as: The network weights are updated by using the 

Levenberg Marquardt algorithms that are mainly discussed in next Section F.2.  

Equation (F.10) in that section is used in the backpropagation weights training and 

updating. 

F.2 NN Training Method —  Levenberg Marquardt Algorithm  

Similar to the quasi-Newton methods, the LM algorithm was designed to approach 

second-order training speed without having to compute the Hessian matrix. When the 

performance function has the form of a sum of squares, the Hessian matrix Hm can be 

approximated as [Gallant93], [Hagan94]: 

   JJH T
m =        (F.6) 

and the gradient can be computed as: 

  δTJg =        (F.7) 

where J is the Jacobian matrix that contains first derivatives of the network errors with 

respect to the weights and biases, and δ  is a vector of network errors mentioned in 

Section F.1. The Jacobian matrix can be computed through a standard backpropagation 

technique [Hagan94], which is much less complex than computing the Hessian matrix. 

Newton’s method can be written as: 
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  kkkk gHww 1
1

−
+ −= ,      (F.8) 

by combining Equation (F.6), (F.7) and (F.8), we get: 

  [ ] k
T
kk

T
kkk JJJww δ−=+1 .     (F.9) 

The problem with Equation (F.9) is that k
T
k JJ may not be invertible. Thus, the LM 

algorithm warrants invertibility,  

k
T
kk

T
kkk JIJJww δγ 1

1 ][ −
+ +−=     (F.10) 

If the scalarγ  is zero, the equation degrades to Newton’s method using approximate 

Hessian matrix. If γ  is large, it becomes steepest descent with a small step size. 

Newton’s method is faster and more accurate near an error minimum.  
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Appendix G: Additional Details about the  

NN Simulation and Performance 

G.1 Nguyen-Widow Weights Initialization 

This section presents the Nguyen-Widrow weights initialization algorithm.  

NN uses LM algorithm to train the weights. The random choice of initial weights 

and biases will affect the performance of LM algorithm. If the average performance of 

the algorithm is required, a test using several different sets of initial weights and biases 

will be carried out. In the thesis, for each NN architecture (fix layers and nodes in the 

layers), a training phase with eight random different sets of initial weights and biases 

experiments is performed to get the average value of mean error results. The chosen 

initial weights determine the starting point in the error landscape, which controls 

whether the learning process will end up in a local minimum or the global minimum. 

The easiest method is to select the weights randomly from a suitable range, such as 

between [-0.1, 0.1] or [-2, 2]. More sophisticated approaches to select the weights, such 

as the Nguyen-Widrow initialization which calculates the interval from which the 

weights are taken in accordance with the number of input neurons and the number of 

hidden neurons, can improve the learning process [Schmidt96]. 

D. Nguyen and B. Widrow use a multilayer perceptron with piecewise linear 

activation functions as an approximation of a network with logistic activation functions. 

Based on this simplification, they calculate an optimal length of Yind for the randomly 

initialized weight vectors and an optimal bias range of ]Y,Y[ inin dd− for neurons in 

the hidden layer, where Y is the number of hidden nodes and ind is the fan-in (or in-

degree) of a neuron, without justifying this interval further in a theoretical manner.The 
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weights of the neurons in the output layer are randomly initialized in the interval [-0.5, 

0.5], without any justification given [Nguyen90]. This algorithm only changes the 

weights and biases initailization in each training experiment, it does not effect the size or 

structure of the NN.  

G.2 Size of Neural Network Determination 

This section presents the detail simulations in determining the NN size, the process 

to find the optimal number of hidden layers and nodes in each hidden layers.  Because of 

the randomly different initialized weights of NN, the average performance of the NN 

algorithms is evaluated by using several different sets of initial weights and biases. In 

the thesis, for a fixed NN architecture, each average value of mean errors represents an 

average of eight different training experiments, in each of which different random initial 

weights are used. Mean error of one training phase is evaluated on average of the eight 

training experiments in all tables below. The number of eight is a reasonable number to 

get statistical results of average, as verified in Section G.3. It is assumed that all the 

simulations are based on evaluating the PL criteria —  mean error. The following PL 

mean error results in Table G.1, G.2, G.3, G.4 and G.5 are provided in the 0, 1, 2, 4 and 

10 hidden layers NN simulations respectively. The simulation results clearly verified 

that a 53-20-2 NN is the optimal NN size to be selected in the simulation.   

• No hidden layer : 

Table G.1 A zero-hidden layer NN 
53nodes (input) – 2 nodes (outputs) NN 

Nodes in hidden layer (#) Mean error (m) 
(Training phase) 

0 82.2 
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• One hidden layer : 

Table G.2 Seven one-hidden layer NNs 
53nodes (input) – X nodes (hidden) – 2 nodes (outputs) NN 

Nodes in hidden 
layer (#) 

Mean errors (m) 
(8 experiments) 

Mean error (m) 
(Training phase) 

X = 5 77.1,78.37, 75.89, 81.38, 
76.49, 76.69, 77.46,79.1 77.8 

X = 10 72.7, 79.33, 78.59, 73.54 
76.85,74.78,72.79, 76.23 75.6 

X = 20 68.8, 68.89, 70.78, 72.80, 
70.05, 71.76, 67.22, 73.34 70.5 

X = 25 70.2, 73.81, 70.94, 72.11 
73.67, 74.01, 75.06, 68.87 72.3 

X = 30 71.3, 76.09, 75.00, 75.85, 
66.99, 74.95, 77.25, 72.77 73.8 

X = 50 79.1, 83.68, 73.63, 78.84, 
69.47, 80.57, 84.32, 79.56 78.7 

X = 100 83.6, 97.89, 80.39, 73.84, 
86.37, 87.13, 77.32, 96.06 85.3 

 

 

 

 

 

 

 

 

Figure G.1 PL mean errors vs. Number of nodes in one hidden layer NN simulation 
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Diagram in Figure G.1 shows that mean error is the smallest at 20 nodes in one 

hidden layer NN structure simulation.  

• Two hidden layers : 

Table G.3 Four two-hidden layer NNs 
53 nodes (input) –X nodes (hidden1) –Y nodes (hidden 2) – 2 nodes (outputs) NN 

 

Nodes in hidden layer1(#) Nodes in hidden  
layer2 (#) 

Mean error (m) 
(Training phase) 

X = 10 Y= 10 217.02 
X = 20 Y= 15 236.46 
X= 30 Y= 15 178.87 
X= 30 Y= 20 182.56 

 
• Four hidden layers: 

Table G.4 Two four-hidden layers NNs 
53nodes (input) – X1 nodes (hidden1) – X2 nodes (hidden 2) – X3 nodes (hidden 3) – 
X4 nodes (hidden 4) – 2 nodes (outputs) NN 

 

Nodes in hidden layer (#) 

1 2 3 4 

Mean error (m) 
(Training phase) 

X1 = 5 X2 = 5 X3 = 5 X4 = 5 272.4 
X1 = 10 X2 = 10 X3 = 10 X4 = 10 265.3 

 
• Ten hidden layers (1input-10hidden-1output): 

Table G.5 A ten-hidden layer NN 
53nodes (input) – X1 nodes (hidden1) – X2 nodes (hidden 2) – X3 nodes (hidden 3) – 
X4 nodes (hidden 4) – X5 nodes (hidden1) – X6 nodes (hidden1) – X7 nodes (hidden1) 
– X8 nodes (hidden1) – X9 nodes (hidden1) – X10 nodes (hidden1) –2 nodes (outputs) 
NN 

Nodes in hidden layer (#) 

1 2 3 4 5 6 7 8 9 10 

Mean 
error 
(m) 

X1: 2 X2: 2 X3: 2 X4: 2 X5: 2 X6: 2 X7:2 X8: 2 X9: 2 X10: 2 328.5 
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G.3 The Chosen Number of Training Experiments Determination  

This section focuses on the determination of the number of eight training 

experiments in a training phase. 

Because the weights are randomly initialized according to the Nguyen-Widrow 

algorithm in every training experiment, the performance of each mean error differs from 

others. The statistical number of training experiments must be determined in finding the 

average mean error of a training phase. Similar to Appendix E, the determination of this 

number is assessed through an analysis of variance.     

In the simulation, it is assumed that all the inputs to the NN are equivalent in every 

NN training experiment, but the weights are initialized differently in each experiment. A 

fixed NN structure chosen in every training experiment is 53–20–3. To analysis variance, 

the sizes of mean errors groups are assumed as: {2, 4, 8, 16, 32, 64}, and these groups 

are randomly chosen within the 64 NN mean errors provided in Table G.6. 

Table G.6 64 mean errors (m) of 64 NN (53–20–3) training experiments 

75.4 73.4 73.7 69.2 67.8 73.6 69.8 71.0 
68.5 75.1 75.2 72.5 73.4 69.1 73.7 72.5 
69.2 67.4 69.1 68.8 73.9 71.9 69.5 68.3 
69.6 66.1 68.5 73.5 73.8 70.5 73.3 71.8 
70.0 69.1 70.0 68.9 72.9 71.1 73.0 67.9 
68.8 71.7 68.6 69.7 72.8 69.2 72.9 73.1 
77.4 68.9 67.4 74.5 71.2 73.2 71.9 71.8 
68.6 69.6 71.7 69.1 72.4 70.2 70.5 74.2 

 
The figures of variances with respect to the groups’ size are illustrated in Figure G.2, 

G.3, G.4 and G.5, in which the varying random mean errors are chosen in each group for 

every attempt. 
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Figure G.2 The variance of mean errors in NN (53-20-2) estimation (Attempt # 1) 

 

 

 

 

 

 

 

 

 

 

Figure G.3 The variance of mean errors in NN (53-20-2) estimation (Attempt # 2) 
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Figure G.4 The variance of mean errors in NN (53-20-2) estimation (Attempt # 3) 

 

 

 

 

 

 

 

 

 

Figure G.5 The variance of mean errors in NN (53-20-2) estimation (Attempt # 4) 
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From the above figures, the number of eight is chosen to be the minimum number 

that the variance starts to remain relative constant. It is concluded that eight is the 

optimal number of training experiments, which determines an average mean error in a 

training phase. 

G.4 The Evaluation of Mean Delays in NN Inputs 

The results of the simulation for mean delays are presented in this simulation. In order 

to prove that mean delays significantly improve the NN training performance, one of the 

criteria so-called mean error is selected to justify the performance. The simulation of both 

zero mean delays and practical mean delays applied to the NN are performed. As indicated 

in Figure 4.3, the simulation of 1d ′ , 2d ′ , and 3d ′  = 0 is compared with 1d ′ , 2d ′  , and 3d ′  ≠ 0. 

The comparison of the two simulation results demonstrates that there is a great difference 

between the two obtained mean errors. 

Both simulation results are demonstrated by the mean error of a NN training phase, 

which is an average computed by mean errors of the eight training experiments. Each 

training experiment is performed to obtain a mean error that indicates the NN 

performa nce. The NN structure used in both simulations is assumed to be 53–20–2. 

Table G.7 The comparison of zero mean delays and practical mean delays inputs of the 
NN performance 

 

Inputs of the 
NN 

NN 
structure 

Mean errors (m) 
(8 training experiments) 

Mean error (m) 
(Training phase) 

With 
3 mean delays 53–20–2 68.8, 68.9, 70.8, 72.8, 

70.1, 71.8, 67.2, 73.3 70.5 

With 
3 mean delays 

= 0 
53–20–2 84.2, 86.3, 71.0, 76.5 

75.9, 84.0, 83.6, 74.9 

 
79.6 
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From Table G.7, the variance between 79.6 m and 70.5 m is 9.1 m which is a large 

different for the E-911 requirement. It is concluded that mean error can significantly 

help improve the NN training performance. However, it consumes more time and leads a 

higher complex PL scheme. 

 



112 

 

Appendix H: The Determination of Number of MSs in SOA and NN 

Integrated Technique Training and Testing Phases (1500, 50) 

 
H.1 Determination of the Number of Training patterns in Integrated 

Technique 

In this section, a number of comparisons of the various training sample size are 

performed based on evaluating the NN performance for every training sample size. Once 

the training sample size or MSs sample size is determined, a NN training experiment 

may provide good performance. 

The simulation is performed on a Pentium II 400 MHz computer with 384 MB ram, 

and the NN structure is 53-20-2. The mean error is performance criteria in measuring 

performance of the NN training experiment. 

Table H.1 summarizes the results of training the network using five different training 

sample sizes. Each entry of average of mean errors and mean time in the table represents 

the average of eight training experiments, where different random initial weights but 

same training sample sizes are used in each experiment. 

Table H.1 Comparison of the performance for variant NN training sample sizes 

Training sample sizes (#) 
(MSs) Mean Time (s) Mean error (m) 

(Training phase) 

500 286.3 86.1 
1000 1153.5 74.8 
1500 2952.1 70.5 
2000 5715.5 68.4 
2500 8627.5 67.9 

 
The simulation results show that the number of 1500 training sample is optimal in 

training the NN. Larger training sample size cannot help NN with more significant 
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improvement and that takes much longer time in training. Results with smaller values in 

estimation demonstrate that they are not large enough in getting required performance. 

H.2 Determination of the Number of Testing patterns in Integrated 

Technique 

Similar to Appendix E, the determination of number of test sample size (the number 

of MSs) for two integrated technique is provided.  The determination of this number is 

based on analysis of variance. 

In the simulation, the sizes of mean errors groups are assumed as: {2, 5, 10, 50, 100} 

and these groups are randomly chosen within the 100 integrated technique mean errors 

provided in Table H.2. Every mean error in Table H.1 indicates a performance result of 

a NN training experiment. By calculating each group’s corresponding variance, the 

figures of variances with respect to the groups’ size are illustrated in Figure H.1, H.2, 

H.3 and H.4, where the different random mean errors are chosen in all groups for every 

attempt. 

Table H.2 100 mean errors (m) of integrated technique with a 52-20-2 NN 

85.9 35.9 84.3 102.9 193.6 43.2 34.1 42.1 87.6 77.1 
168.0 43.2 54.3 83.9 47.8 38.2 90.6 81.1 102.1 56.7 
14.6 76.8 56.3 87.8 33.8 140.2 11.8 26.4 78.3 77.9 
37.1 41.8 33.7 36.5 154.8 56.6 46.7 41.7 98.2 299.2 
77.3 123.5 56.7 111.0 37.6 157.1 41.0 54.4 35.4 10.2 
49.2 45.6 54.0 274.3 72.1 46.3 38.9 75.9 30.0 88.0 
218.6 166.4 66.9 16.9 68.1 229.9 11.4 19.6 56.7 45.6 
26.3 55.0 30.8 56.4 28.2 75.5 12.8 57.7 163.2 67.5 
28.8 31.1 12.5 21.6 67.6 184.3 88.2 78.9 64.6 23.5 
39.2 60.3 18.9 52.6 19.6 60.4 94.7 12.5 50.2 110.8 
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Figure H.1 The variance for mean errors in integrated technique (Attempt # 1) 

 

 

 

 

 

 

 

 

 

 

 

Figure H.2 The variance for mean errors in integrated technique (Attempt # 2) 
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Figure H.3 The variance for mean errors in integrated technique (Attempt # 3) 

 
 

 

 
 
 
 
 
 
 
 

 
 

   

Figure H.4 The variance for mean errors in integrated technique (Attempt # 4) 
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From the previous figures, the number of 50 is selected because the statistical results 

of the variance remains constant after this point of test sample size. 
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Appendix I: MATLAB® Source Code 
 

This chapter lists a few short major parts of source code involved this thesis.  

I.1 SOCLSFM 

Here is an example of building the first SOCLSFM propagation set. The two other 

propagation sets are the same except titles in labeling each step of the SOCLSFM 

implementation.  A few of the simple functions developed in this program are not provided. 

%###################################################################### 
% This program is built for the SOCLSFM for the first propagation set 
% of SOCLSFM.  
% h1,h2,h3,h4. hwider1 are labeled for each step of the SOCLSFM 
% implementation, which includes random coefficient values, propagation 
% delay, exponential power delay profile and RMS delay spread, path 
% loss and log-normal shadowing, and SOC in RMS delay spread 
 
% Author: Jie Liu n925a@unb.ca 
% Copyright 
% Date Created: December 19, 2000 
% Date Modified: December 19, 2000 
%###################################################################### 
clear; 
close all; 
R=2000;%(m) 
d=50;%(m) 
c=2.998e8;%(m/s) 
rms_delay_spread=1e-7;%(100ns) 
Nover_cell_width=length([-R:d:R]); 
BIS95=1.2e6;%(MHz) 
T_sampling_receiver=1/BIS95;%(s) 
rms_delay_spreadn=rms_delay_spread/T_sampling_receiver; 
T_prop_edgeofcell=R/c;%(us) 
Tmax_Delay=T_prop_edgeofcell*2;%(us) 
N_taps=Tmax_Delay/T_sampling_receiver; 
N_taps=round(N_taps); 
 
%generate the Random data 
h1=(1/sqrt(2))*... 
  (randn(Nover_cell_width,Nover_cell_width,N_taps)+... 
  1*i*randn(Nover_cell_width,Nover_cell_width,N_taps)); 
i_centre=find([-R:d:R]==0); 
save h1 h1; 
 
%Propagation delay  
for k=1:Nover_cell_width 
   for l=1:Nover_cell_width 
      distance_kl=sqrt((k-i_centre)^2+(l-i_centre)^2)*d; 
      time_kl=distance_kl/c; 
      N_zeros=fix(time_kl/T_sampling_receiver)+1; 
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      h1(k,l,(1:N_zeros))=0; 
   end 
end 
h2=h1; 
save h2 h2; 
 
%RMS_delay 
b=1/(rms_delay_spreadn^2)+2; 
alpha=(1/2)*log((b+sqrt(b^2-4))/2); 
for k=1:Nover_cell_width 
   for l=1:Nover_cell_width 
      distance_kl=sqrt((k-i_centre)^2+(l-i_centre)^2)*d; 
      time_kl=distance_kl/c; 
      N_zeros=fix(time_kl/T_sampling_receiver)+1; 
      for i=1:N_taps-N_zeros 
      h3(k,l,(N_zeros+i))=h2(k,l,(N_zeros+i))... 
         .*exp(-2*alpha*i); 
      end 
   end 
end 
save h3 h3; 
 
%Path loss/log normal shadowing 
n=4;%path loss exponent  
sigma=11.8;%dB shadowing variance 
d0=10;%(m) 
Pld0bar=0;%dBW at 50(m) 
for k=1:Nover_cell_width 
   for l=1:Nover_cell_width 
      distance_kl=sqrt((k-i_centre)^2+(l-i_centre)^2)*d; 
      if distance_kl~=0 
       Pldbar=Pld0bar-10*n*log10(distance_kl/d0); 
      else 
       Pldbar=Pld0bar; 
      end 
      Pld=Pldbar+sqrt(sigma)*(randn(1)/5); %log normal shadowing 
      Pld=10^(Pld/10);%not in dB 
   %normalize energy to 1 
      h4(k,l,:)=h3(k,l,:)/sqrt(sum(abs(h3(k,l,:)).^2)); 
      h4(k,l,:)=h4(k,l,:)*sqrt(Pld); 
   end 
end 
save h4 h4; 
 
hwider1 = h4;% the impulse hwider1 has been assigned to a old impulse 
response 
% Add splashes of changes 
%====================================== 
nsplashes = 10 ; % number of splashes 
width_per_splashes = 10;% (m) 
mean_splash_height = 2; 
for i = 1: nsplashes 
% Step 1 : pick a random point xr, yr. 
  range = length(-R:d:R); 
  xr = fix(rand(1)*range); 
  yr = fix(rand(1)*range); 
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    while (xr == 0)|(yr == 0) 
     xr = fix(rand(1)*range); 
     yr = fix(rand(1)*range); 
    end 
 
% Step 2: generate a relative change, Rr.  
  Ur = rand(1); 
  Rr = (2/sqrt(pi))*mean_splash_height*sqrt(-(log(1 - Ur))); 
 
 
% Step 3: generate a relative width, W is a Rayleigh RV, with mean  
% equal to mean width per splash Ws 
  Ws = width_per_splashes; 
  Uw = rand(1); 
  W = (2/sqrt(pi))*Ws*sqrt(-(log(1 - Uw))); 
 
% Step 4: calculate the 2-dimensional bell-curve point using Rr and W 
% bellcurve: height = Rr , width = W 
  bc_bell = zeros(range,range); 
    for i2 = 1:range 
       for j2 = 1:range 
        bc_bell(i2,j2) = Rr*exp(-((i2-xr).^2)/(2*W^2))*... 
                            exp(-((j2-yr).^2)/(2*W^2)); 
       end 
    end 
 
% Step 5: generate a new relative changes in RMS delay spread 
  rc_bell = zeros(range,range); 
   for i3 = 1:range 
       for j3 = 1:range 
        Rc = bc_bell (i3,j3); 
        Uc = rand(1); 
        rc_bell(i3,j3) = (2/sqrt(pi))*Rc*sqrt(-(log(1 - Uc))); 
       end 
   end 
  
 %Step 6: applying changes 
 %Step(a):Given 
 present_RMS_delay_spread_whole= calcrmsds(h4); 
 for i4 = 1:range 
    for j4 = 1:range  
    onerc = rc_bell(i4,j4);%one relative change 
    mean_delay_number = find_mean_delay1(i4,j4); 
  
 %Step(b):Find hwider 
    present_RMS_delay_spread = present_RMS_delay_spread_whole(i4,j4); 
    alpha1 = RMS_delay_spread_to_alpha(present_RMS_delay_spread); 
    new_RMS_delay_spread = (onerc+1)*present_RMS_delay_spread; 
    alpha2 = RMS_delay_spread_to_alpha(new_RMS_delay_spread); 
    indices_of_interest = [1 + mean_delay_number:N_taps]; 
     for i = min(indices_of_interest):max(indices_of_interest) 
      hwider1(i4,j4,i) = hwider1(i4,j4,i).*... 
                  exp(-2*(alpha2-alpha1).*(indices_of_interest(i-
mean_delay_number)-... 
                  (mean_delay_number+1))); 
      hwider1(i4,j4,:) = 
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hwider1(i4,j4,:)*(sum(abs(h4(k,l,:)).^2))/(sum(abs(hwider1(i4,j4,:)).^2
)); 
     end          
    end 
 end 
end % for loop of per splash 
save hwider1 hwider1; 
 
%###################################################################### 
% This program is built for plot the mean received power for each step 
% of the first propagation set. 
 
% Author: Jie Liu n925a@unb.ca 
% Copyright 
% Date Created: December 19, 2000 
% Date Modified: July 12, 2002 
%###################################################################### 
 clear; 
 clf; 
 close all; 
 figure(1) 
  clear ; 
  load h1.mat ; 
  hedB = calcmrp( h1 ) ; 
  colormap(gray); 
  R=2000;%(m) 
  d=50;%(m) 
  xset=[-R:d:R]; 
  yset=[-R:d:R]'; 
  contour(xset,yset,hedB); colorbar ; 
  title('Contour plot of mean received power of random data'); 
  axis('square'); 
   
 figure(2) 
  clear ; 
  load h2.mat ; 
  hedB =  calcmrp ( h2 ) ; 
  colormap(gray); 
  R=2000;%(m) 
  d=50;%(m) 
  xset=[-R:d:R]; 
  yset=[-R:d:R]'; 
  contour(xset,yset,hedB) ;colorbar ; 
  title('Contour plot of mean received power after added propagation 
delay signal'); 
  axis('square'); 
   
 figure(3) 
  clear ; 
  load h3.mat ; 
  hedB = calcmrp ( h3 ) ; 
  colormap(gray); 
  R=2000;%(m) 
  d=50;%(m) 
  xset=[-R:d:R]; 
  yset=[-R:d:R]'; 
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  contour(xset,yset,hedB) ;colorbar ; 
  title('Contour plot of mean received power of added RMS delay 
spread'); 
  axis('square'); 
 
 figure(4) 
   clear ; 
   load h4.mat ; 
   hedB = calcmrp ( h4 ) ; 
   colormap(gray); 
   R=2000;%(m) 
   d=50;%(m) 
   xset=[-R:d:R]; 
   yset=[-R:d:R]'; 
   contour(xset,yset,hedB) ;colorbar ; 
   title('Contour plot of mean received power of added pass loss and 
log normal shadowing  signal'); 
   axis('square'); 
  
  figure(5) 
   clear ; 
   load hwider1.mat ; 
   hedB = calcmrp ( hwider1 ) ; 
   colormap(gray); 
   R=2000;%(m) 
   d=50;%(m) 
   xset=[-R:d:R]; 
   yset=[-R:d:R]'; 
   contour(xset,yset,hedB) ;colorbar ; 
   title('Contour plot of mean received power of added splashes of 
changes signal'); 
   axis('square'); 
 
%###################################################################### 
% This program is built for plot the RMS delay spread for each step of 
% the first propagation set. 
 
% Author: Jie Liu n925a@unb.ca 
% Copyright 
% Date Created: December 19, 2000 
% Date Modified: July 12, 2002 
%###################################################################### 
clear; 
clf; 
close all; 
 
figure(1) 
    clear; 
    load h1.mat; 
    R=2000;%(m) 
 d=50;%(m) 
 xset=[-R:d:R]; 
 yset=[-R:d:R]'; 
 rms_delayspread_arrary=calcrmsds(h1); 
    colormap(gray); 
 contour(xset,yset,abs(rms_delayspread_arrary)) ; 
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 axis('square'); 
 colorbar; 
  title('Contour plot of RMS delay spread of random data'); 
  axis('square'); 
   
figure(2) 
  clear; 
    load h2.mat; 
 R=2000;%(m) 
 d=50;%(m) 
 xset=[-R:d:R]; 
 yset=[-R:d:R]'; 
 rms_delayspread_arrary=calcrmsds(h2); 
    colormap(gray); 
 contour(xset,yset,abs(rms_delayspread_arrary)) ; 
 axis('square'); 
 colorbar; 
  title('Contour plot of RMS delay spread of added propagation delay 
signal'); 
  axis('square'); 
    
 figure(3) 
  clear; 
  load h3.mat; 
  R=2000;%(m) 
  d=50;%(m) 
  xset=[-R:d:R]; 
  yset=[-R:d:R]'; 
  rms_delayspread_arrary=calcrmsds(h3); 
  colormap(gray); 
  contour(xset,yset,abs(rms_delayspread_arrary)) ; 
  axis('square'); 
  colorbar; 
  title('Contour plot of RMS delay spread of added RMS delay signal'); 
  axis('square'); 
 
 figure(4) 
   clear; 
   load h4.mat; 
   R=2000;%(m) 
 d=50;%(m) 
 xset=[-R:d:R]; 
 yset=[-R:d:R]'; 
 rms_delayspread_arrary=calcrmsds(h4); 
    colormap(gray); 
 contour(xset,yset,abs(rms_delayspread_arrary)) ; 
 axis('square'); 
 colorbar; 
   title('Contour plot of RMS delay spread of added pass loss and log 
normal shadowing signal'); 
  
 figure(5) 
   clear; 
   load hwider1.mat; 
    R=2000;%(m) 
 d=50;%(m) 
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 xset=[-R:d:R]; 
 yset=[-R:d:R]'; 
 rms_delayspread_arrary=calcrmsds(hwider1); 
    colormap('gray'); 
 contour(xset,yset,abs(rms_delayspread_arrary)) ; 
 axis('square'); 
 colorbar; 
   title('Contour plot of RMS delay spread of added splashes of changes 
signal'); 
 
%###################################################################### 
% This program is to built calcmrp (calculate mean received power) 
% function 
 
% Author: Jie Liu n925a@unb.ca 
% Copyright 
% Date Created: December 19, 2000 
% Date Modified: July 12, 2002 
%###################################################################### 
function hedB = calcmrp ( h ) 
%CALCMRP hedB = calcmrp ( h ) 
% Takes a 3 dimensional array h, which is a 2 dimensional 
% array of impulse responses and makes calculations 
% of mean received power, with the maximum value normalized 
% to 0 dB. hedB is a two dimensional array of power values in dB. 
% Example: 
% clear ; 
% for i = 1:10 ; 
% for j = 1:10 ; 
% for k = 1:10 ; 
% h(i,j,k) = 1 / ( 40-(i+j+k) ) ; 
% end 
% end 
% end 
% hedB = calcmrp ( h ) ; 
% mesh(hedB) ; 
% 
% clear ; 
% load h2.mat ; 
% hedB = calcmrp ( h2 ) ; 
% contour(hedB) ; 
 
% Author: Jie Liu n925a@unb.ca 
% Copyright 
% Date Created: December 19, 2000 
% Date Modified: December 19, 2000 
 
% Find the energy of each tap. 
hm = abs(h).^2 ; 
 
% Find the energy of all the taps. 
he = sum(hm,3) ; 
 
% Express the energy in dB. 
maxmaxvalue = max(max(he)) ; 
hedB = 10 * log10 ( he/maxmaxvalue ) ; 
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return ; 
 
%###################################################################### 
% This program is to built calcmsds (calculate RMS delay spread) 
% function 
 
% Author: Jie Liu n925a@unb.ca 
% Copyright 
% Date Created: December 19, 2000 
% Date Modified: July 12, 2002 
%###################################################################### 
function rms_delayspread_arrary=calcrmsds(h) 
%CALCMRP hedB = calcmrp ( h ) 
% Takes a 3 dimensional array h, which is a 2 dimensional 
% array of impulse responses and makes calculations 
% of 3_d rms delay spread and contour plot of rms delay spread. 
% Example: 
% clear; 
% load h2.mat; 
% R=2000;%(m) 
% d=50;%(m) 
% xset=[-R:d:R]; 
% yset=[-R:d:R]'; 
% rms_delayspread_arrary=calcrmsds(h2); 
%  mesh(xset,yset,abs(rms_delayspread_arrary)); 
%  xlabel( 'x' ) ; 
%  ylabel( 'y' ) ; 
%  zlabel( 'z' ) ; 
%  title('RMS delay spead'); 
% 
% clear; 
% load h2.mat; 
% R=2000;%(m) 
% d=50;%(m) 
% xset=[-R:d:R]; 
% yset=[-R:d:R]'; 
% rms_delayspread_arrary=calcrmsds(h2); 
% contour(xset,yset,abs(rms_delayspread_arrary)) ; 
% axis('square'); 
% colorbar; 
 
% Author: Jie Liu n925a@unb.ca 
% Copyright 
% Date Created: December 20, 2000 
% Date Modified: December 20, 2000 
 
% Find the rms delay spread of each tap. 
R=2000;%(m) 
d=50;%(m) 
Nover_cell_width=length([-R:d:R]); 
rms_delayspread_arrary=zeros(Nover_cell_width,Nover_cell_width); 
for i=1:Nover_cell_width 
   for j=1:Nover_cell_width 
      oneh=h(i,j,:); 
      rms_delayspread_arrary_of_oneh=rms_delaycalc(oneh); 
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      rms_delayspread_arrary(i,j)= rms_delayspread_arrary_of_oneh; 
   end 
end 
 

I.2 SOA 

The following is the main program for SOA-based scheme evaluated on the SOCLSFM. 

A few of the simple functions developed in this program are not provided.  

%###################################################################### 
% This program is to setup the SOA-based scheme on SOCLSFM 
% It involves the SOA-based scheme and SOA-based scheme results  
 
% Author: Jie Liu n925a@unb.ca 
% Copyright 
% Date Created: December 19, 2000 
% Date Modified: July 12, 2002 
%###################################################################### 
clear; 
close all; 
R=2000;%(m)  
d=50; 
i_centre=find([-R:50:R]==0); 
i_centre_ref=[i_centre,i_centre]; 
bc1=[0,0]; 
bc2=[1500,0]; 
bc3=[750,750*sqrt(3)]; 
Num_try=50; 
SE_SOA=zeros(1,Num_try); 
%The points are chosen the central points inside the circle 
%============================================================= 
cofficient=rand(1,Num_try); 
delta_test=linspace(0,2*pi,Num_try); 
delta=rand(1,Num_try).*delta_test; 
x=750+cofficient*866.*cos(delta); 
y=433+cofficient*866.*sin(delta); 
X_axis=x; 
Y_axis=y; 
%============================================================= 
x_head=zeros(1,Num_try); 
y_head=zeros(1,Num_try); 
%For every point,find error between the estimated value and fixed value 
p=0;%Initailize the number of error of estimate location less than 125m 
to 0 
q=0;%Initailize the outage location estimation 
for i=1:Num_try 
mc=[X_axis(i),Y_axis(i)]; 
fprintf('********************************************\n'); 
fprintf('The mobile is located at: %2.4d\n',mc(1)); 
fprintf('                          %2.4d\n',mc(2)); 
fprintf('The number of selected location %2.0d\n',i); 
load hwider1.mat; 
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hedB1 = calcmrp ( hwider1) ; 
load hwider2.mat; 
hedB2 = calcmrp ( hwider2 ) ; 
load hwider3.mat; 
hedB3 = calcmrp ( hwider3 ) ; 
ic=find([-R:d:R]==0); 
%The calculate forms for Number 1 generation of LSF 
mc_distance1=distance(bc1,mc); 
%The calculate forms for Number 2 generation of LSF 
mc_distance2=distance(bc2,mc); 
%The calculate forms for Number 3 generation of LSF 
mc_distance2=distance(bc3,mc); 
 
%For each base station  
%Get an impulse reponse by interpolation 
%Call them hc1,hc2,hc3 
%For the Bast Station 1 
p3=[mc(1)-mod(mc(1),d),mc(2)-mod(mc(2),d)]; 
p1=[p3(1),p3(2)+d]; 
p2=[p3(1)+d,p3(2)+d]; 
p4=[p3(1)+d,p3(2)]; 
p_distance1=distance(bc1,p1); 
p_distance2=distance(bc1,p2); 
p_distance3=distance(bc1,p3); 
p_distance4=distance(bc1,p4); 
p_power1=hedB1(p_distance1(1),p_distance1(2)); 
p_power2=hedB1(p_distance2(1),p_distance2(2)); 
p_power3=hedB1(p_distance3(1),p_distance3(2)); 
p_power4=hedB1(p_distance4(1),p_distance4(2)); 
L1=len(p1,mc); 
L2=len(p2,mc); 
L3=len(p3,mc); 
L4=len(p4,mc); 
L=[L1,L2,L3,L4]'; 
w1=-(sqrt(2)*L1)/(2*d)+L2/(2*d)+L3/(2*d); 
w2=-(sqrt(2)*L2)/(2*d)+L1/(2*d)+L4/(2*d); 
w3=-(sqrt(2)*L3)/(2*d)+L1/(2*d)+L4/(2*d); 
w4=-(sqrt(2)*L4)/(2*d)+L2/(2*d)+L3/(2*d); 
w=[w1,w2,w3,w4]; 
w=sum(w); 
hc1=p_power1*(w1/w)+p_power2*(w2/w)+p_power3*(w3/w)+p_power4*(w4/w); 
 
%For the base station 2 
p_distance1=distance(bc2,p1); 
p_distance2=distance(bc2,p2); 
p_distance3=distance(bc2,p3); 
p_distance4=distance(bc2,p4); 
p_power1=hedB2(p_distance1(1),p_distance1(2)); 
p_power2=hedB2(p_distance2(1),p_distance2(2)); 
p_power3=hedB2(p_distance3(1),p_distance3(2)); 
p_power4=hedB2(p_distance4(1),p_distance4(2)); 
L1=len(p1,mc); 
L2=len(p2,mc); 
L3=len(p3,mc); 
L4=len(p4,mc); 
L=[L1,L2,L3,L4]'; 
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w1=-(sqrt(2)*L1)/(2*d)+L2/(2*d)+L3/(2*d); 
w2=-(sqrt(2)*L2)/(2*d)+L1/(2*d)+L4/(2*d); 
w3=-(sqrt(2)*L3)/(2*d)+L1/(2*d)+L4/(2*d); 
w4=-(sqrt(2)*L4)/(2*d)+L2/(2*d)+L3/(2*d); 
w=[w1,w2,w3,w4]; 
w=sum(w); 
hc2=p_power1*(w1/w)+p_power2*(w2/w)+p_power3*(w3/w)+p_power4*(w4/w); 
 
%For the Bast Station 3 
p3=[mc(1)-mod(mc(1),d),mc(2)-mod(mc(2),d)]; 
p1=[p3(1),p3(2)+d]; 
p2=[p3(1)+d,p3(2)+d]; 
p4=[p3(1)+d,p3(2)]; 
p_distance1=round(distance(bc3,p1)); 
p_distance2=round(distance(bc3,p2)); 
p_distance3=round(distance(bc3,p3)); 
p_distance4=round(distance(bc3,p4)); 
p_power1=hedB3(p_distance1(1),p_distance1(2)); 
p_power2=hedB3(p_distance2(1),p_distance2(2)); 
p_power3=hedB3(p_distance3(1),p_distance3(2)); 
p_power4=hedB3(p_distance4(1),p_distance4(2)); 
L1=len(p1,mc); 
L2=len(p2,mc); 
L3=len(p3,mc); 
L4=len(p4,mc); 
L=[L1,L2,L3,L4]'; 
w1=-(sqrt(2)*L1)/(2*d)+L2/(2*d)+L3/(2*d); 
w2=-(sqrt(2)*L2)/(2*d)+L1/(2*d)+L4/(2*d); 
w3=-(sqrt(2)*L3)/(2*d)+L1/(2*d)+L4/(2*d); 
w4=-(sqrt(2)*L4)/(2*d)+L2/(2*d)+L3/(2*d); 
w=[w1,w2,w3,w4]; 
w=sum(w); 
hc3=p_power1*(w1/w)+p_power2*(w2/w)+p_power3*(w3/w)+p_power4*(w4/w); 
 
%Compute the power (Pr1,Pr2,Pr3)of hc1,hc2,hc3 not in dB 
%find the power of hc1 
Pr1=10^(hc1/10); 
 
%Compute the power (Pr1,Pr2,Pr3)of hc1,hc2,hc3 not in dB 
%find the power of hc2 
Pr2=10^(hc2/10); 
 
%Compute the power (Pr1,Pr2,Pr3)of hc1,hc2,hc3 not in dB 
%find the power of hc3 
Pr3=10^(hc3/10); 
 
%Estimate location based on powers. assume n=4 
%Find the first circle  
n=4; 
a=sqrt((Pr1/Pr2)^(2/n)); 
g=bc2(1); 
xc1=g/(1-a^2); 
yc1=bc1(2); 
%r1=abs((a*g)/(1-a^2)); 
r1=(a*g)/(1-a^2); 
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%Find the second circle 
n=4; 
a=sqrt((Pr1/Pr3)^(2/n)); 
g=bc2(1); 
xc2=g/(2*(1-a^2)); 
yc2=(sqrt(3)*g)/(2*(1-a^2)); 
%r2=abs((a*g)/(1-a^2)); 
r2=(a*g)/(1-a^2); 
 
%Find the third circle  
n=4; 
a=sqrt((Pr2/Pr3)^(2/n)); 
g=bc2(1); 
xc3=(g-2*g*a^2)/(2*(1-a^2)); 
yc3=(sqrt(3)*g)/(2*(1-a^2)); 
%r3=abs((a*g)/(1-a^2)); 
r3=(a*g)/(1-a^2); 
 
%Find the intersected points of these three circles  
[x1,y1,x2,y2,x3,y3]=recalculate_power(Pr1,Pr2,Pr3); 
%If the circles do not overlap, then reduce the power to make the 
circle bigger  
Unable_locate=0;%able to be located 
   if (real(x1)~=x1|real(y1)~=y1) 
    k=1; 
    while k<1000    
    Pr1=Pr1-Pr1*0.025*k; 
    [x1,y1]=recalculate_power1(Pr1,Pr2,Pr3); 
      if (real(x1)~=x1|real(y1)~=y1) 
         k=k+1; 
         if (k>=1000|Pr1<=0) 
            Unable_locate=1;%unable to be located; 
            break; 
         end 
      else 
          if 
len([x1(1),y1(1)],[mc(1),mc(2)])<=len([x1(2),y1(2)],[mc(1),mc(2)]) 
        c1=[x1(1),y1(1)]; 
      else  
        c1=[x1(2),y1(2)]; 
          end 
      break; 
      end 
    end 
   end 
    
   if (real(x2)~=x2|real(y2)~=y2) 
    k=0; 
    while k<1000 
    k=k+1; 
    Pr2=Pr2-Pr2*0.025*k; 
    [x2,y2]=recalculate_power2(Pr1,Pr2,Pr3); 
      if (real(x2)~=x2|real(y2)~=y2) 
         k=k+1; 
         if (k>=1000|Pr2<=0) 
            Unable_locate=1;%unable to be located; 
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            break; 
         end 
      else 
         if 
len([x2(1),y2(1)],[mc(1),mc(2)])<=len([x2(2),y2(2)],[mc(1),mc(2)]) 
        c2=[x2(1),y2(1)]; 
      else  
        c2=[x2(2),y2(2)]; 
         end 
      break; 
      end 
    end 
   end 
    
   if (real(x3)~=x3|real(y3)~=y3) 
    k=0; 
    while k<1000 
    k=k+1;    
    Pr3=Pr3-Pr3*0.025*k; 
    [x3,y3]=recalculate_power3(Pr1,Pr2,Pr3); 
      if (real(x3)~=x3|real(y3)~=y3) 
         k=k+1; 
         if (k>=1000|Pr3<=0) 
            Unable_locate=1;%unable to be located; 
            break; 
         end 
      else 
         if 
len([x3(1),y3(1)],[mc(1),mc(2)])<=len([x3(2),y3(2)],[mc(1),mc(2)]) 
        c3=[x3(1),y3(1)];  
     else  
        c3=[x3(2),y3(2)]; 
         end 
      break; 
      end 
   end 
  end 
  %If the circles are overlapped, then compute axes of central three 
points  
   
 if (real(x1)==x1|real(y1)==y1) 
   if len([x1(1),y1(1)],[mc(1),mc(2)])<=len([x1(2),y1(2)],[mc(1),mc(2)]) 
    c1=[x1(1),y1(1)]; 
   else  
    c1=[x1(2),y1(2)]; 
   end 
 end 
  
 if (real(x2)==x2|real(y2)==y2)  
   if len([x2(1),y2(1)],[mc(1),mc(2)])<=len([x2(2),y2(2)],[mc(1),mc(2)]) 
    c2=[x2(1),y2(1)]; 
   else  
    c2=[x2(2),y2(2)]; 
   end 
 end 
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 if (real(x3)==x3|real(y3)==y3)   
   if len([x3(1),y3(1)],[mc(1),mc(2)])<=len([x3(2),y3(2)],[mc(1),mc(2)]) 
    c3=[x3(1),y3(1)];  
   else  
    c3=[x3(2),y3(2)]; 
   end 
 end 
  
 if (Unable_locate==0) 
 % Find the central weight of the intersection 
 %[x,y]=solve('y-y1=((y1-(y2+y3)/2)/(x1-(x2+x3)/2))*(x-x1)','y-y2=((y2-
(y1+y3)/2)/(x2-(x1+x3)/2))*(x-x2)','x','y') 
   x_head(i)=1/3*c1(1)+1/3*c2(1)+1/3*c3(1); 
   y_head(i)=1/3*c2(2)+1/3*c1(2)+1/3*c3(2); 
   c=[x_head(i),y_head(i)]; 
      SE_SOA(i)=sqrt((c(1)-mc(1))^2+(c(2)-mc(2))^2); %root of Square 
error of SOA method 
     if SE_SOA(i)<=125 
      p=p+1; 
    end 
 % Find the mean square error between these input points and output 
points 
 elseif (Unable_locate==1) 
      fprintf('It is out of range for mobile to be located.\n'); 
      q=q+1;  
 end 
end 
 
MSE_SOA = sum(SE_SOA(find(SE_SOA~=0)))/length(find(SE_SOA~=0)); 
MSE_SOA_percent = (p*100)/(length(find(SE_SOA)~=0)); 
MSE_outage_percent = (q/Num_try)*100; 
 
%The following the SOA estimate results using SOCLSFM 
P=[x_head;y_head]; 
T=[X_axis;Y_axis]; 
format short; 
 
figure(1) 
hold on; 
for i=1:Num_try 
    s=sprintf('%d',i); 
    if P(:,i)~=0 
    plot( P(1,i),P(2,i),'o'),text(P(1,i)+8,P(2,i)+8,s);   
    end 
    plot( T(1,i),T(2,i),'*'),text(T(1,i)+8,T(2,i)+8,s);  
end 
plot(0,0,'ro');plot(1500,0,'ro');plot(750,750*sqrt(3),'ro'); 
text(0+8,0+8,'BS1');text(1500+8,0+8,'BS2');text(750+8,750*sqrt(3)+8,'BS
3'); 
hold off; 
s=sprintf('Estimated locations, Outage is:%d\n',MSE_outage_percent); 
xlabel(s); 
ylabel('SOA estimated locations :o   Target locations :*'); 
s=sprintf('Mean Error of SOA-based scheme is %d\n',MSE_SOA); 
title(s); 
grid;  
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fprintf('==========================================================\n'); 
fprintf('The percentage less than 125 m after SOA-based scheme  
%3.4d\n',MSE_SOA_percent); 
fprintf('The outage of SOA-based scheme is %3.4d\n',MSE_outage_percent); 
 

I.3 NN 

     The following is the main program for the first integrated NN and SOA scheme. A 

few of the simple functions developed in this program are not provided.  

%###################################################################### 
% This program is built NN inputs for training.  
% x_head, y_head: coordinates of SOA estimated PL 
% mean_delay1, mean_delay2, mean_delay3: three mean delays 
% impulse_response_arrary1 (16-tap): Impulse response 1 
% impulse_response_arrary2 (16-tap): Impulse response 2 
% impulse_response_arrary3 (16-tap): Impulse response 3 
 
% Author: Jie Liu n925a@unb.ca 
% Copyright 
% Date Created: December 19, 2000 
% Date Modified: December 19, 2000 
%###################################################################### 
%NN network implementation with Random inputs (the central points 
%inside the circle) 
%Training and testing use the same pattern of SOA-based scheme 
%save the NN inputs data for the training test 
clear; 
close all; 
R=2000;%(m)  
d=50; 
i_centre=find([-R:50:R]==0); 
i_centre_ref=[i_centre,i_centre]; 
bc1=[0,0]; 
bc2=[1500,0]; 
bc3=[750,750*sqrt(3)]; 
Num_try = 500; 
SE_SOA = zeros(1,Num_try); 
%The points are chosen the central points inside the circle 
%============================================================= 
cofficient=rand(1,Num_try); 
delta_test=linspace(0,2*pi,Num_try); 
delta=rand(1,Num_try).*delta_test; 
x=750+cofficient*866.*cos(delta); 
y=433+cofficient*866.*sin(delta); 
X_axis=x; 
Y_axis=y; 
save X_axis X_axis;%Network training data 
save Y_axis Y_axis;%Network training data 
%============================================================= 
x_head=zeros(1,Num_try); 
y_head=zeros(1,Num_try); 
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mean_delay1=zeros(1,Num_try); 
mean_delay2=zeros(1,Num_try); 
mean_dealy3=zeros(1,Num_try); 
%For every point, the error between the estimated value and fixed value 
is set to 0, p=0 
%Initailize the number of error of estimate location less than 125m to 
0, q=0 
%Initailize the outage location estimation 
for i=1:Num_try 
mc=[X_axis(i),Y_axis(i)]; 
fprintf('********************************************\n'); 
fprintf('The mobile is located at: %2.4d\n',mc(1)); 
fprintf('                          %2.4d\n',mc(2)); 
fprintf('The number of selected location %2.0d\n',i); 
load hwider1_new.mat; 
hedB1 = calcmrp ( hwider1_new ) ; 
load hwider2_new.mat; 
hedB2 = calcmrp ( hwider2_new ) ; 
load hwider3_new.mat; 
hedB3 = calcmrp ( hwider3_new ) ; 
ic=find([-R:d:R]==0); 
%calcualte the mean delay 
Nover_cell_width=length([-R:d:R]); 
for p=1:Nover_cell_width 
   for q=1:Nover_cell_width 
      oneh1=hwider1_new(p,q,:); 
      mean_delays_of_oneh1=mean_dealy_calc(oneh1); 
      mean_delays_arrary1(p,q)= mean_delays_of_oneh1; 
      impulse_response_arrary1(p,q)=oneh1; 
      oneh2=hwider2_new(p,q,:); 
      mean_delays_of_oneh2=mean_dealy_calc(oneh2); 
      mean_delays_arrary2(p,q)= mean_delays_of_oneh2; 
      impulse_response_arrary2(p,q)=oneh1; 
      oneh3=hwider3_new(p,q,:); 
      mean_delays_of_oneh3=mean_dealy_calc(oneh3); 
      mean_delays_arrary3(p,q)= mean_delays_of_oneh3; 
      impulse_response_arrary3(p,q)=oneh1; 
   end 
end 
 
%For each base station  
%Get an impulse reponse by interpolation 
%Call them hc1,hc2,hc3 
%For the base station 1 
p3=[mc(1)-mod(mc(1),d),mc(2)-mod(mc(2),d)]; 
p1=[p3(1),p3(2)+d]; 
p2=[p3(1)+d,p3(2)+d]; 
p4=[p3(1)+d,p3(2)]; 
p_distance1=distance(bc1,p1); 
p_distance2=distance(bc1,p2); 
p_distance3=distance(bc1,p3); 
p_distance4=distance(bc1,p4); 
p_power1=hedB1(p_distance1(1),p_distance1(2)); 
p_power2=hedB1(p_distance2(1),p_distance2(2)); 
p_power3=hedB1(p_distance3(1),p_distance3(2)); 
p_power4=hedB1(p_distance4(1),p_distance4(2)); 
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p_delay1=mean_delays_arrary1(p_distance1(1),p_distance1(2)); 
p_delay2=mean_delays_arrary1(p_distance2(1),p_distance2(2)); 
p_delay3=mean_delays_arrary1(p_distance3(1),p_distance3(2)); 
p_delay4=mean_delays_arrary1(p_distance4(1),p_distance4(2)); 
L1=len(p1,mc); 
L2=len(p2,mc); 
L3=len(p3,mc); 
L4=len(p4,mc); 
L=[L1,L2,L3,L4]'; 
w1=-(sqrt(2)*L1)/(2*d)+L2/(2*d)+L3/(2*d); 
w2=-(sqrt(2)*L2)/(2*d)+L1/(2*d)+L4/(2*d); 
w3=-(sqrt(2)*L3)/(2*d)+L1/(2*d)+L4/(2*d); 
w4=-(sqrt(2)*L4)/(2*d)+L2/(2*d)+L3/(2*d); 
w=[w1,w2,w3,w4]; 
w=sum(w); 
hc1=p_power1*(w1/w)+p_power2*(w2/w)+p_power3*(w3/w)+p_power4*(w4/w); 
mean_delay1(i)=p_delay1*(w1/w)+p_delay2*(w2/w)+p_delay3*(w3/w)+p_delay4
*(w4/w); 
 
%For the base station 2 
p_distance1=distance(bc2,p1); 
p_distance2=distance(bc2,p2); 
p_distance3=distance(bc2,p3); 
p_distance4=distance(bc2,p4); 
p_power1=hedB2(p_distance1(1),p_distance1(2)); 
p_power2=hedB2(p_distance2(1),p_distance2(2)); 
p_power3=hedB2(p_distance3(1),p_distance3(2)); 
p_power4=hedB2(p_distance4(1),p_distance4(2)); 
p_delay1=mean_delays_arrary2(p_distance1(1),p_distance1(2)); 
p_delay2=mean_delays_arrary2(p_distance2(1),p_distance2(2)); 
p_delay3=mean_delays_arrary2(p_distance3(1),p_distance3(2)); 
p_delay4=mean_delays_arrary2(p_distance4(1),p_distance4(2)); 
L1=len(p1,mc); 
L2=len(p2,mc); 
L3=len(p3,mc); 
L4=len(p4,mc); 
L=[L1,L2,L3,L4]'; 
w1=-(sqrt(2)*L1)/(2*d)+L2/(2*d)+L3/(2*d); 
w2=-(sqrt(2)*L2)/(2*d)+L1/(2*d)+L4/(2*d); 
w3=-(sqrt(2)*L3)/(2*d)+L1/(2*d)+L4/(2*d); 
w4=-(sqrt(2)*L4)/(2*d)+L2/(2*d)+L3/(2*d); 
w=[w1,w2,w3,w4]; 
w=sum(w); 
hc2=p_power1*(w1/w)+p_power2*(w2/w)+p_power3*(w3/w)+p_power4*(w4/w); 
mean_delay2(i)=p_delay1*(w1/w)+p_delay2*(w2/w)+p_delay3*(w3/w)+p_delay4
*(w4/w); 
 
%For the base station 3 
p_distance1=round(distance(bc3,p1)); 
p_distance2=round(distance(bc3,p2)); 
p_distance3=round(distance(bc3,p3)); 
p_distance4=round(distance(bc3,p4)); 
p_power1=hedB3(p_distance1(1),p_distance1(2)); 
p_power2=hedB3(p_distance2(1),p_distance2(2)); 
p_power3=hedB3(p_distance3(1),p_distance3(2)); 
p_power4=hedB3(p_distance4(1),p_distance4(2)); 
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p_delay1=mean_delays_arrary3(p_distance1(1),p_distance1(2)); 
p_delay2=mean_delays_arrary3(p_distance2(1),p_distance2(2)); 
p_delay3=mean_delays_arrary3(p_distance3(1),p_distance3(2)); 
p_delay4=mean_delays_arrary3(p_distance4(1),p_distance4(2)); 
L1=len(p1,mc); 
L2=len(p2,mc); 
L3=len(p3,mc); 
L4=len(p4,mc); 
L=[L1,L2,L3,L4]'; 
w1=-(sqrt(2)*L1)/(2*d)+L2/(2*d)+L3/(2*d); 
w2=-(sqrt(2)*L2)/(2*d)+L1/(2*d)+L4/(2*d); 
w3=-(sqrt(2)*L3)/(2*d)+L1/(2*d)+L4/(2*d); 
w4=-(sqrt(2)*L4)/(2*d)+L2/(2*d)+L3/(2*d); 
w=[w1,w2,w3,w4]; 
w=sum(w); 
hc3=p_power1*(w1/w)+p_power2*(w2/w)+p_power3*(w3/w)+p_power4*(w4/w); 
mean_delay3(i)=p_delay1*(w1/w)+p_delay2*(w2/w)+p_delay3*(w3/w)+p_delay4
*(w4/w); 
 
%Compute the power (Pr1,Pr2,Pr3)of hc1,hc2,hc3 not in dB 
%find the power of hc1 
Pr1=10^(hc1/10); 
 
%Compute the power (Pr1,Pr2,Pr3)of hc1,hc2,hc3 not in dB 
%find the power of hc2 
Pr2=10^(hc2/10); 
 
%Compute the power (Pr1,Pr2,Pr3)of hc1,hc2,hc3 not in dB 
%find the power of hc3 
Pr3=10^(hc3/10); 
 
%Estimate location based on powers. assume n=4 
%Find the first circle  
n=4; 
a=sqrt((Pr1/Pr2)^(2/n)); 
g=bc2(1); 
xc1=g/(1-a^2); 
yc1=bc1(2); 
%r1=abs((a*g)/(1-a^2)); 
r1=(a*g)/(1-a^2); 
 
%Find the second circle 
n=4; 
a=sqrt((Pr1/Pr3)^(2/n)); 
g=bc2(1); 
xc2=g/(2*(1-a^2)); 
yc2=(sqrt(3)*g)/(2*(1-a^2)); 
%r2=abs((a*g)/(1-a^2)); 
r2=(a*g)/(1-a^2); 
 
%Find the third circle  
n=4; 
a=sqrt((Pr2/Pr3)^(2/n)); 
g=bc2(1); 
xc3=(g-2*g*a^2)/(2*(1-a^2)); 
yc3=(sqrt(3)*g)/(2*(1-a^2)); 
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%r3=abs((a*g)/(1-a^2)); 
r3=(a*g)/(1-a^2); 
 
%Find the intersected points of these three circles 
[x1,y1,x2,y2,x3,y3]=recalculate_power(Pr1,Pr2,Pr3); 
%If the circles do not overlap, then reduce the power to make the 
circle bigger  
Unable_locate=0;%able to be located 
   if (real(x1)~=x1|real(y1)~=y1) 
    k=1; 
    while k<1000    
    Pr1=Pr1-Pr1*0.025*k; 
    [x1,y1]=recalculate_power1(Pr1,Pr2,Pr3); 
      if (real(x1)~=x1|real(y1)~=y1) 
         k=k+1; 
         if (k>=1000|Pr1<=0) 
            %fprintf('It is out of range for mobile to be located.\n') 
            Unable_locate=1;%unable to be located; 
            break; 
         end 
      else 
          if 
len([x1(1),y1(1)],[mc(1),mc(2)])<=len([x1(2),y1(2)],[mc(1),mc(2)]) 
        c1=[x1(1),y1(1)]; 
      else  
        c1=[x1(2),y1(2)]; 
          end 
      break; 
      end 
    end 
   end 
    
   if (real(x2)~=x2|real(y2)~=y2) 
    k=0; 
    while k<1000 
    k=k+1; 
    Pr2=Pr2-Pr2*0.025*k; 
    [x2,y2]=recalculate_power2(Pr1,Pr2,Pr3); 
      if (real(x2)~=x2|real(y2)~=y2) 
         k=k+1; 
         if (k>=1000|Pr2<=0) 
            %fprintf('It is out of range for mobile to be located.\n') 
            Unable_locate=1;%unable to be located; 
            break; 
         end 
      else 
         if 
len([x2(1),y2(1)],[mc(1),mc(2)])<=len([x2(2),y2(2)],[mc(1),mc(2)]) 
        c2=[x2(1),y2(1)]; 
      else  
        c2=[x2(2),y2(2)]; 
         end 
      break; 
      end 
    end 
   end 
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   if (real(x3)~=x3|real(y3)~=y3) 
    k=0; 
    while k<1000 
    k=k+1;    
    Pr3=Pr3-Pr3*0.025*k; 
    [x3,y3]=recalculate_power3(Pr1,Pr2,Pr3); 
      if (real(x3)~=x3|real(y3)~=y3) 
         k=k+1; 
         if (k>=1000|Pr3<=0) 
            %fprintf('It is out of range for mobile to be located.\n') 
            Unable_locate=1;%unable to be located; 
            break; 
         end 
      else 
         if 
len([x3(1),y3(1)],[mc(1),mc(2)])<=len([x3(2),y3(2)],[mc(1),mc(2)]) 
        c3=[x3(1),y3(1)];  
     else  
        c3=[x3(2),y3(2)]; 
         end 
      break; 
      end 
   end 
  end 
  %If the circles are overlapped, then compute axes of central three 
points  
   
 if (real(x1)==x1|real(y1)==y1) 
   if len([x1(1),y1(1)],[mc(1),mc(2)])<=len([x1(2),y1(2)],[mc(1),mc(2)]) 
    c1=[x1(1),y1(1)]; 
   else  
    c1=[x1(2),y1(2)]; 
   end 
 end 
  
 if (real(x2)==x2|real(y2)==y2)  
   if len([x2(1),y2(1)],[mc(1),mc(2)])<=len([x2(2),y2(2)],[mc(1),mc(2)]) 
    c2=[x2(1),y2(1)]; 
   else  
    c2=[x2(2),y2(2)]; 
   end 
 end 
 
 if (real(x3)==x3|real(y3)==y3)   
   if len([x3(1),y3(1)],[mc(1),mc(2)])<=len([x3(2),y3(2)],[mc(1),mc(2)]) 
    c3=[x3(1),y3(1)];  
   else  
    c3=[x3(2),y3(2)]; 
   end 
 end 
  
 %if Unable_locate==1 
 %   break; 
 %elseif Unable_locate==0 
 if (Unable_locate==0) 
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 % Find the central weight of the intersection 
 %[x,y]=solve('y-y1=((y1-(y2+y3)/2)/(x1-(x2+x3)/2))*(x-x1)','y-y2=((y2-
(y1+y3)/2)/(x2-(x1+x3)/2))*(x-x2)','x','y') 
   x_head(i)=1/3*c1(1)+1/3*c2(1)+1/3*c3(1); 
   y_head(i)=1/3*c2(2)+1/3*c1(2)+1/3*c3(2); 
   c=[x_head(i),y_head(i)]; 
      SE_SOA(i)=sqrt((c(1)-mc(1))^2+(c(2)-mc(2))^2); %root of Square 
error of SOA method 
      if SE_SOA(i)<=125 
      p = p + 1; 
    end 
   % Find the mean square error between these input points and output 
points 
 elseif (Unable_locate==1) 
      fprintf('It is out of range for mobile to be located.\n'); 
      q = q + 1; 
 end 
end 
MSE_SOA = sum(SE_SOA(find(SE_SOA~=0)))/length(find(SE_SOA~=0)); 
MSE_SOA_percent = (p*100)/(length(find(SE_SOA)~=0)); 
MSE_outage_percent_SOA = (q/Num_try)*100; 
fprintf('==========================================================\n'); 
fprintf('The percentage less than 125 m after SOA-based scheme  
%3.4d\n',MSE_SOA_percent); 
fprintf('The mean square error of SOA-based scheme %3.4d\n',MSE_SOA); 
fprintf('The outage of SOA-based scheme is 
3.4d\n',MSE_outage_percent_SOA); 
save x_head x_head;%Network training data 
save y_head y_head;%Network training data 
save mean_delay1 mean_delay1;%Network training data 
save mean_delay2 mean_delay2;%Network training data 
save mean_delay3 mean_delay3;%Network training data 
save impulse_response_arrary1;%Network training data 
save impulse_response_arrary2;%Network training data 
save impulse_response_arrary3;%Network training data 
 
%###################################################################### 
% This program is to train the NN.  
% x_head, y_head: coordinates of SOA estimated PL 
% mean_delay1, mean_delay2, mean_delay3: three mean delays 
% impulse_response_arrary1 (16-tap): Impulse response 1 
% impulse_response_arrary2 (16-tap): Impulse response 2 
% impulse_response_arrary3 (16-tap): Impulse response 3 
 
% Author: Jie Liu n925a@unb.ca 
% Copyright 
% Date Created: December 19, 2000 
% Date Modified: December 19, 2000 
%###################################################################### 
clear; 
close all; 
load x_head;%Network training data 
load y_head;%Network training data 
load mean_delay1;% Network training data 
load mean_delay2;%Network training data 
load mean_delay3;%Network training data 
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load impulse_response_arrary1;%Network training data 
load impulse_response_arrary2;%Network training data 
load impulse_response_arrary3;%Network training data 
load X_axis X_axis;%Network training data 
load Y_axis Y_axis;%Network training data 
count =0; 
Num_try =1500; 
for i=1:Num_try 
   while x_head(i)==0 
      count = count +1; 
      for k=i:Num_try-1 
         x_head(k) = x_head(k+1); 
         y_head(k) = y_head(k+1); 
         mean_delay1(k) = mean_delay1(k+1); 
         mean_delay2(k) = mean_delay2(k+1); 
         mean_delay3(k) = mean_delay3(k+1); 
         for i=1:Num_try  
         impulse_response_arrary1(i,k) = 
impulse_response_arrary1(i,k+1); 
         impulse_response_arrary2(i,k)= impulse_response_arrary2(i,k+1); 
         impulse_response_arrary3(i,k) = 
impulse_response_arrary3(i,k+1); 
         end 
         X_axis(k) = X_axis(k+1); 
         Y_axis(k) = Y_axis(k+1); 
      end 
    end  
end 
 
x_head = x_head(1:Num_try - count); 
y_head = y_head(1:Num_try - count); 
mean_delay1 = mean_delay1(1:Num_try - count); 
mean_delay2 = mean_delay2(1:Num_try - count); 
mean_delay3 = mean_delay3(1:Num_try - count); 
for i = 1:16 
impulse_response_arrary1(i) = impulse_response_arrary1(i,1:Num_try - 
count); 
impulse_response_arrary2(i) = impulse_response_arrary2(i,1:Num_try - 
count); 
impulse_response_arrary3(i) = impulse_response_arrary3(i,1:Num_try - 
count); 
end 
X_axis = X_axis(1:Num_try - count); 
Y_axis = Y_axis(1:Num_try - count); 
 
P=[x_head;y_head;mean_delay1;mean_delay2;mean_delay3;impulse_response_a
rrary1(1);... 
impulse_response_arrary1(2);impulse_response_arrary1(3);impulse_respons
e_arrary1(4);... 
impulse_response_arrary1(5);impulse_response_arrary1(6);impulse_respons
e_arrary1(7);... 
impulse_response_arrary1(8);impulse_response_arrary1(9);impulse_respons
e_arrary1(10);... 
impulse_response_arrary1(11);impulse_response_arrary1(12);impulse_respo
nse_arrary1(13);... 
impulse_response_arrary1(14);impulse_response_arrary1(15);impulse_respo
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nse_arrary1(16);... 
 
impulse_response_arrary2(1);... 
impulse_response_arrary2(2);impulse_response_arrary2(3);impulse_respons
e_arrary2(4);... 
impulse_response_arrary2(5);impulse_response_arrary2(6);impulse_respons
e_arrary2(7);... 
impulse_response_arrary2(8);impulse_response_arrary2(9);impulse_respons
e_arrary2(10);... 
impulse_response_arrary2(11);impulse_response_arrary2(12);impulse_respo
nse_arrary2(13);... 
impulse_response_arrary2(14);impulse_response_arrary2(15);impulse_respo
nse_arrary2(16);... 
 
impulse_response_arrary3(1);... 
impulse_response_arrary3(2);impulse_response_arrary3(3);impulse_respons
e_arrary3(4);... 
impulse_response_arrary3(5);impulse_response_arrary3(6);impulse_respons
e_arrary3(7);... 
impulse_response_arrary3(8);impulse_response_arrary3(9);impulse_respons
e_arrary3(10);... 
impulse_response_arrary3(11);impulse_response_arrary3(12);impulse_respo
nse_arrary3(13);... 
impulse_response_arrary3(14);impulse_response_arrary3(15);impulse_respo
nse_arrary2(16);... 
] 
T=[X_axis;Y_axis]; 
net1=newff([minmax(x_head);minmax(y_head);minmax(mean_delay1);minmax(me
an_delay2);minmax(mean_delay3);... 
minmax(impulse_response_arrary1(1)); 
minmax(impulse_response_arrary1(2));... 
minmax(impulse_response_arrary1(3));minmax(impulse_response_arrary1(4))
;minmax(impulse_response_arrary1(5));... 
minmax(impulse_response_arrary1(6));minmax(impulse_response_arrary1(7))
;minmax(impulse_response_arrary1(8));... 
minmax(impulse_response_arrary1(9));minmax(impulse_response_arrary1(10)
);minmax(impulse_response_arrary1(11));... 
minmax(impulse_response_arrary1(12));minmax(impulse_response_arrary1(13
));minmax(impulse_response_arrary1(14));... 
minmax(impulse_response_arrary1(15));minmax(impulse_response_arrary1(16
));... 
 
minmax(impulse_response_arrary2(1)); 
minmax(impulse_response_arrary2(2));... 
minmax(impulse_response_arrary2(3));minmax(impulse_response_arrary2(4))
;minmax(impulse_response_arrary2(5));... 
minmax(impulse_response_arrary2(6));minmax(impulse_response_arrary2(7))
;minmax(impulse_response_arrary2(8));... 
minmax(impulse_response_arrary2(9));minmax(impulse_response_arrary2(10)
);minmax(impulse_response_arrary2(11));... 
minmax(impulse_response_arrary2(12));minmax(impulse_response_arrary2(13
));minmax(impulse_response_arrary2(14));... 
minmax(impulse_response_arrary2(15));minmax(impulse_response_arrary1(16
));... 
 
minmax(impulse_response_arrary3(1)); 
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minmax(impulse_response_arrary3(2));... 
minmax(impulse_response_arrary3(3));minmax(impulse_response_arrary3(4))
;minmax(impulse_response_arrary3(5));... 
minmax(impulse_response_arrary3(6));minmax(impulse_response_arrary3(7))
;minmax(impulse_response_arrary3(8));... 
minmax(impulse_response_arrary3(9));minmax(impulse_response_arrary3(10)
);minmax(impulse_response_arrary3(11));... 
minmax(impulse_response_arrary3(12));minmax(impulse_response_arrary3(13
));minmax(impulse_response_arrary3(14));... 
minmax(impulse_response_arrary3(15));minmax(impulse_response_arrary3(16
));... 
],[20,2],{'tansig','purelin'},'trainlm'); 
net1.trainParam.show=20; 
net1.trainParam.epochs=120; 
net1.trainParam.goal=1e-10; 
save net1 net1; 
save P P; 
save T T; 
save count count; 
 
%###################################################################### 
% This program is to evaluate the performance of the integrated scheme 
% on SOCLSFM.  
 
% Author: Jie Liu n925a@unb.ca 
% Copyright 
% Date Created: December 19, 2000 
% Date Modified: December 19, 2000 
%###################################################################### 
clear; 
load net1; 
load P; 
load T; 
load count; 
Num_try=1500; 
net2 = train(net1,P,T); 
save net2 net2; 
a= sim(net2,P); 
e = T-a; 
MSE_NN = mean(sqrt(e(1,:).^2+e(2,:).^2)); 
m=0; 
for i=1:Num_try-count 
    RSE_NN=sqrt(e(1,i)^2+e(2,i)^2); 
    if RSE_NN<125 
       m=m+1; 
    end 
end 
MSE_NN_percent=(m/(Num_try-count))*100; 
fprintf('==========================================================\n'); 
fprintf('Mean Error of NN test is %3.4d\n',MSE_NN) 
fprintf('The percentage less than 125m after NN estimation 
%3.4d\n',MSE_NN_percent); 
 
 


