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Abstract

This thesis focuses on evaluating an effective type of Position Location (PL) system
for cellular phones.

Due to the inadequacy of existing Large-Scale-Fading (LSF) models, a new model is
developed. This new LSF model introduces random changes called Splashes-Of-Change
(SOC), in the root-mean-square delay spread of channel impulse responses over small
regions of a cell. The new LSF mode is caled the SOC LSF Model (SOCLSFM) and
includes propagation delay, path loss, exponentially distributed power delay profiles,
and log-normal shadowing.

Strength-Of-Arrival (SOA) PL simulations were used to evaluate the SOCLSFM.
SOA PL alone is often not sufficiently accurate because of the multipath. A multilayer
Levenberg-Marquardt-trained feed-forward Neural Network (NN) was introduced and
successfully improved accuracy compared to SOA PL. Impulse responses from the
mobile to the base stations, as well as extracted features of impulse responses, are the

inputs to the NN.
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Chapter 1 Introduction

1.1 Background

During the past few years competition among telecommunications industries has
been very intense. Mobile network operators are looking for new ways to improve their
products and services and yet stay profitable. The operators compete with each other to
provide customers with highly personalized service and in this context, cellular phone
location systems have become a focus of intense research and devel opment.

A celular phone location system has potential applications, which benefit both
industry and customers. The potentia applications of location-based services [Drane98]
can be broadly classified into four major categories. location-based information,
location-sensitive billing, emergency services, and location tracking. Figure 1.1 shows

some of the Position Location (PL) applications under the four categories.

Position location

applications
|
I I I ]
Location-based Location-sensitive Emergency Location
information billing services tracking
|
[ [ 1T /1 [
Traffic Navigational Location-based Locating fraudulent Enhanced 911 Network Fleet
information assistance billing phone users (E-911) optimization tracking
Enhanced 411 Enhanced roadside Police surveillance of Personal location
information assistance people tracking

Figure 1.1 PL-based applications
The Enhanced 911(E-911) service, especially the location estimation, forms the main
focus of this research. A recent study of wireless location by the State of New Jersey
indicates that wireless E-911 calls accounted for 43% of all E-911 calls received during
the trial [State of NJ97]. Location information for wireless E911 calls permits rapid

response which can help in situations where callers are disoriented, disabled, unable to



speak, or do not know their location [Caffery98].

Besides providing emergency services, the position location allows location-sensitive
billing. The network operators provide differential tariffs depending on the location of the
mobile. Location tracking is used to update personal location information, or the long-
term monitoring of mobile phone positions. It also provides excellent input to the
planning of the cellular network, for improving the network performance [Drane98].

Section 1.1 will briefly introduce the requirements of location applications, mobile-
aided and network-aided location techniques, three networked-aided basic existing PL
techniques, the radio systems, and some problems existing in PL.

1.1.1 Position L ocation Requirements

It is aways desirable to achieve the highest possible accuracy in location
applications. However, the requirements in different applications may differ due to
various reasons such as the cost and the technology. The emergency applications, such
as E911 and other applications based on location-sensitive billing would all require
high accuracy. However, other location applications requiring lesser accuracy such as
fleet management, can utilize lower-accuracy location techniques [Caffery98].
1.1.1.1 General FCC requirements for Enhanced 911

The accuracy requirement of E-911 location service is an important area of research,
and the impetus for the development of cellular location techniques comes from the
accuracy requirement of E-911 services.

In 1996, the US Federal Communications Commission (FCC) required that every
wireless service provider including cellular, provide location information to 911 public

safety services, Public Safety Answering Points (PSAPs). A directive (FCC Order 94-



3
102) [FCC97] mandated two phases of implementation of E-911 technology by wireless
service providers. Phase I, beginning in October 2001, requires carriers to identify the
location within 125 m at least 67% of the time [Koshima00].

The desired features of a cellular E911 system are summarized as the following
[Koshima00]:

the FCC requirement is met (<125 m accuracy for 67% of all measurements),
the coverage should be comparable to cellular systems,
seamless integration with existing Base Stations (BSs),
low-cost location receiver equipment,
expandable, scalable and reliable, and
an interfacing with existing E-911 terrestrial networks.
1.1.1.2 Specific FCC requirements for mobile-aided and networ k-aided techniques

A radio location system can be a mobile-aided PL system, network-aided PL system,
or hybrid PL system [Zagami98].

In a mobile-aided PL system, the Mobile Station (MS) uses signals transmitted by
the BSsto calculate its own position using a device such as a Global Positioning System
(GPS) receiver embedded in the mobile handset. The drawbacks of this system include
the high cost for developing a suitable low-power and economical integrated technol ogy
for use in the handsets, and the cost for deploying new handsets.

In a network-aided PL system the BSs measure the signals transmitted by the MS
and relay them to a location centre for processing. This has the advantage of not
requiring any modifications or specialized equipment in the MS handset, thus

accommodating the large pool of handsets already in use by the existing cellular
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networks. Infrastructure required for implementation will not be prohibitively expensive.

The hybrid PL system combines different aspects of mobile-aided and network-aided
positioning architectures.

The FCC later amended the location accuracy requirements for phase Il to the

following [FCC97]:

Mobile-Aided Solution - Network-Aided Solution
50 m for 67% of the calls 100 m for 67% of the calls
150 m for 95% of the cdlls 300 m for 95% of the calls

Note that the accuracy requirement of a mobile-aided location solution is different in
the FCC regulations from a network-aided. Because of the drawbacks of non-network
technologies, cellular carriers generally favor the use of a network-aided approach. So
the non-network technologies will not be discussed further.

1.1.2 Methods of Network-Aided Position L ocation Techniques

There are many economica PL systems, which are implemented based on the three
basic existing network-aided PL methods. signal Strength-Of-Arrival (SOA), Angle-Of-
Arrival  (AOA), Time-Of-Arrival (TOA) measurements, or their combinations
[McGuired4]. The SOA technique will be discussed later in Section 1.2.2.
1.1.2.1 Angle-of-arrival

The AOA location method uses simple triangulation to locate the MS. The receiver
BSs measure the direction of received signals (i.e. AOA) from the MS using directional
antennas or antenna arrays. AOA measurements at two BSs will provide a position fix
but the accuracy of the position estimation depends on distance and geometry between

the MS and two BSs, as well as multipath propagation. As a result, more than two BSs



are normally needed to improve the location accuracy [Caffery98].

This method suffers in the indoor Non-Line-Of-Sight (NLOS) environment.
Surrounding objects or walls usually block the Line-Of-Sight (LOS) signal path, which
isthe clear path from the receiver to the transmitter. As aresult this method is useful for
macro cellular cells, and may be impractical for micro cellular cells.
1.1.2.2 Time-of-arrival

The TOA method is based on estimating the propagation time of the signals from an
MS to multiple BSs. Once the TOAs are measured, the distances between the MS and
BSs can be simply determined by the radio speed (speed of light). The MS's position is
given by the intersection of the circles with BSs at the center once the radia distances
are calculated [Caffery98].

An extension of the TOA technique is the Time Difference of Arrival (TDOA),
which measures the TDOAS of a signal received at multiple pairs of BSs. The MS's
position is given by the intersection of the hyperbolae.

The TOA method requires high-resolution timing measurements. Compared to TOA,
the advantage of TDOA is that it does not require knowledge of the transmit time.
Instead, time synchronization among multiple BSs is required. However, for both TOA
and TDOA, LOS propagation conditions are necessary to achieve high accuracy.

1.1.3 Radio Systems

Pagers, cordless and cellular phones are the common mobile radio systems. However,
the cellular system is the only one that provides high quality service [Rappaport96].

With thousands of cellular phone calls going on at any given time within acity, it

certainly would not be possible for everyone to talk on the same channel at once.
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Therefore, several different techniques were developed by cellular phone manufacturers
to assign the available bandwidth into many channels, each of which is capable of
supporting one conversation. The technique that allows many mobile users to share the
bandwidth is called multiple access. The cellular systems are based on three existing
Frequency Division Multiple Access (FDMA), Time Division Multiple Access
(TDMA), and Code Division Multiple Access (CDMA) techniques [Viterbi95].
1.1.3.1 Frequency division multiple access

FDMA assigns individual channels to individual users. Each user is alocated a
unique frequency band or channel and these channels are assigned on demand for users
who request service. During the period of the call, no other user can share the same
frequency band. FDMA isused in all analog cellular systems.

FDMA systems are often regarded as the least efficient cellular system since only
one user can access a particular channel at a time. Analog signals are particularly
susceptible to noise. As a consequence, analog cell phones must use higher power
(between 0.3 and 3 watts) to achieve an acceptable call quality. Due to these
shortcomings, FDMA is being replaced by newer digital techniques [Lee97].
1.1.3.2 Time division multiple access

TDMA systems divide the radio channel into time slots. In each slot only one user is
allowed to either transmit or receive. Each user occupies acyclically repeating time slot.
Therefore, a channel may be regarded as particular time slot that reoccurs every frame.

While TDMA isagood access technique, it is still somewhat inefficient. TDMA has
limited flexibility for varying digital data rates (high quality voice, low quality voice,

pager traffic) or accommodations for silence in a telephone conversation. TDMA also



requires strict signaling and time slot synchronization [Lee97].
1.1.3.3 Code division multiple access

CDMA provides increased capacity [Gilhousen9l] and has been selected as the
Interim Standard 95 (1S-95) by the U.S. Telecommunication Industry Association
[TIA/EIAQ9]. 1S-95 systems encode each call as a coded sequence across the entire
frequency spectrum. Each conversation is modulated in the digital domain, with a unique
code (called a pseudo-noise code) that makes it distinguishable from the other calls in the
frequency spectrum. Using a correlation calculation and the code the call was encoded
with, the digital audio signal can be extracted from the other signals being broadcast by
other phones on the network [Garg97].

CDMA offers far greater capacity and variable data rates depending on the audio
activity. CDMA has the complexity of deciphering and extracting the received signals,
especialy if there are multiple signal paths (reflections) between the MS and BS (called
multipath interference). CDMA has many other advantages, but it still has some
drawbacks. Its performance suffers from power variations with distance between the BS
and MS, termed the near-far problem. However, this problem can be overcome by
CDMA power control [Rappaport96]. The near-far problem and power control concepts
will be explained in Section 1.1.4.

In thisthesis CDMA is selected as an example of a cellular radio system in view of
its popularity, efficiency and adoption as an interim industry standard. The most
important aspect of CDMA for this thesis is the modeling of channel impulse responses,

which is developed in Chapter 2.



1.1.4 Problemsin Position L ocation Systems

Sources of errors in wireless location systems include multipath propagation,
multiple access interference, and variation of power with distance.
1.1.4.1 Code division multiple access power control

In CDMA systems, users create interference among each other in which strong users
with higher received powers (short MS-BS distances) can overwhelm the communication
quality of the weak users with lower received powers (long MS-BS distance)
[Mizusawa96] . The non-zero correlation between their codes aggravates the interference.

In order to combat the near-far problem, power control must be implemented in M Ss.
This power control assures that all transmissions from the MSs within the cell are
received with the same signal power at the BS. An MS close to a BS will have a reduced
transmitter power. Consequently, other BSs in neighboring cells will receive a low-
power signal from the MS.

The power control scheme, which reduces the power transmitted by the MS to the
neighboring BSs, however, makes it difficult for the neighboring BSs to find the
distances between the MS and BSs when the SOA estimation scheme is employed. The
PL estimation will be inaccurate. Thus the power control presents a major problem for a
reliable and accurate geolocation of mobile phone users [Knopp95].
1.1.4.2 Multipath

Multipath is the primary source of inaccuracy in the SOA or AOA estimation
schemes [Caffery98]. Multipath effects may be caused by inhomogeneity of the
atmosphere, reflections from natural barriers such as hills and cliffs, and man-made

obstacles such as buildings, and tunnels. The total received field strength is the sum of
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contributions arising from the individual multipath components (reflected, diffracted,
and mixed). As a result, the received power is subject to rapid fluctuations, and several
versions of same signal may arrive at different time instants. This causes inaccuracy in
the PL estimation scheme.
1.1.4.3 Multiple access interference

In aCDMA system, many MSs in the system transmit signals in the same frequency
band. This produces a high level of interference among the transmitted signals. A signal
from an MS, which has to be located, can be obscured by the signals from other MSs,
especialy if the interfering signal strength is higher. In CDMA, multipath interference
can only be rejected if the multipath arrives with a delay of at least one chip interval of
the CDMA code. Multipath arriving within the chip interval can introduce errors in PL
estimation [Mizusawa96].

1.2 Literature Review

Thework described in this thesis is multidisciplinary in nature borrowing techniques
from various disciplines including estimation theory, communication theory, statistics,
and digital signal processing. The radio channel fading models are reviewed first,
followed by PL estimation using the SOA technique. Finally related applications of
Neural Networks (NNs) are discussed.

1.2.1 Radio Channel Fading M odels

Radio channel models traditionally focus on predicting the average Received Signal
Strength (RSS) with respect to distance from the MS, as well as the variability of the
signal strength in close spatial proximity to a particular location. There are two typical

radio channel models, Large-Scale-Fading (L SF) and Small-Scale-Fading (SSF) models.
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1.2.1.1 Large-scale-fading

The LSF model predicts the mean signal strength for very large BS-MS separation
distances (several hundred meters or thousands of meters) [Rappaport96]. This is
important for predicting received power levels in cells. Adaptive antennas or power
control may compensate for large-scale path losses. Also the LSF model represents an
average signal power attenuation or path loss due to motion over large areas. This
phenomenon is affected by prominent terrain contours such as hills, forests, billboards,
and clumps of buildings. The receiver is often represented as being shadowed by such
prominences. The statistics of the LSF model provides a way of computing an estimate
of the path loss as a function of the distance [Liberti97].

In general, current LSF models can be classified as outdoor or indoor fading models.
Some commonly used outdoor fading models are the Longley-Rice model, the Durkin
model, the Okumura model, the Hata model, the Walfisch and Bertoni model, and the
wideband Persona Communications Service (PCS) micro-cell model [Rappaport96].
The outdoor fading model is dominated by the large-scale path losses. However thisis
not the case for the indoor fading model. The indoor fading model can only cover avery
small area, and the variability of the environment is much greater for a much smaller
range of MS-BS distances [Rappaport96]. The indoor fading model may include the
partition losses, log-distance path losses, the Ericsson multiple breakpoint model, and
the attenuation factor model [Rappaport96]. For simplicity of analysis, the LSF models
developed in the thesis will be applied only in the outdoor fading environment.
However, a variety of deficiencies are explored by studying these existing outdoor

propagation models. They are explained in the following sections.
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The first deficiency is a lack of impulse responses in models. In a radio
communication system, the channel determines how the electromagnetic propagation of
asigna from atransmitter isreceived. It is possible to express the channel in terms of its
impulse response, which is the signal that would be received if an impulse were to be
transmitted. The impulse response characterizes the wideband radio system and contains
al information, especialy the multipath of the transmitted signal, necessary to analyze
or smulate any type of radio transmission through the channel [Rappaport96].

The second deficiency is alack of large-scale correlation among impulse responses.
Large-scale correlation of impulse responses is caused by objects in the environment.
For example, consider all the coefficients of al the BS-MS impulse responses both near
to a building and far from a building. Those coefficients of the impulse responses where
the MS is near the building will have a higher correlation compared to impulse
responses where the MSis far from the building.

The third deficiency is geographical dependence. A geographical database, which
contains a map of buildings and terrain features, is required to develop accurate
propagation models in specific regions. The computational expense is enormous and
sometimes cannot be avoided.

For example, the Longley-Rice model is based on a geographic database and is
complex. It does not consider multipath and hence does not employ impul se responses in
the model implementation [Rice67]. The Durkin's Model is simple in the LOS
environment, but in the NLOS environment, it is too complicated [Dadson75]. The
Okumura and Hata models are ssimple. They are ideal in an urban area, but they do not

employ impul se responses [Okumura68, Hata90]. Ray tracing techniques employ large-
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scale correlated impul se responses, but require a geographic database [ Schaubach92)].

The existing outdoor L SF models mostly suffer from one or both of the problems of
complexity and absence of impulse responses. A newly regenerated fading model,
termed the Splashes-Of-Changes LSF Model (SOCLSFM), is based on the simple
features of current outdoor LSF models, has impulse responses with large-scale
correlations, but does not have the complexity of models with geographic databases. In
Chapter 2, the SOCLSFM will be described in detail.
1.2.1.2 Small-scale-fading

The SSF model characterizes the rapid fluctuations of the RSS over very short travel
distances or short times [Rappaport96]. Compared with the LSF model, the SSF model
exhibits much more rapid fluctuations of received signals over a short travel distance or
time. This fluctuation is caused by constructive and destructive interference between two
or more versions of the same signal [Liberti97].

The theory of the SSF model and simulation results are described in Appendix A.
Appendix A aso contains the results of an investigation about the suitability of the SSF
model for this thesis. The results of simulations show that there is no large-scale
correlated multipath in the SSF. Therefore, an LSF model is more suited for an NN-
based location system which uses multipath properties to improve performance.

1.2.2 Position Location Estimation using Strength-Of-Arrival Techniques

PL using SOA is a well-known location estimation method that uses a known
mathematical model describing the path loss attenuation with distance [Figel 69, Hata80].
Since a measurement of signal strength provides a distance estimate between the MS and

BS, the MSlieson acircle centered at the BS. By using multiple BSs, the location of the



13
MS can be determined from the intersection of the circles [Caffery98]. However,
practical propagation conditions especialy in urban area are far from ideal. Although the
signal-level contours are no longer circles and are not centered at the BSs, they can be
used for location estimation by finding the location that produces the best fit between the
predicted and the measured value.

Compared to other PL techniques, the SOA method has less accuracy than the time-
based and AOA methods. However, it is easier to implement and has the advantage of
not requiring any significant modifications or specialized equipment in the MS handset
or BSs. On the other hand, the AOA method requires antenna arrays to determine the
AOA of the signal, and the time-based TOA and TDOA techniques need timing
measurements. The SOA technique is relatively independent of the modulation and
multiple access method used in the network. This makes it attractive for indoor and
micro-cell location applications for low cost MSs [McGuire94]. In CDMA cellular
systems, the M Ss are power controlled to combat the near-far effect. Therefore, for SOA
systems, it is necessary that the transmitted power of the MSs be known and be
controlled with reasonable accuracy. 1S-95 provides BSswith the ability to poll the MSs
received powers. Due to these advantages, the SOA method is chosen for PL estimation.
In Chapter 3 its performance and results of evaluation using the SOCL SFM is presented.

For practical SOA location systems, LOS seldom exists between MSsin buildings or
urban areas. In other words, there exists unknown signal path loss and multipath
between the transmitter and receiver. Multipath fading and shadowing have major
adverse effects on signal strength measurements. Additionally, the SOA method can

only provide good performance in the region where the distances between the BSs is
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small [McGuire94]. Therefore, a lack of precision with the SOA method is a problem.
Poor accuracy associated with the SOA method is overcome by including an NN with
the SOA method.

1.2.3 Applications of Neural Networks

“A neural network is an interconnected assembly of simple processing el ements,
units or nodes, whose functionality is loosely based on the anima neuron. The
processing ability of the network is stored in the inter-unit connection strengths, or
weights, obtained by a process of adaptation to, or learning from, a set of training
patterns.” [Gurney96]. NNs are often good at solving problems that do not have an
algorithmic solution or for which an algorithmic solution is too complex to be found.

Individual neurons of an NN are connected from the input pattern to the outputs.
Inputs and interconnection weights are processed by a summation function (typically a
weighted summation) to yield a sum that is passed to a nonlinear function (typically a
sigmoid nonlinearity). The output of the nonlinearity is the output of the neuron or nodes.
An NN uses a training procedure to adjust the input weights on each neuron such that
the output of the network is consistent with the desired output. The process consists of
presenting the given data to each input node and the correct or desired response to each
of the network's output nodes. Once the network is trained, input data, which the NN has
not previously encountered, termed the test or blind data, is presented to the NN. The
output node gives the desired estimate [ Gurney96].

NNs are increasingly employed to solve real world problems of considerable
complexity. Although one may apply an NN for interpretation, prediction, diagnosis,

planning, monitoring, debugging, repair, instruction, and control, the most successful
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applications of NNs are in categorization and pattern recognition, which includes speech
and image processing.

Basically, most applications of NNs fall into the following five categories [Zahedi93]:
prediction, which uses input values to predict some output, dassification, which uses
input values to determine the class to which the input belongs, data association, like
classification, recognizes data that contains errors, data conceptualization, anayzes
inputs so that grouping relationships can be inferred, and data filtering, which smoothes
an input signal.

The NN may be a single layer or multilayer perceptron. Multilayer perceptrons are
feedforward NNs, which are commonly used in speech and image recognition. Because of
the presence of hidden layers, the multilayer perceptron has the ability to realize any
arbitrary nonlinear input-output functional relationship governing the data. These types of
NNs are trained off-line, using a large set of known input-output data. Once trained, the
network weights are frozen and test data can be run through the NN [Scalero92]. In this
thesis, PL estimation is based on an integration of a feed forward NN and the SOA
method.

Similar to speech or image processing using the NN, where the input pattern of
speech or image data is fuzzy and unclear, and the input patterns to the NN obtained
from the SOA method are also less accurate. By training the NN with input data, which
may be inaccurate, and the output data, namely the M S s location, which is accurate, the
problem of location inaccuracy stemming from the input SOA estimate is overcome. In
PL, obtaining a relationship governing the input, namely SOA, and the output data,

namely the location of the MS, is generally non-linear. An NN, in view of its ability to
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model non-linear relationships, is preferred to the traditional statistical technique, which
cannot handle as easily nortlinear relationships.

The integrated SOA-NN technique will be covered in Chapter 4.
1.3 Thesis Contributions

The two main contributions of this thesis are, first, the development and evaluation
of the SOCL SFM and, second, PL technigue using aintegration of SOA and an NN.
1.3.1 Splashes-Of-Changes L ar ge-Scale-Fading M odel

The existing LSF models are either complicated, missing impulse responses, unable to
handle multipath, or dependent upon a geographic database. This thesis introduces the
SOCLSFM, which is based on adding, step-by-step, severd radio propagation effects and
features into channe impulse responses. The Splashes-Of-Changes (SOC) effect, which is
caused by delayed or reflected signals from multipath fading, is introduced in the last step.
The SOCLSFM overcomes the deficiencies of the current LSF models. It is smple and
geographicaly independent.
1.3.2 Strength-Of-Arrival and Neural-Network Integrated PL Technique

The SOA location estimates are improved by processing the SOA estimates by an
NN. By using an NN, there is no need to use different methods depending upon the
position of the MS. Although SOA and NN are two widely known techniques,
integrating these two techniques has proved to be efficient in PL estimation.
1.4 Thesis Outline

The thesis is organized in the following way. In Chapter 2, a description of three
concepts related to the SOCLSFM radio channel model and results of its evaluation are

given. The five steps to create the SOCLSFM model and the results of evaluation are
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presented in terms of both received power and Root-Mean-Square (RMS) delay spread.

In Chapter 3, an SOA-based PL estimation model is developed so as to evaluate the
SOCLSFM, and the detailed descriptions of the current SOA estimation technique and
algorithms used in the PL system are provided. The location estimation performance of
the SOA method is demonstrated using three criteria. Finally, the simulation results of
the SOA technique, which show its poor performance, are given.

In Chapter 4, the general NN structure as well as the NN learning and training
algorithms are introduced, as well as how the SOA and NN techniques are integrated.
The simulation results cover different NN architectures. The performance of the NN
during training and testing are given. The accuracy of the integrated PL technique is
investigated. Simulation results show the superior performance of the integrated scheme.

In Chapter 5, the conclusion of the thesis is presented by summarizing the results of

the proposed PL estimation scheme. Future work in the area of PL estimation is outlined.
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Chapter 2 Splashes-Of-Changes L ar ge-Scale Fading M odel

2.1 Introduction

The rationale for a new and improved SOCLSFM was presented in Chapter 1. The
traditional outdoor LSF models are redlistic but very complicated. The SOCLSFM has
sufficient complexity to exploit the large-scale correlation or multipath.

This chapter introduces the SOCLSFM for the PL estimation and details of the
techniques involved in the implementation of the model. The SOCLSFM is a
comprehensive model generated in five steps. random coefficient values, propagation
delay, exponential power delay profile and RMS delay spread, path loss and log-normal
shadowing, and SOC in RMS delay spread. Implementation of each step is based on
adding new features to the previous step. The Path-Loss-Based LSF Model (PLBLSFM)
is created using only the first three of five steps of the SOCLSFM. The PLBLSFM isa
simple model and is used only to show that the SOA-based PL estimation technique has
been implemented correctly; the PL estimation error should be zero.

Relevant literature and fundamental concepts employed in developing the
SOCLSFM are described in the following sections of this chapter.

2.1.1 Outdoor Fading Environment

The outdoor fading environment forms the basis of the mathematica model
discussed in Section 2.2. Generating outdoor fading models involves the following
concepts:

Multipath refers to the various propagation paths, which the transmitted signal takes

before reaching the receiver. The transmitted signal is subject to random phase,

amplitude change and time delay as it traverses the various paths.
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I mpulse Responseswith random coefficients.

Propagation delay is the difference between the time instant a signal departs from a

BS to the time instant the signal arrives a an MS. The time delay is directly

proportional to the MS-BS distance [ Garg96].

Power delay profile is a plot of the average power versus time of the impulse

responses.

RM S delay spread isameasure of the width of the power delay profile.

Path loss denotes the average loss of signal power with the distance between the MS

and the BS [Rappaport96].

L og-normal shadowing relates to vast changes in the received power at locations

having the same M S-BS distance [Rappaport96].

SOC is caused by obstacles in the BS to MS propagation path. It causes changes in

RMS delay spread.

These concepts of the outdoor fading models are presented in detail in Section 2.2.
2.1.2 Multipath Propagation

Multipath propagation or multipath occurs both in LOS and NLOS environments,
although more often in NLOS. The radio signal from an MS is reflected from objects in
the propagation path, and is scattered throughout the area. The scattering phenomenon is
very complex. At the BS, radio signals from the MS arrive via a number of different
paths. The actual sgnal picked up by the receiver antenna is a combination of all of
these different signal components. It is therefore convenient to characterize a multipath
radio signal in terms of its impulse response. The random phase and amplitude of the

different multipath components cause fluctuations in the strength of the received signal.
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Another effect of multipath is time dispersion caused by multipath propagation delay.
Signal components are subject to different time delays as they take different paths from
the transmitting to receiving station. A component taking a shorter path will arrive
earlier than that taking a longer path. Multipath signals which arrive at the receiving
station usually cause time dispersion [Garg96]. Thisis considered in Section 2.2.
2.1.3 Discrete-Time Impulse Response

A bandlimited sampled time-invariant channel impulse response can be expressed as
a function of time, where the time delay axis is divided into equally-spaced time delay
segments [Rappaport96]. The recelved signal in a multipath channel consists of
components that are characterized by varying fading effects [Rappaport96]. A useful
statistical description of the fading is given by the discrete-time power delay profile,
which gives the average energy or power, in each impulse response coefficient.
Furthermore, the discrete-time model allows for Digital Signa Processing (DSP)
techniques.
2.2 Development and Statistical Evaluation of the Model

In this section, the development and statistical evaluation of the channel moddl is
presented. The five steps of the model were summarized in Section 2.1. In this section,
the model is described in detail.
2.2.1 Random Coefficient Values

Consider the signal propagation around a BS. It can be represented by a Two-
Dimensional (2-D) image as shown in Figure 2.1. A sgquare grid with a width of 50 m
denotes the spatial sampling of the 2-D signal propagated by the BS. The choice of a 50

m separation distance, D, between two grid points (spatial sampling points) is a trade-off
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between the total number of samples over a circular area of radius R, 2000 m, and the
resolution. The larger the separation is between grid points, the smaller the total number
of samples, and the poorer the resolution. However, the complexity of design is

considerably decreased because of fewer sample points.

i Impulse response
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components

12 5l Mm J 15 k Time delay

h(k)

5|

Zoom in samples of scale

Figure 2.1 The 2-D SOCLSFM solution

Each grid point is the location where the propagated signal from the BS is received.
A signa transmitted from the BS traverses various paths before arriving at the sample
point and forms several signal multipath components (the reflected waves) received at
different times. The propagation channel from the BS to this sample point is
characterized by a discrete-time impulse response. An example of an impul se response
with 16 taps of components is presented in Figure 2.1, in which the first three
components have zero power received. The impulse response completely captures the

behavior of the channel multipath effects.
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Figure 2.2 Contour plot of mean received power with random coefficient values

To develop the SOCLSFM, the first step is to produce random coefficient values at
each tap of all the impulse responses throughout the cell. The number of impulse
responses in a cell is 6561; see Figure 2.1. The mean received power is an important
statistic, and is the sum of the squared magnitudes of the individual complex taps in the
channel impulse responses. Figure 2.2 illustrates the contours of mean received power
with random coefficient values generated for al 6561 impulse responses; the power
received is expressed in dB. All of the important parameters employed in the generation
of the impulse responses are listed in Table 2.1. N is the width, in samples, of each
impulse response and is aso the number of resolved multipath components. N is
arbitrarily chosen to capture only multipath signals which travel a distance less than or

equal to 2R. N is calculated by:

N » 2R . (2.1)
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It is assumed that all the impulse responses around the BS have the same number of taps,
N.

Table 2.1 Some parameters involved in the random coefficient values generation

Parameters Values
The velocity of light or radio signal (c) 2.998x10° m/s
The bandwidth of CDMA (1S-95)(w.) [Rappaport96] 1.25MHz
The width of square grid (D) 50 m
The radius of the circle range around BS (R) 2000 m
The number of taps in impulse responses (N) 16

2.2.2 Propagation Delay

mmﬁé@'ﬁcﬁf’;’? ; u‘? s A =T %\f -2
15 ngfii“ et et - I

et ey ooy abP

e i
o e 14

1000 = ) ; e
e T o 15

= “
SO0 Fesg [ .- N 16
= )" S O BS - i g
-1 at L
a c
00} -G
3

. o S 3
-1'][':':& ; 4 } . i P ‘I .--__ 10

&biﬂ o = ; I-__'E_

S0 P =
H f.:..'@ )y il q}_'1 11

VLS i _ Ehh 2 Hl
%:'I:}A'- o }.;v*", WAL ; Bl f‘. ---ilu.-"'E 12

2000 Lo o7 U
M0 ASM 000 &0 0 500 100 SM 200 g
m

Figure 2.3 Contour plot of meanreceived power with propagation delay
Propagation delay is a measure of the time required for the radio signal to travel
from the BS to an MS and it characterizes the MS-BS channel propagation path. The
MS-BS distance is a major factor which affects propagation delay. Longer distance

resultsin longer time for signals to be received. The propagation delay is represented by
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a time delay parameter in the each impulse response. An example of an impulse
response is given in Figure 2.1, where the impulse response taps are zero over the initial
time interval corresponding to the propagation delay. If the propagation delay is set to
‘2, theimpulse response will be zero over the timeinterval [0 2]. As a consequence, the
received powers of tapswill be zero until the timeinstant, ‘2’.

The second step in the procedure to generate the SOCLSFM s to zero the beginning
of impulse responses according to the propagation delay. Another consequence of this
step is that the mean received power, RSS, is lower at the cell boundary, as indicated in
Figure 2.3.

2.2.3 Exponential Power Delay Profile and Root-M ean-Squar e Delay Spread

Power delay profile is generally represented as the plot of relative received power as
a function of excess delay with respect to a fixed time delay reference [Rappaport96].
Excess delay is the relative delay of a multipath component as compared to the first
arriving component [Rappaport96]. The time delay reference is time delay of the first
arriving component, usually set to ‘0’.

In practice, the power delay profile is obtained by averaging a large set of impulse
responses. The typical power delay profile is exponential and is commonly used to
model an outdoor environment (urban, suburban, and rural areas). The mean excess
delay (the first moment of the power delay profile) and RMS delay spread are multipath
channel dstatistics that can be determined from a power delay profile. The main
parameter, namely the RMS delay spread, is the second central moment of the power
delay profile.

In micro-cellular channels, the value of the RMS delay spread is usualy smaller and
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rarely exceeds a few hundred ns. Seidel and Rappaport reported delay spreads in four
European cities of between 50 and 300 ns [ Rappaport96].

Typicaly, the RMS delay spread measured in an NLOS indoor environment is
approximately 50 to 250 ns [Medbo99]. However, in an LOS outdoor environment (rural
area), this value is reduced to approximately 10 to 100 ns. NLOS often occurs in
wireless communication systems, and a value of 100 ns is generally assumed for the
RMS delay spread, as it represents an average RMS delay spread for the indoor and the
outdoor environments. An RMS delay spread of 100 ns was chosen for the LSF model in
the outdoor urban area.

An effective way to set the RM S delay spread in the exponential power delay profile
isto set the parametera , the exponential coefficient. The exponential coefficient a isan

analytical function of the RMS delay spread (st ). The derivation of a given the RMS

delay spread,s; , of 100 ns, proceeds as follows:
Excess delay, k, is defined as the relative time delay of the kth multipath component
as compared to the first arriving component (k = 0).

The exponential power delay profile B, is given:

ek k1{0123..
A= Iy b 22
10 ki {..-3-2-1
The first moment of power delay profile (mean excess delay) is:
3
a kp
c_keo (2.3)
£
a Px
k=0

The second moment of power delay profileis:
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T . (2.4)

s, =4t 2- (). (25)
By combining Equations (2.2) to (2.5), two possible solutions, a,, , of the

exponential coefficient may be found. The solutions are a function of s , as defined in

Equation (2.6),

Q- O

, Where b= iz +2 (2.6)
2 S

The detailed computation of a, , isdescribed in Appendix B.

The positive exponentia coefficient, a, , is chosen. Thus, the exponential power

delay profileis:

P =e 21f, 2.7)

where Kk indicates the excess delay. Givens, =100ns” w,, a, was found to be 2.09.

1g——1—— .

Figure 2.4 isthe plot of the power delay profile in Equation (2.7).
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Figure 2.4 Discrete-time exponential power delay profile (a, : 2.09,s; : 0.125)
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In Appendix B, the derivation of a, was based on the z transform, where the
variable k in the formulas given by Equations (2.3) - (2.5) defined on an infinite set.
However, in a physical system, ktakes on finite integer values,{0,1,2,...,N- 1, (N=
16 in the simulation as indicated in Figure 2.4).

RMS delay spread contours measure the time width of reflected waves, and are
defined by Equations (2.3) - (2.5). It is probably the most important single measure for
the time width of a multipath radio channel.

The third step in the procedure to generate the SOCLSFM s to include the effect of
the power delay profile. It is included ssimply by taking the power delay profile from
Figure 2.4, shifting it in time, and multiplying by the impu se responses from step two.
For example, in Figure 2.4, the value of Pyat k = 0 multiplies the value of h(3) in Figure
2.1; thevalue of Py a k =1 multipliesthe value of h(4); this pattern is continued.

Figures 2.5 and 2.6 present the results of mean received power, and RMS delay
spread contours, respectively, after the inclusion of the exponential power delay profile.
Comparing Figure 2.3 and Figure 2.5, it can be seen that the exponential power delay
profile decreases the mean received power and it is evenly spread around the BS. RMS
delay spread contours are computed using Equation (2.5). Figure 2.6 shows the RMS
delay spread contours. The values of RM S delay spread are shown in the range from 0.2
to 1.4. It shows a random and even distribution of RMS delay because the impulse

responses are random
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delay profile
2.2.4 Path Loss and L og-Normal Shadowing
A theoretical propagation model is obtained by including the effect of path loss as a

function of distance for the received signal power. Both theoretical and measurement-
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based propagation models indicate that the average received signal power attenuates or
decreases logarithmically with the distance. However, a model that takes only the path
loss into consideration, does not account for the effect of the propagation environment.
For example, clutter of objects along two different propagation paths having the same
BS-MS distance may be vastly different [Rappaport96]. As a result, actual path loss for
the two paths will be different. However, the path loss predicted by the formula based on
the distance will be the same. To simulate the effect of clutter, log-normal shadowing is
added to the path loss. The modified formula for path loss, which takes into account the
distance as well as the effect of the environment (e.g. clutter of objects in the
propagation path) is derived in terms of the path loss exponent (n) and a Gaussian

distributed random variable termed the log-normal shadowing ( X ). The modified path

loss formula in Equation (2.8) is a combination of the path loss formula relating path

loss with distance and an additive term (which is the log-normal shadowing):

aalg 0
PathLgg(ds) = PathL dg (do) +10nlog d—si+ Xs - (2.8)
09

dg indicates the MS-BS separation distance. d, denotes the close-in reference distance.
Pathl g (ds) isthe path loss power in dB. n is the path loss exponent, which depends on

the surroundings and obstacle type Xs is a Gaussian random variable having a standard
deviation of s.

As mentioned in Section 2.1, the large-scale path loss model without shadowing is
referred to, in thisthesis, as PLBLSFM. The variance of path loss depends highly on the
environment. The path loss exponent, n, in the NLOS environment, outside of buildings

often varies from 2.7 to 4. However, this value is smaller (1.6 — 1.8) in the LOS indoor
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environment [Rappaport96]. Based on experiments, the standard deviation s was found
to be around 11.8 dB in urban areas [Rappaport96].

To evauate the large-scale path loss model given by Equation (2.8), parametersin
the formula are assigned reasonable values as listed in Table 2.2. The term

PathL ¢g (d,) is arbitrarily assigned areference value of O dB.

Table 2.2 Parameters selected in path loss and log-normal shadowing

Parameters Values
The reference distance (do) 10 m
The reference path loss at distance d, ( PathL ¢s (dg) ) 0dB
Shadowing variance (s ) 11.8dB
Path 1oss exponent (n) 4

The fourth step in creating the SOCLSFM is to include the effects of path loss and
shadowing. This is done by evaluating Equation (2.8) for PathL(d) to obtain specific
numerical values for each location in the cell; shown in Figure 2.1. These numerical
values are assigned to be the energy of each of the impul se responses obtained from step
three.

The numerical values of path loss, with shadowing, are shown in a contour plot in
Figure 2.7. Setting the path loss does not change the RMS delay spread since the RMS
delay spread is already normalized by the power. The RMS delay spread contours would
be the same as Figure 2.6. The mean received power, which is displayed as contours,
decreases logarithmically (obeying the path loss with distance formula@) from the BS to
the cell boundary with vastly different shadowing at each contour edge, as shown in

Figure 2.7.
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2.2.5 Splashes-Of-Change in Root-M ean-Squar e Delay Spread

The received signal may be subject to reflection, diffraction, and scattering from
surrounding buildings or other obstacles. This phenomenon of so-called multipath
propagation produces SOCs in the RMS delay spread. The LSF model is adjusted using
the experimental data to include the SOCs in the RMS delay spread. Thisis the fifth and
final step to generate the SOCL SFM.

SOC refers to changes made to RMS delay spread contours. Previously generated
RMS delay spreads are random. In step three to generate the SOCL SFM, the constant
exponential coefficient, a,, from Equation (2.7) was assigned to all the channel impulse
responses. In the multipath environment, the signal transmitted from a BS is received by
the MS via multiple propagation paths. The transmitted signal may encounter obstacles,
and, as aresult, the received signal is subject to distortion including multipath depending

upon the position, size and shape of the obstacles. The larger the number of obstacles
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spread randomly around the BS, the geater the number of reflected waves received by
the MS located beside the obstacles. Each SOC in RMS delay spread, which will be
introduced in step five, corresponds to a set of obstaclesin the propagation path.

SOCs are put in by increasing the exponertial coefficient, a,, a the power delay
profiles of the impulse responses over a small area of the cell called a “splash”. This
effect, termed SOC, assumes that the various types of obstacles are randomly distributed
in the cellular area. The SOC effect is ssimulated by assuming that a, is varied as a 2-D
Gaussian random variable over the splash, which results in “bell-curve changes’ in the
RMS delay spread contours [Soma99]. The SOCs in RMS delay spread will not change
the path loss generated in step four.

SOCsin RMS delay spread are generated using the following six elements:

Element 1. Choose the location of one splash

Since an SOC occurs at random, a uniformly distributed random point, (x,, y, ), is
chosen inside a circular area of radius 2000 m for locating the center of the splash.

Element 2: Generate the height of one splash, H

A 2-D bell curve's height, H, is a Rayleigh Random Variable (RV). The mean of the

RV is set to Hg=20, Hg =E[H], where E[ | denotes mathematical expectation

[lyanaga80]. The standard deviation, s ,, , isderived from Hg using

5, = HS\E. 2.9
P

A sample point from the distribution of H is generated using a standard numerical
technique [Knuth81].

Element 3: Generate the width of one splash, W
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The width of one splash, W, is a Rayleigh RV with a mean Wy =10 m. A sample
point from the distribution of Wis generated [Knuth81].
Element 4: Generate the shape of the splash, B.(x,y)usng x,, y,, H and W.

The shape of the splash is based on a 2-D circular Gaussian probability density

function, Py y (X, ), given by

L - (x-x)° 0ge-(y-y)'
Px,y(x,y)zszZGe 2" ice BT o (2.10)
& & o

where (X, y) are the coordinates of the center of the distribution and s is the standard

deviation [lyanaga80]. Generalizing Equation (2.10), the shape of the splash is given by

g - (x-x)" dae- (y-¥.)°
Bc(x,y):ng v* ;ge 2w*

g %

where coordinates x and y are variables. The coordinates take values at grid points,

(2.11)

which are 50 m apart, within the circular area of radius 2000 m.

Element 5: Generating the randomness of the splash, R.(x,y) using B.(X,Yy)

B.(x,y) and R.(X,y) are used in combination to increase the RMS delay spread
throughout the splash. The increases are statistically higher in the center of the splash, as
determined using B.(x,Y) , but the increases must also be random within the splash, as
determined using R.(X,y) . R.(X,y) is a set of sample points from independent
Rayleigh RVs with mean B.(X,y) .

Element 6: Increasing the RM S delay spread of impulse responses in one splash

By using the randomness R.(x,y) from step five, with the previous RMS delay



spread (PDg (X, Y) ), amodified RMS delay spread (NDg (X, Y) ) is obtained,
NDg(x,y) =1+ Rc(x y))PDs(XY). (2.12)
In step three, the exponential coefficient as denoted using a, . For clarity of

presentation in this section, let a , =a,. Based Equation (2.6), for the old exponential
coefficient (a ), the new exponential coefficient (a,) can be expressed in terms of

NDg, asindicated in Equation (2.13):

Fb?- 49

¢ 2 -
an(xy) =—= 8 where b=— L 42 (213)

2 ND (x,y)?

In

For every sampling point with the coordinates (x, y), a modified impulse response
( h,(k) ) is generated using the corresponding exponential coefficients given by
Equations (2.6) and (2.13). h,(k), which relates to the power delay profile in Equation
(2.7), iscomputed as

)k

ha (k) =& 2@ 20 Kn (K), (2.14)

where h,(k) is the previous impulse response, and k is the excess delay,
k={0,1,2,...,N- 1.

Elements 1 to 6 generate one SOC in RMS delay spread. However 10 SOCs are used

in the SOCLSFM. Figure 2.8 shows the results of the 10 SOCs.
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Figure 2.8 Generating 10 SOCsin the RMS delay spread with many stages
The 10 bell curves for each B.(x,y) are shown in Figure 2.8 (a), with varying
widths, amplitudes and locations in the cellular area. Contour plots of R.(X,y) are

presented in Figure 2.8 (b), which shows the randomness in RMS delay spread changes.
Figure 2.8 (c), the previously established RM S delay spreads from step four, is provided

in contrast to Figure 2.8 (d). Figure 2.8 (d) contains the RMS delay spread contours with
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the 10 SOCs applied in step five. Figure 2.8 (d) shows the final form of the RMS delay
spread used in the SOCL SFM.

The mean received power of an impulse response is modified by Equation (2.14).
However, the mean received power must remain unchanged. By re-normalizing the
mean received power of every impulse response, the mean received power contours
remain the same shown in Figure 2.7.

2.3 Summary

In Chapter 2, five steps to develop a new LSF channel model called the SOCL SFM
for the outdoor fading environment are presented. Impulse responses collect all the
information used for describing the SOCLSFM inside a multipath environment. The
model is developed sequentiadly in five steps. Although the previous four steps do
provide enough information about the channel, they do not consider the SOC effects,
which are critical to introduce correlation among impulse responses. Adding SOCsis a
new approach in developing an LSF model. Chapter 3 presents SOA-based PL

estimation using both the PLBLSFM and SOCL SFM.
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Chapter 3 Evaluation of Fading M odels using

Strength-Of-Arrival Techniques
3.1 Introduction

In this chapter, the existing SOA technique is applied to evaluate the fading models
(PLBLSFM, SOCLSFM) introduced in Chapter 2 The PLBLSFM and the SOCLSFM
are used and the agorithms for the PL estimation using the SOA technique are
introduced. For simplicity of anaysis, it is assumed that the channel allocated to the
users requesting the PL service is dtationary. The SOA-based PL estimation is
accomplished in two stages. The first stage involves the estimation of the received
power by each BS through the use of a path-loss technique which computes the loss of
power of the signal traversing a particular path. The estimated SOAs are transformed
into range difference measurements between BSs. The range difference measurements
form a set of difference equations. The second stage utilizes efficient agorithms to
produce an unambiguous solution to this set of equations, from which the estimate of the
PL is obtained. The performance evaluation of the SOA-based PL estimation scheme is
presented. Both the PLBL SFM and the SOCL SFM are considered, and the limitations of
using the SOA technique alone are discussed.

Sections 3.2 and 3.3 introduce the model and algorithms respectively.

3.2 Strength-Of-Arrival-Based Scheme

The SOA scheme consists of the PLBLSFM and SOCL SFM fading models and the
PL estimation.

3.2.1 Splashes-Of-Change L ar ge-Scale-Fading M odels for Three Base Stations

Assuming a 2-D spatial geometry, the signal levels from three BSs are described by
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the PLBLSFM or the SOCLSFM. For simplicity, only the SOCLSFM is illustrated.
Chapter 2 described the SOCLSFM centered around one BS. However, three
SOCL SFMs are required, each centered around its respective BS; see Figure 3.1. All the
SOCLSFMs are generally described in terms of fixed parameters which govern the
statistical behavior of the random aspects of the SOCL SFM. However, the SOCLSFM is
atime-invariant model and is location dependent. Many generated model parameters are
random. As a result, at each time of generation of the SOCLSFM, a so-called unique
propagation set is formed. We restrict the number of BSs to the minimum required for
an unambiguous PL estimation, namely three. Figure 3.1 shows the three fading models,
each having a radius of 2000 m around the BS. The three BSs are presumed to be
located at each corner of an equilateral triangle, whose coordinates are BS1= (0 m, 0 m),
BS2= (0 m, 1500 m), and BS3= (750 m, 1299 m), respectively. Each side is 1500 m in
length, and the stationary M S users are assumed to be located within a shaded circular
area of radius 866 m centered at (750 m, 433 m). The center of the shaded area coincides

with that of the triangle, as shown in Figure 3.1.

Figure 3.1 The configurations of the PL model over three BSs
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3.2.2 Development of Strength-Of-Arrival-Based PL Estimation Scheme
An overview of the SOA-based scheme is as follows. The three impulse responses
derived from the SOCL SFMs and the true MS location coordinates are fed to the SOA-
based PL estimation scheme. The output of the SOA-based PL estimator is the estimate
of the location co-ordinates of the MS. The estimation error is computed from the true
and the estimated location co-ordinates and the performance of the estimator is analyzed

in terms of the mean-squared estimation error. See Figure 3.2.

x X
—_—- L

True location SOA-based Estimate of the
coordinates PL scheme location coordinates

- LU sk s

SOCLSFM's
information

Figure 3.2 SOA-based PL estimation scheme
The detail of the SOA-based scheme is as follows:
Repeat the following steps for each BS with different MS's relative coordinates,
respectively:
1. The signal propagation around three BSs is sampled uniformly in a 2-D space,
where the sample points are located at the vertices of squares 50 m wide. An MS can
be possibly located within the four sample points represented by the corners of the
square. Impulse responses at these four sample points can be obtained from the
SOCLSFM.

2. The impulse response at the MS is computed from the interpolation of the
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impul se responses at the corners of the square.
3. The power of the impulse response is computed.
Using the set of difference equations governing the range difference measurements,
three circles are drawn.
The points of intersection of the three circles can form one or two triangles. The
estimate of the MS location is obtained weighting the centers of the triangles.
The SOA schemeis described in detail in Section 3.3.
3.3 Mathematical Formulation of Strength-Of-Arrival-Based Scheme
This section describes the mathematical formulation of the SOA-based PL scheme.
3.3.1 Received Power Estimation using Three Propagation Sets
3.3.1.1 Mobile at some random location
It is presumed that the MSs are scattered uniformly inside a circle with a radius of
866 m and centered at the coordinate (750 m, 433 m). Let the coordinates of the MS
positions beindicated by (x, y).
3.3.1.2 Measurement of received powers and development of range difference equations
Using the mathematical model governing the signal path loss with distance, the three

received powers, denoted P,, P, and P3, are given by

P =md; ", (3.19)
P, =md;", and (3.1b)
Py =md3", (3.1¢)

where d;, d, and d; are the distances from the MS to three BSs; i isthe path loss

coefficient and n is the path |oss exponent.
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In order to estimate the received powers from each of the three propagated signals,

the impulse response is computed from an averaging of the impulse responses at the
sample points of the sguare grid using coordinate shifting and interpolation. The
absolute coordinates of the three propagation sets are centered at the three BSs, having
coordinates (O m, 0 m) at each BS, and three circles having a 2000 m radius, as shown in
Figure 2.3. An MS has three different relative coordinates for each absolute coordinate.
Asiillustrated in Figure 3.3, the MS's relative coordinate for BS1 is(100 m,100 m), the
MS s relative coordinate for BS2 is(-1400 m, 100 m), and the MS's relative coordinate
for BS3is (-650 m, -1199 m). Three relative coordinates are used to identify the three

different impulse responses, namely MS-BS1, MS-BS2 and MS-BS3.

(100,100) at BS1
(-1400,100) at BS2
(-650,-1199) at BS3

0.0

Figure 3.3 Relative coordinates of an MS
As mentioned before, the impulse responses are identified at the grid points located
at the vertices of a square 50 m wide. The impulse response of the channel at the MS,
which is located inside the square, is computed by interpolation of the four impulse

responses at the vertices of the square.
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Figure 3.4 Animpulse response at an M S estimated in a square pattern
Figure 3.4 shows the grid points located at coordinates (X,y1), (X1 +D,y1), (X1,y1+D),

and (x;+D, y;+D). The impulse responseshf, h§, h{, and hf, are identified at these
points respectively, where D is the width of the square (D = 50 m). The MSislocated at
the coordinate (X, y), and the distances from the MS to the four grid points are 4, I5, I3,
and | .
The impulse response wherethe MSis at (X, y), h, is obtained by interpolation as

h, = wh{+w,h{ +w;h{ + w,hf, (3.2
where wy, W, Ws, and w;, are the weights. The weights are computed from the distances

to the four vertices, I4, I, I3, and |4, and the width of the square, D, as follows:

éwu éa, a, a, a,tdu
e u e u
éwzl_]: §a21 Ay Ay 3243220' (3.3)
w0 €ay  a;, a; a,ud,u
e,y € HS u
W, 0 s A A3 Au(@sl

where a,;,a,,, a,,,..., 3, are the 16 constraints that need to be determined to create the

interpolator. The 16 constraints are obtained from the MS positions at the four grid
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points, with four constraints on the weights at each point. The constraintsat (x,y,) are

1=ay,(0) +a,(D) +a,(D) + a,(x/2D), (3.4a)
0= a,,(0) +a,,(D) +a,(D) +a,(v/2D), (3.4b)
0= a,(0) +a5,(D) +ay,(D) +a,,(v2D) , and (3.40)
0=a,(0)+a,,(D)+a,(D)+a,(x/2D). (3.4d)

The constraintsat (x, +D,y,) are

0=ay,(D) +a,(0) +a,(v2D) + a, (D), (3.4¢)
1= a, (D) + a,,(0) +a,(v2D) + a, (D), (3.4f)
0 = a,(D) + @, (0) + 8, (v'2D) +a,,(D) , and (3.49)
0=a, (D) +a,(0) +a,(v2D) +a, (D). (3.4h)

Thecongtraintsat (x,,y, + D) are

0=a,(D) +a,(v2D) + &, (0) + a,(D), (3.4i)
0=a,,(D) +a,(v2D) + a,(0) + &,(D), (3.4)
1= a, (D) + 8, (+2D) + a5,(0) +a,,(D) , and (3.4k)
0=a, (D) +a,,(v2D)+a,(0) +a,(D). (3.40)

Thecongtraintsat (x, +D,y, + D) are

0=a,(v/2D) +a,(D) +a,(D) + a,,(0), (3:4m)
0=a, (v2D) +a,,(D) + a,(D) +a,,(0), (3.4n)
0= a,,(v2D) +a,,(D) + a,(D) +a,,(0), and (3.40)
1= a,,(v/2D) + a,,(D) + a,,(D) +a,, (0). (3.4p)

Equations (3.4a) to (3.4p) can be solved fora,,,a,, a;,..., &, , and substituted into

Equation (3.3) to get the weights,

21 | I
W]_:_L+_2+i’ (35a)
2D 2D 2D
L 21,
w, = 1 2,4 (3.5b)

2D 20 20’
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wy =L . —3.+4 and (3.50)
2D 2D 2D
Lo J—|

wy =243 14 (3.5d)
2D 2D 2D

With the method to obtain one interpolated impulse response, h. , now described, this
method can be repeated for al three BSs. In summary, the MS-BS1 impul se response,
called h,, can be obtained by:

using the MS's relative coordinates to get hf, h§, hg, and hf,

finding wy, wy, ws, and w, from Equations (3.59), (3.5b), (3.5¢), and (3.5d),

finding h, from Equation (3.2), and

assigning this h, to h,.
Smilarly, the MS-BS2 impulse response, cdled h, , and the MS-BS3 impul se response, called
h,, are obtained. There detail graphs in generating these impulse responses are shown in
Appendix C. Fromh, h,, and hy, their respective powers B, P,, and P;, may be obtained.

Equations (3.14), (3.1b), and (3.1c) can be transformed into three range difference

equations, as expressed in Equations (3.6a), (3.6b), and (3.6¢),

2 2
B0 @0 g B0, (369
P2 o dl ] PZ %]
2
Mo o', o S, @)
P3 B dl g ép?) B
5 2
=z .2 T
&, on o830 d2 2 E 0On d2. (3.6¢)
P3 B d2 g éPS B

Since B, P,,and P, are known, assigning
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1

e
i (3.73)
P g
1
5
-5 and (3.7b)
Pg
1
5
g‘ii” - a,. (3.70)
P g

Substitute Equations (3.7a), (3.7b), and (3.7¢) into Equations (3.6a), (3.6b), and (3.6¢) to

get:
d? =a2d?, (3.83)
d? =a2d?, and (3.8b)
dZ =a2d3. (3.8¢0)

Each of the above equations describes a cirde, and the intersections are used to find
the MS's location. Ideally, the circles intersect at a point. Practically, the intersections
form a region and the MS's location is estimated from that that region. Section 3.3.2
givesthe details.

3.3.2 Position Estimateof MS

3.3.2.1 Solutions to the three range difference equations

BS1
(00) o)

Figure 3.5 The MS-BSsrelated graph
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The first of three pairs of circles considered is from BS1 and BS2. The coordinates
of BS1, BS2, and the M S, and the length of one side of the isolates triangle formed by

three BSs, d, are indicated in Figure 3.5. Equation (3.8a) represents a circle, between

BS1 and BS2, whose equation is
(x- df +(y- of =af[(x- 0f +(y- Of]. (3.9)

Simplifying we get

2 2
2 6 2ad 0
X- dzz ry? =2t (3.10)
1- & g 1- 3] g

The coordinate at the center, (x, y,,), and the radius, ry, of the circle are given by

o:

& d :
(xcl, ycl) =§ 5 0% , and (3.114)
1- d g
_Ead 9
r _§1 5o (3.11b)
" g

Similarly Equation (3.8b) represents a circle between BS1 and BS3, whose

coordinate at the center (x,, y,,) and whoseradius, r,, are

& d Jad 9
, = , T, and 3.12a
(XCZ ycz) éZ(l- ag) 2(1_ ag)é ( )
FS] 0
ry =§ a2d2 5 (3.12b)
1- az a9

and Equation (3.8c) represents a circle between BS2 and BS3 whose center, (X3, Ye3) »
and theradius, rs, are

®-2da; Jad 9 (3.13)
2(1- a2) ' 21- &) '

(Xc3’ YQ) =
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(3.13b)

The PL estimate of the MS is computed from the intersection points of the three
circles. The estimate is a weighted average of these intersection points.
3.3.2.2 Computation of the position location estimate of mobile station

How the three circles intersect greatly influences the PL estimate of the MS.
Appendix D illustrates the influence of the points of intersection. In the case where the
circles do not intersect, we can use an approximate method by generating a fictitious
point of intersection by giving one of the received powers small increments until the
circlesintersect at a point, as explained in Appendix D. The PL estimate is the centroid

of the triangle formed by the three points of intersection,

~ 1 1 1
X=—xf+—x§ +—x&, 3.14a
A AR (3.149)

~ 1 1 1
= _ + — + — , 314b
y 3y§ 3y§ 3y§ ( )

whereX and § are the coordinates of the PL estimate of the MS and (4, yf), (x%,y%)
and (x,ys) are the coordinates of the points of intersection of the circles.
3.4 Results of Evaluation

In the simulations in this thesis, four parameters relevant to the performance are:

N; , the total number of MS positions that are eval uated,
N, , the number of M S locations where the PL scheme could locate the MS,

Ng , the number of outages, meaning the number of MS positions where the PL
scheme failed to locate the MS, and

N , the number of MS positions where the distance between the true and
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estimated position is less than or equal to 125 m.

Some important relationships are:

N| +Ng = N, and (3.153)

N <N;. (3.15b)
In order to evaluate the SOA-based PL estimate, three performance criteria are applied.
They are based on the FCC's E-911 PL requirement (<125 m accuracy for 67 %
measurements) described in Chapter 1.

The first criterion is the mean error (m) of estimation (e ):

e =8 (% %)+ (5 - v )2 (3.16)

whereX and Y indicate the coordinates of the estimate, and (X, y) are the coordinates of
the true M S position.
The second criterion is the percentage (%) of the time location estimate cannot be

determined ( RFyyage):

P e =—2 100% (3.17)

N
outage Nt
The third criterion is the percentage (%) of estimations with errors less than 125 m

(P%):

PY% = % 100% (3.18)

|
The parameters used in the SOCLSFM are the same as those indicated in Chapter 2.

Additional parameters used in the simulation are provided in Table 3.1.
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Table 3.1 Parameters of SOA-based PL estimation

Parameters Values
The distance between BSs (d) 1500 m
The square pattern length (D) 50 m
Path loss exponent (n) 4
Total numbers of MS locations simulated (N, ) 50

N;{ =50 MSs were chosen to evaluate the performance of the SOA-based PL

estimation scheme with the SOCLSFM. 50 locations are enough to provide an
acceptable variance on the performance criteria, asillustrated in Appendix E.

The results of the evaluation of the SOA-based PL estimation using both the
PLBLSFM and the SOCLSFM are illustrated in Figure 3.6 and Figure 3.7, where the
random locations of 50 M Ss denoted by “*”, the 50 estimated PLs denoted by “0”, and

three BSs denoted by “BS’. The performance measures are presented in Table 3.2.
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Figure 3.6 The SOA-based PL evaluated using the PLBLSFM
(50 MS locations, Mean error: 1.9 m)
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Figure 3.7 The SOA-based PL evaluated using the SOCL SFM
(50 MS locations, Mean error: 176.3 m)

Table 3.2 Performance measures for SOA-based PL evaluated using
the PLBLSFM and the SOCL SFM

SOA-based PL evaluated SOA-based PL evaluated
using the PLBL SFM using the SOCL SFM
e=19m e=176.3 m
P% = 100.0 % P% =39.6 %
Potage = 0.0 % Potage =4:0%

The PLBLSFM is a fading model that dlows for ideal performance. The SOA-based
PL using the PLBLSFM gives good performance in al the locations. This demonstrates
that the SOA-based PL estimation scheme is correct. Theoreticaly, in the absence of
multipath and shadowing, a PL estimate with the PLBLSFM should give zero estimation
error, that isin Figure 3.6 and Table 3.2, e should be zero. However, in the simulation,
in some of the cases, the circles did not intersect, and an approximate estimate was used

by creating fictitious points of intersection by increasing the received power. Although
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the approximation resulted in a non-zero value of the performance measure, the error

was small compared to the size of the cell.

SOA-based PL estimation using the SOCLSFM gives worse performance compared
with that of the PLBLSFM, as illustrated in Figure 3.7 and Table 3.2. However,
propagation is subject to multipath as well as shadowing, asis commonly encountered in
practice. Thus the SOCLSFM is amore realistic model.

The results of the evaluation have shown that the SOA-based PL estimation using
the SOCLFSM by itself cannot yield good performance. The expected accuracy of the
estimate using this method does not meet the E-911 PL requirements described in
Chapter 1. There is a need to introduce a new approach to improve the performance of
the SOA-based scheme.

3.5 Summary

The SOA method is a well-known technique in estimating the PL in a wireless
channel. This chapter theoretically describes the SOA-based PL estimation scheme using
the SOCL SFM. Mathematical formulation and the results of the evaluation are presented.
For completeness, PL estimated performance based on the SOA using both the
PLBLSFM and the SOCLSFM are evaluated. The performance of the SOA-based PL
scheme using the PLBLSFM was shown to be superior as the PLBLSFM represents
ideal conditions. However, in practice, the SOCLSFM is more redlistic. Large mean
errors in the PL estimate using the SOCLSFM are caused by the multipath and
shadowing. PL estimation using only SOA-based scheme generally gives poor
performance, as shown by the SOA-based PL scheme using the SOCLSFM. There is a

room for improving the SOA-based method.
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Chapter 4 Position Location for Strength-Of-Arrival
and Neural-Network Techniques
4.1 Introduction

In this chapter, an accurate PL estimation scheme that integrates SOA and NN
techniques is presented. The proposed PL estimation scheme is a hybrid of the traditional
SOA scheme and an NN-based estimation scheme. The radio channel model uses the
SOCLSFM. The NN is a multilayer feed-forward network, and uses the efficient
Levenberg-Marquardt (LM) agorithm for training. The input to the NN is formed of
PL estimates obtained using the SOA-based scheme with the SOCL SFM,
three impul se responses estimated from the SOCLSFM, and
features extracted from the impulse responses.

The output of the NN isaPL estimate integrating the input data.

An appropriate NN architecture was determined by essentially selecting different
architectures and choosing the one whose performance was applicable to the problem.
The number of hidden layers and the number of nodes in each hidden layer were varied,
and the network configuration, which gave a minimum mean error in the PL estimation
with respect to NN training phase, was selected. After the NN architecture was selected,
two kinds of integrated schemes were evaluated by extensive experimentation using
simulated training and test data, which contained various channel environments
including multipath and shadowing.

The simulation results show an improved performance of the proposed integrated
scheme, especialy when the propagation channel is subject to multipath and shadowing.
4.2 Integrated Strength-Of-Arrival and Neural-Network PL Estimation

The motivation behind the integration of the SOA and NN schemes is to exploit the



53

training abilities of the NN to overcome the deficiencies of the SOA scheme in handling
different channel environments. This, hopefully, will improve the performance of the PL
estimation scheme to alevel acceptable to the FCC.

In this section, the NN architecture, the training and training of the NN, and the two
integrated schemes are discussed.
4.2.1 Neural-Network Structure

General NN architectures are composed of the following [Haykin99]:

Feed-forward connection - Time delayed connection
Lateral connection - Feedback connection
An NN with a feed-forward structure and at least one hidden layer has the ability to
approximate any nonlinear functional relationship, if the data is sufficiently large and
representative. In other words, a multilayer feed-forward NN can approximate any
arbitrary input-output function.
In view of this, a multilayer feed-forward NN is chosen for the PL estimation. The
problem solved by the NN is to approximate a function that relates the inputs, namely
features involved in the SOA estimation, and the outputs, namely the PL estimated by an

integrated system. A multilayer feed-forward NN is shown in Figure 4.1.

Input layer  Hidden layer  Output layer
Figure 4.1 A fully connected multilayer feed-forward NN
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In Figure 4.1, the neurons are grouped in layers. There are X input signals, Y hidden
nodes, and two output signals. There may be many hidden layers between the input and
output layers. In this figure only one hidden layer is shown.

4.2.2 Neur al-Network Training M ethods

The NN must undergo a training process before it can approximate a correct input-
output function, that is to say, the NN can generate a correct output to a given input only
after it has learnt [Mitchell97]. The algorithm that is designed to adjust the weights of
the network connection in the training process is called the NN training algorithm.
4.2.2.1 Neural-network training algorithm — backpropagation

The NN training process can be ssimply classified as unsupervised or supervised.
Unsupervised training is used when a clear link between input pattern and ideal output
values does not exist [Warner96]. Supervised training involves providing an NN with
specific input and ideal output values and allowing it to iteratively reach a solution
[Mitchell97]. In this thesis, since the ideal outputs, namely the true PLs of the MSs, are
available during the training phase, a supervised training scheme is employed.
Compared with other training methods, such as Hebbian training, optimal estimation and
competitive training, backpropagation is the most commonly used supervised algorithm
for a multilayer feed-forward network. Details of the backpropagation training agorithm
are provided in Appendix F.
4.2.2.2 Neural-network training algorithm — Levenberg-Marquar dt

Since the backpropagation training algorithm was first popularized, there has been
considerable research on methods to accelerate the convergence of this algorithm
[Hagan94]. Many agorithms focus on standard numerical optimization, that is, using

aternative methods for computing the weights associated with network connections. The
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most popular algorithms for this optimization are the conjugate gradient and Newton's
methods. Newton’s method is considered to be more efficient in the speed of convergence,
but its storage and computational requirements go up as the square of the size of the
network [Hagan94]. The LM algorithm is an approximation to Newton’ s method [Moré77].
The LM algorithm is efficient in terms of high speed of convergence and reduced memory
requirements compared to the two previous methods. In general, with networks that contain
up to severa hundred weights, the LM agorithm has the fastest convergence [Hagan94].
This advantage is especialy noticeable if accurate training is required, and hence is
employed herein. The LM algorithm is presented in Appendix F.
4.2.3 Thelntegration of Strength-Of-Arrival and Neural-Network Techniques

The SOA-based PL estimation scheme, which is described in Chapter 3, is shown in
Figure 4.2. Given an ideal fixed M S coordinate (X, y) , three SOCL SFM propagation sets
are used to obtain three impulse responses (h;, h, and hz). The impulse responses are

used to obtain the PL estimate, denoted (Xgoas Yon) -

2 < X504
—_— —
3 SOCLSFM h .| SOA-based 7
¥ propagation sets "| PL scheme Ysou
hB

Figure 4.2 Block diagram of the SOA-based PL scheme
The integrated SOA and NN scheme is shown in Figure 4.3. Part of the integrated
scheme is the SOA-based PL scheme. The impulse responses implicitly contain the
features characterizing the channel. It was found that satisfactory performance could be
achieved by extracting only a few features from the impulse responses. These features are

the mean delay and power delay profile. Other features, such as RMS delay spread, are not
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considered explicitly in integrated estimation scheme. Compared to having no feature
extraction, the mean delay input to the NN provides a significant improvement in the
performance of the integrated scheme, as described further in Appendix G. The greater the
number of inputs to the NN, the more complex is the NN and, as a result, the longer it
takes to train the NN. The integration of the SOA and the NN techniques is obtained by
applying to the NN, the PL estimates from the SOA-based scheme, the mean delays, and

the three channel impul ses responses.

5 A X504 |
| |
i ?p igggLasﬁz'::' h | | soA-based |
| sbls PL scheme |
D AN i3 Y 504 | 4
| SOA+ NN
| |
| — a » l
|Integrated SOA and NN |
| NNPLscheme Mean delay 4y | process :
I <
| d3 R Ysoa+ N
| |
I B 16 :
|
| 16 |
| i |
| b 16 |

Figure 4.3 Thefirst integrated scheme of SOA and NN techniques
Asshown in Figure 4.3, called the first integrated architecture, the NN has 53 inputs:
three 16-tap impulse response sets (hy, h, and h3) from the SOA estimation inputs,
three mean delays (d{,d$ and df) associated with the impulse responses, and
the coordinate of the PL estimate using the SOA scheme, (Xgon, Yson) -
The NN outputs are the coordinates of the PL estimates of the integrated scheme,
denoted (Xgon + v » Ysoa + nn ) - Later inthis chapter, there are further references to Appendix

G and Appendix H; these appendi ces contain results for thisintegrated architecture.

Figure 4.4 shows the second integrated scheme which was considered. There is a
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block which accepts three impulse responses, and puts out power delay profile. The
details of this block are shown in Figure 4.5, wherea { ,a § , and a § are the

exponential coefficients of each power delay profile.

| |3 SOCLSFM hy
| | propagation
| sets

SOA-based
PL scheme

a,
[
—

NN PL scheme Mean delay process

\
\
tegrated SOA and NN ‘
|
\

\

N 2 2a{k16_ |
Power delay . \
profiles from RMS |2 2216 |
\

\

\

delay spread
k=10,1,2, ..., 15} | ;~2ek1g

_—_——————— = — — —

Figure 4.4 The second integrated scheme of SOA and NN techniques

-2olk
hy Calculate RMS Calculate exponential » _, Power delay -2k g !
delay spread ™ coefficient (ai) > profile ( e ) .
-dalk
by Calculate RMS Calculate exponential  _, Power delay 2k g !
delay spread ™ coefficient () > profile (P;c =g ) X
2ok
2 Calculate RMS Calculate exponential -, Power delay 14k g s
delay spread ™| coefficient (‘:}3) ™ profile { L =e ) >

Figure 4.5 Using h,, h, and h; to calculate power delay profile
The NN as shown in Figure 4.3 and Figure 4.4 is a multilayer feed-forward NN,
which employs LM algorithm for training. Figure 4.6 shows the NN architecture. It has
one input layer, one hidden layer, and one output layer. The hidden and output layers

each have neurons. Each neuron is comprised of a set of weights, summers, and transfer
functions. The weights are denoted by { w( ]P’ }. The outputs of the summers are passed to
nonlinear transfer functions. A tangent sigmoid type nonlinear function is employed

herein. The outputs of the hidden layer’s nonlinear blocks are fed to the neurons in the

output layer. There are two neurons in the output layer and the transfer function islinear.
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AEN @

Input Hidden layer Cutput laver

Figure 4.6 The multilayer feed-forward NN
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The subscripts p, i, and j identify pattern, layer, and node, respectively. X denotes the

number of the inputs, which in our caseis53. Y is the number of neurons in the hidden

layer. The input pattern of the NN is denoted as x(. The output of a summer and a
transfer function block are denoted S®® and a'”, respectively. The desired network

output is expressed as d P . The two errors at the output of the network are e and e, .
The backpropagation and LM algorithms are described in Appendix F.
The training of the NN proceeds as follows [ Scalero92] :

- Stepl: Initialize the weight vectors Wi(JF’) randomly according to the Nguyen-Widrow

algorithm [Nguyen90], described in Appendix G.
- Step2: Run atraining pattern through the network.
- Step3: Evauate the error signals and use them in the backpropagation algorithm.

- Step4: Update the weight vectors w(? using the LM algorithm.

- Step5: Repeats step 2 to 4 for al the input and output patterns in the training set.

Simulation results of the proposed integrated scheme are presented in Section 4.3.
4.3 Performance Evaluation

The size of the network depends on the number of layers and the number of neurons
per layer. For obtaining the best performance, an optimal number of hidden layers and
neurons per hidden layers must be determined. The NN training and the evaluation of the
proposed scheme are given in Section 4.3.1, Appendix G, Section 4.3.2 and Section 4.3.3.
4.3.1 Determination of Optimal Size of the Neural-Networ k

The number of hidden layers, the number of neurons in each layer, the type of

transfer function, the connections between layers, and the connection weights, determine
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the architecture of an NN. The architecture which yields the best performance depends
on the type of problem handled by the NN. For example, a 21-15-3 network, with 21
inputs, 15 neurons in the hidden layer, and three outputs, is the best architecture for
solving the Cholesterol data set problems [Demuth97].

The performance of the NN is evaluated using the mean error performance criteria
described in the section on the SOA scheme. It is the average error distance between the
estimated locations from integrated scheme and the true MS locations. A series of
experiments were performed to determine the mean error for different NN sizes. As
random initialization of the weights is employed, the average performance of the NN
algorithms is evaluated by using severa different sets of initial weights and biases. For
each NN size, eight different experiments were performed with randomly chosen initial
weights. Eight experiments were found to be sufficient to obtain an acceptable
performance in terms of the mean variance of the mean error, as shown in Appendix G.

Table 4.1 The mean error — average over eight experiments for each NN architecture

The number of :
hidden layer (s) The architecture Mean error (m)
Zero 53-2 82.2
53-5-2 77.8
53-10-2 75.6
53-20-2 70.5
One 53-25-2 72.3
53-30-2 73.8
53-50-2 78.7
53-100-2 85.3
53-20-15-2 236.46
Two
53-30-20-2 182.56
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Table 4.1 provides the mean errors for the NNs with zero, one, and two hidden
layers and a variable number of neurons in each layer. The NN is presented with
identical input patterns for each of the chosen architectures. The input patterns to the NN
were identical for each experiment associated with a given NN architecture. The number
of input patterns presented was 1500 and its justification will be given in Section 4.3.2.
From Table 4.1, it is obvious that the mean errors are relatively small with one
hidden layer. With one hidden layer, the error reaches a minimum value when there are
20 neurons in the hidden layer, also as shown in Figure 4.7. Additional results for 2, 5
and 10 hidden layers are given in Appendix G. It is for this reason that the number of
hidden neurons, Y, is set to 20 and the evaluation of the proposed scheme is based on the

53-20-2 NN of thefirst integrated scheme shown in Figure 4.6 and Figure 4.3.
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Figure 4.7 Mean error with the integrated scheme and one hidden layer
4.3.2 Neural-Network Training
The multilayer feed-forward NN with one hidden layer, 53 inputs and two outputs is

trained by presenting sufficiently large and representative patterns. The patterns were
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split into training and test patterns. The NN was trained with training patterns, that is to
say, the network weights were determined using training patterns. After the NN was
trained, its performance was evaluated using the test patterns, which were not presented
during the training phase. The details about the training patterns are given in Appendix
H. The number of training patterns, Ty, was 1500. Having Ty greater than 1500 did not
significantly improve the performance, while less than 1500 patterns degraded the
performance.

The performance measures employed in the NN training are the same as those used
in the SOA-based scheme described in Chapter 3. The performance measures include the
mean error, denoted e, the percentage of errors less than 125 m, denoted P%, and the
outage of the PL estimation scheme, denoted Pgage. The performance measure is given
in terms of an average over al the patterns rather than in terms of the estimation error
for each individual pattern.

The training phases of the first and second integrated schemes are described in
Sections 4.3.2.1 and 4.3.2.2, respectively.
4.3.2.1 The training phase of the first integrated scheme

The training patterns were applied to the first integrated scheme shown in Figure 4.3,
and the results are shown in Table 4.2.

Table 4.2 The comparison of the training performance of the SOA-based scheme and
the first integrated scheme

Perfor mance measur es of Perfor mance measur es of
the SOA-based scheme thefirst integrated scheme
e=1759m e=716m
P% =36.0 % P% =80.1 %

P

outage

=1.9%
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Alsoillustrated in Table 4.2 is the performance of the traditional SOA-based scheme.
Table 4.2, clearly shows the superiority of the first integrated scheme.
4.3.2.2 Thetraining phase of the second integrated scheme
The training patterns were applied to the second integrated scheme shown in Figure
4.4, and the results are shown in Table 4.3. Also, the performance of the traditional

SOA-based scheme is presented.

Table 4.3 The comparison of the training performance of the SOA-based scheme and

the second integrated scheme

Per for mance measur es of Perfor mance measur es of
the SOA-based scheme the second integrated scheme
e=1759m e=66.1m
P% = 36.0% P% =85.5 %
P e =1.9%

outage

Similarly, Table 4.3 shows the superiority of the second integrated scheme.
Comparing Table 4.2 and Table 4.3, the PL performance is improved when the second
integrated scheme is employed.

4.3.3 Position Location Accuracy of the Integrated Techniques

Once the NN’s training phase is completed, the trained NN may be used to estimate
the PL when input data not seen during the training is presented. During the testing
phase, the NN is presented with T, random sets of inputs, the true MS positions. Ty, is
much less than the number of training patterns Ty. Unlike the training phase, the testing
phase does not involve known outputs, namely the true PLs of the MSs. However,
during the testing phase, the NN is presented a reduced number of similar inputs, namely
the PL estimates using the SOA, the impulse responses or power delay profiles, and the

mean delays. The outputs are the estimated PLs of the MSs. The test size, Ty, is selected
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to be 50. This sizeis determined so that the variance of PL estimates is sufficiently small,

as described in Appendix H.
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Figure 4.8 PL results of the SOA-based scheme
(50 MS users, Mean error: 173.6 m)

Sections 4.3.3.1 and 4.3.3.2 present the results obtained from the first and the second

integrated schemes, respectively. The accuracy improvement is discussed in Section
4.3.3.3. For the SOA-based scheme, Figure 4.8 indicates the random locations of 50
MSs, the 50 estimated PLs, and three BSs. Thisfigureis presented for evaluating the PL
performance of the SOA-based scheme. The same MSs' locations, shown in Figure 4.8,
are used to test the first and second integrated schemes.
4.3.3.1 The performance of thefirst integrated scheme

The performance of the first integrated scheme is evaluated by simulation. Figure 4.9
indicates the 50 random PLs of the M Ss, and the corresponding estimated PLs using the
first integrated scheme. For both the SOA-based scheme and the first integrated scheme,

Table 4.4 provides a summary of the performance measures of 50 MS locations.
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Table 4.4 The performance comparison of the SOA-based scheme
and the firg integrated scheme

SOA-based scheme First integrated scheme

e=1736m e=744m

P% =35.4 % P% =81.2 %

P =4.0%

outage

4.3.3.2 The performance of the second integrated scheme
Similar to the previous simulation results, Figure 4.10 provides the true locations and
the location estimates of the second integrated scheme. Table 4.5 shows the accuracy

improvement of the second integrated scheme, compared to the SOA-based scheme.
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Table 4.5 The performance comparison of the SOA-based scheme and
the second integrated schemes

SOA-based scheme Second integrated scheme
e=173.6 m e=658m
P% =35.4 % P% =85.4 %
Page =4.0%

4.3.3.3 The accuracy improvement in the integrated techniques

Outage occurs in al the smulations. For a particular scheme, outage is the number

of MSs which cannot be located, divided by the number of successful estimates. Potage

in Tables 4.4 and 4.5 is 4.0%, which implies that two of 50 MSs cannot be located. For

these two M Ss, both the SOA-based scheme and the integrated schemes fail to estimate

their PLs. Asindicated in Figures 4.8, 4.9 and 4.10, the locations MS,4 and MS, could

not be estimated.
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From the results presented in Section 4.3.3.1, the first integrated scheme has superior
performance compared to the SOA-based scheme. In Table 4.4, the first integrated
scheme has a mean error,e , which is 57% less than that the SOA-based scheme. The
first integrated scheme also has a 46% increase in the number of MSs within 125 m of
the true MSs locations ( P% ). This shows that the first integrated scheme, when
implemented with a properly trained NN, meets the FCC requirements for an E911
system. If we zoom in on individual MS locations, for most of the MSs such as MSz7 in
Figure 4.9, the estimates deviate dlightly from the true PLs. As shown in Figure 4.8 and
Figure 4.9, the deviation in the estimated location of MSj3; is smaller for the first
integrated scheme compared with the SOA-based scheme.

Similar to Section 4.3.3.1, the results of evaluation of the second integrated scheme
are presented in Section 4.3.3.2. Compared to the SOA-based scheme, Table 4.5,
indicates an improvement of 62% ine, and a significant improvement in P% of 50%.
Figure 4.8 and Figure 4.10 also show this improvement. The PL estimates are very close
to the actual in most cases.

The second integrated scheme has better performance than the first integrated
scheme, as shown in Figures 4.9 and 4.10. Comparing the results presented in Tables 4.4
and 4.5, the performance improvements measured in terms of e and P% are 8.6 m and
4.2%, respectively. This shows conclusively that the second integrated scheme is
superior to the first.

4.4 Summary
In this chapter two novel integrated PL estimation techniques based on combining

the traditiona SOA-based method and the NN technique are presented. The NN
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structure, the training strategy, and the network training algorithms are explained. The
experimental procedure to determine the NN size is given. Simulation results of the NN
training phase associated with the integrated schemes are given. The results of the
training as well as the test phases are presented. The performances of the first and
second integrated scheme are investigated. The results show that the power delay
profiles are the preferred input to the NN, compared to the aternative, using impulse
responses. Since RMS delay spread is part of the power delay profile, it is expected that
including RMS delay spread as an input to the NN will not significantly improved the
performance.

Based on the simulations using the SOCLSFM, the proposed integrated schemes

show superior performance in a multipath environment and meet the FCC requirements.
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Chapter 5 Conclusions

5.1 Conclusions

A novel scheme to estimate the location of a mobile station is proposed, as well as a
new radio channel model, the SOCLSFM, to evaluate that scheme. The scheme
integrates the traditional SOA-based estimation and an NN with a view to overcome the
poor performance of the traditional scheme.

The first contribution of this thesis is the SOCLSFM. It is a relatively simple radio
channel model which accounts for path loss, shadowing, an exponential power delay
profile, propagation delay, and RMS delay spread. The most important feature about the
model is that it includes SOC in RMS delay spread. The SOC introduce correlation
among impulse response coefficients and thus the SOC provides valuable information
for an NN. This model was the foundation for comparing the SOA-based PL estimation
scheme with the integrated SOA and NN scheme.

The second contribution is the combined SOA and NN scheme. The proposed
integrated scheme is shown to meet the FCC requirements based on extersive simulation.
Besides the SOA-based estimates, the NN is presented with the channel characteristics
including its impulse response and mean delay. Thanks to the ability of the NN to learn
from examples, various signal propagation characteristics of the channel, especially
those affecting the performance of the SOA, the proposed scheme overcomes the
inaccuracies in the SOA estimates in the face of channel variations. Furthermore, the
RMS delay spreads of the SOCLSFM provide additional information in improving the
integrated PL scheme accuracy. The proposed scheme presents a new approach to

wireless service providers using CDMA technology to meet the FCC E-911 regulation.
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5.2 Future Work

The SOCLSFM used in this thesis puts in only increases in the splashes of RMS
delay spread. However, some decreases could also be made.

Improving the channel models or using channel information that better represents the
real-world mobile radio channel would provide a more realistic smulation.

Besides the multipath and shadowed environment features of the SOCLSFM, which
appear to be maor limiting factors in the performance of the SOA-based estimation,
other factors that affect the inaccuracies need to be addressed. One such factor is the
type of solution of the SOA equations.

Since the training of the NN directly affects the performance of the integrated
scheme, it isimportant that an appropriate training algorithm be employed. Although the
traditional LM training algorithm has proven to be effective in this thesis, it may be
beneficial to investigate other algorithms, especialy those proposed by Bogdan M.
Wilamowski and Yixin Chen [Wilamowski98]. In a one hidden layer NN, those
algorithms are more efficient and require less computation memory to converge
compared to the LM algorithm.

Examples presented to the NN during the training and the testing phases are crucial
to the performance of the estimation scheme. A technique to select a sufficient and
representative data set should be the focus of further study. A smaller representative set
may result in poor performance, while a large representative set would require a longer

timeto train.
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Appendix A: Limitations of SSF Model PL Solution

A.1l Introduction

Compared with the LSF model, the SSF model has much more rapid fluctuations of
received signals over a short travel distance or period of time [Rappaport96]. These
fluctuations are caused by constructive and destructive interference between two or more
versions of the same signal.

SSF is also caled Rayleigh fading, scintillation or fading. SSF changes due to
multipath reflection caused by the superposition or cancellation of multipath propagation
signals, the speed of the transmitter or receiver and the bandwidth of the transmitted
signal. If the recelved signal has an LOS component, the fading envelope is given by a
Rician PDF (Possibility Density Function).

The suitability of SSF model simulation is investigated in this section. The factors
that influence SSF are the motion of the transmitter and receiver and multipath in the
received signal. To simulate an SSF model, a set of impulse responses is generated
around the BS in a grid pattern with 50 m between points. 50 m was chosen to avoid a
large set of sample points inside the 2000 m radius area around BSs. Every component
inside impulse responses are also called multipath components or taps, which represents
the energy of every piece of multipath waves received from a same transmitted signal. A
Rayleigh fading channel model is described by impulse responses, and the channel
model takes into consideration both the motion of the transmitter or mobile and the
multipath propagation in NLOS environment.

The radio signals transmitted by the controlling BS must be correlated to distinguish

them with other transmitted signals or noise by other BSs or unknown instruments.
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However, the signals simulated by the sampling impulse responses of SSF model are not
correlated beyond a 50 m distance. Thus a location system using a multipath radio
channel model needs an L SF model to have large-scale correlated multipath.
A.2 Small Scale Fading Model Smulation
A Rayleigh fading smulated example using the model of Clarke or Gans' model was
developed based on the method described by Rappaport [Rappaport96]. This section
presents the ssimulation results for the SSF model, and judges its suitability for PL.
Figure A.1 presents the fading channel manifestation used in the smulation.

Fading channel
manifestations

LSF due to motion SSF due to small changes
over large area in position
Mean signal jati Time spreading of Time variance of
attenuation vs. Variations about ' Spreading
. the mean time signal the channel
distance

Time dela) Frequenc . . Doppler shift
domainy Fourier dgmainy Time domain Fourier zgmain
o transforms o description transforms o
description description description
Duals

Duals

Figure A.1 Fading channel manifestation

A.2.1 Gans model of the Doppler spectrum

Mobile communication systems experience Rayleigh fading and is modeled for a
particular speed of the mobile by having the spectral shaping filter take the form of the
Doppler filter with the maximum Doppler spread specified by the mobile speed.

Given a moving mobile, the signals from the BSs that are assumed to have the
following properties:

The multipath arrives from all directions with random phases.
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The received power is uniformly distributed with respect to the angle of arrival.
A baseband power spectral density, distribution of received power with respect to

frequency, can be expressed as [Rappaport96] :

R
= [f]<]fl

i
I )
() =tpf f1- T2 (A.2)
> P \/ 615
t

0 , otherwise

where P, is the mean received power by mobile, f,,is the maximum Doppler shift
given by
fm :l_ , (AZ)

visthe velocity of mobile, and | isthe wavelength of light.
Assuming P, is 1 watt, and v is 50 km/hr, an illustration of Gans' model is presented

inFigure A.2.
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Figure A.2 A Gans model
A.2.2 Samples of an impulseresponse

When a set of Rayleigh-faded baseband channel impulse responses is produced
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using the Gans' model, a single impulse response is generated at first. Thisis donein the
continuous-time continuous-frequency domain, as indicated in Figure A.2, and
conversion to the discrete-time continuous-frequency domain is required. Figure A.3(a)
presents one discrete-time baseband channel impulse response in time domain and its
Fourier transform in Figure A.3(b). Parameters for simulation are provided in Table A.1:

Table A.1 Parameters used in SSF simulation

Parameters Values
The velocity of light (c) 2.998x10° m/s
The velocity of the MS (v) 50 km/hr
The bandwidth of the radio channel 799 (f.) 848.97 MHz
The received power assumed (P;) 1 Watt
The length of sampled distance (D) 50 m
The radius of the circle range around BS (R) 2000 m
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Figure A.3 Samples of an impulse response
(a) Impulse response in time domain (b) Impul se response in frequency domain
A.2.3 The outputsof one paralléel line based on Gans' model

The model of the radio channel is presented in Figure A.4. Each component or tap of
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impul se responses can be determined by values obtained from 50 m grid scale sampling

of Gans mode for each point.

Gans' Model
along this line %
R = 2000 7[\ % A~

Zoom in samples
of scale

Figure A.4 Radio channel model around one BS
One Rayleigh-faded baseband channel impulse response of taps is generated by the

procedure as shown in Figure A.5, where h, (t) and h,(t) represent the in-phase and

quadrature phase components of a complex baseband Gaussian process. The outputs of

the system are Rayleigh-faded baseband channel impulse response taps which pass

through the Doppler filter.

N

i (6 : = .
it oniagni Doppler Fllw;ﬂz%?e?ﬂed by Gans k[, 0]
Noise . - Real part
H(f)=+8,(f)

kA

Mle)
Write Gaussain Doppler Filter specified by Gans' L [C,, (r)]
Noise Model :
< - Imaginary part
H(f) =S, (f)

Figure A.5 The implementation steps of one impul se response
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However, each impulse response generated by above procedure is in the continuous-
time continuous-frequency domain, a discrete-time continuous-frequency model is

required to be realized by computers, as the realization block diagram provided in Figure

A.6

Continuous time

f}(”[ ] I?I yit) /\/\/\/
; = 1
White complex - Fading signal at
Gassian Noise Doppler Filter baseband

Discrete time

Mt .o,
\

VN

—

IR

-B B
Base band

Y

t
Fading signal at
baseband

Doppler Filter

Figure A.6 Procedure to produce CTCF and DTCF fading signal through Gans' model
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Figure A.7 Onetap of Rayleigh fading signal at baseband
(a) Sampled signal (b) Subsampled signa

When a complex wide-sense-stationary Gaussian noise is sampled for a long
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sampling period, a sampled fading signal at baseband can be generated through low pass
filter. The output discrete-time Rayleigh-faded signal at baseband and its both sampled
and subsampled signals are shown in Figure A.7 () and Figure A.7 (b).

The Rayleigh-faded signal is generated by Gans' model. However, when the signal
has been sampled over a longer period, there will be a problem of collecting too much
sampling data inside a huge cellular area. In Section A.3, this problem will be discussed
as the limitation of the SSF model in the PL estimation.

A.3 Small Scale Fading Model Limitation

A correlated-in-time signal is required for the multipath PL model implementation.
However, if along sampling distance (50 m) is chosen, or along sampling time period is
taken, the subsampled signal has to be correlated over the measurement. If the signal is
not correlated, an NN-based PL model’s implementation using an SSF model is not
effective. Table A.2 indicates the correlated distance for Gans' model, as well as other
parameters used in finding the distance.

Table A.2 Some factors in the SSF model sampled signal simulation

Parameters Value
The sampling time period 12.7 ms
Distance over the sampling period 0.18 m

Number of samples over which
“Gans ” signal is correlated

Total distance over which “Gans’”
signal is correlated

10

1.76 m

* The number of samples over which Gans model is correlated: Once we get the sampling time period
calculated (12.7 ms), arbitrarily go out 10 zero crossings of the Doppler spectrum’s time response (sinc
function). Assume the signa is weakly correlated after 10 zero crossings, the corresponding time is:

T, =127 ms, so thedistance over Gans model correlated is: d . =VT,.=1.76 m.
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The total distance over which Gans' signal is correlated is 1.76 m, but in our case a
signal needs to be correlated over a much larger distance, for example, 50 m. Figure A.8
(a) and Figure A.8 (b) provide the autocorrelation for the two sampled and subsampled
Rayleigh-faded signals in Figure A.7 (a) and Figure A.7 (b) respectively. Figure A.8 (b)

shows a case that Gans' signal is not correlated until more than 127 ms.

T
10

1 1 1
0.5 1 1.5 2

I H I I I I I I
10 20 o 0 =0 &0 o 20

Figure A.8 Autocorrelation of Rayleigh fading model
(a) Sampled signal (b) Subsampled signal
The SSF model’ s signals are not correlated over a large distance. Therefore, a NN

location system using multipath needs an L SF model.
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Appendix B: Find Exponential Coefficient in Power Delay Profile

The first moment of the power delay profile (mean excess delay) is defined as:

0 . (B.1)

(2=ko (B.2)

s, =t2- (f. (8.3)

The exponential power delay profile B, is given:

le®k k1{0,1,23.} (B.4)
; .

10 k {..-3.-2-1

To calculate the relationshipa  with given RMS delay spread, substitute Equation (B.4)

into t in Equation (B.1), t isderived as:

5 kP, 5 ke 22k 5 ke~ 2
¥
r= k:¥o — k:¥O — k=0 - = ke BK(1- e ®), (B.5)
o] S _-2ak k=0
R e

where

¥ ¥
S=ak?=3 (nu(n))(e281 ) " representingz = €% .
k=0 n=0

Thus
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Si(2) =& (nu(n)z ™.

n=0

By z transform,
z 1

o)

n(u(n))-%®

S, isfinally derived as
-2a
. (B.6)

S.(2) :ﬁ,where z=e®p g = (1_ = )2

)

Combine Equation (B.6) and Equation (B.5), t can be given as the following:

-2a -2
=S 2(1- e‘Za): © _aa,wherea30, (B.7)
(1_ e-2a) 1-e
Thus
2 2
®’e2@ 6 axz1 0
t—2: + = - = , whel 30. B.8
L 7T

By substituting Equation (B.4) into t2in Equation (B.2), t 2 isderived as
(B.9)

¥ ¥
o é kZPk é kZe—Zak v
i :kzg :kzg = kze-Zak(l_ e-Za),wherea30
é. Pk é. e-2ak k=0
k=0 k=0
3 2,-2ak 3 2 2a | N ; 2
where S, = § k% =a(n u(n)Xe ) ,Whereassign z=e*,
k=0 n=0
Thus
g
S,(2=a4 (nzu(n))z'”.
n=0

By z transform,
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X() = n(u()~%® 2

(s
S(z) isexpressed as
s
S:(2=a (x(m)z "
n=0

With z transform

nx(n) - %@ - de(z) ,
dz

S(2) can be rewritten as

-1

q z
dx(2) i
S,(z)=-z =-z , where z=e%2 (B.10)
dz dz

By substituting Equation (B.10) and z = e? to Equation (B.9), t 2isin the form:

d_2 =~ d_—%2~
_ _2_12 . Z_12
t2=-2 - zH=@a- 2

B.11
dz dz ( )

RMS delay spread can be derived by substituting Equation (B.11) and Equation

(B.8) into Equation (B.3):

(B.12)

z e z 0
_ (1- z'l)2 _ dé(l- 2)? é_ z¢1- 7)? - z((l- z)z)¢_ _1+z
S;(9= = = - 9 _ ((1- 22))2 =...= m, (B.13)
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and combining Equation (B.12) and Equation (B.13), RMS delay spread is obtained:

e _ a
S e L R T L . Py XY
§(1- 25 (- 2) (1- 2> 1-z 1-e
e? 2 e 2
St = 5P St” =7 - representingz =e , s, 2can be rearranged as
- b ™)
2 z
S, = —— (B.15)
L)

Rearrange Equation (B.15) as 7% - (2+i2)z+1=0, and assume b:(2+i2), z

St St
isderived as.
2_
z:bi—24 ,Where z=¢e? | (B.16)
Finally,
2
e2a:bi b _4D
2
Ingsb—i“bz'49
2 B.17
a,,= & “,whereb=(2+i2). (B-17)
2 S

The final exponential coefficient with respect to RMS delay function is achieved as

Equation (B.17).



Appendix C: Three Block Diagrams of Generating | mpulse

Responses for SOA-based PL Scheme

¥{ |socLSFM1 =
Xy P
¥; |socLsFM1 |—2p
Zie —
x o Net impulse h.: - h1
—
- ) N k; response
: SOCLSFM1 -
Grid 3 >
calculations | x, _ W
Y ¥4 | SOCLSFM1 |
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- eights
33 » Calculations Lis
4 . W,

Figure C.1 The block diagram of generating impulse response h; for the
SOA-based PL scheme
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Figure C.2 The block diagram of generating imp ulse response h, for the
SOA-based PL scheme
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Figure C.3 The block diagram of generating impulse response h; for the

SOA-based PL scheme
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Appendix D: Detailed Explanations of the Proximate Problemsin

SOA Simulation

D.1 How circlesintersected may result in proximate inaccuracies

How the circles intersect is important to find the MS's location. There is an

interesting phenomenon shown in Figure D.1.

a000
4000}
- ~
3000 I-f Center point of circle 1.I
c 2000 , )
= . ‘
E \.1 JJ
Y i Infersection 2
= 1000 . terseftion 1 In
O Centerpaoint of circle
BS1
o b Center point of circle
= BS
o MS

-2000 : . : : : :
-2000 1000 ] 1000 2000 3000 4000 5000
¥ position

Figure D.1 SOA-based scheme estimated by three circles
where MS's coordinate is (1300, 500)

As shown in Figure D.1, the centers of the circles happen to lie in the same line, the
extended sides of the BSs' triangle, and the three circles have two intersections. The
estimated M S position must locate inside one of the two intersections. In the case that
the circles do not intersect, which usualy occurs in SOA evaluated on the SOCLSFM, a
proximate method might be used to approach the actual M S location. With this method

one of the received powers for each BS is manually increased by small increments until
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finally the circles intersect. Larger received power at MS results in larger radius of the
circle, which is demonstrated as following.

Three range difference equations are defined in Chapter 3:

2 2 2
?ig =§&Lg b d? =§ﬁgdf, (D.1a)

29 dlﬂ 2@

2 2 2

g 3b dlﬂ PSﬂ

2 2 2
&&2" =8&£2 b d? :&&2‘ d2. (D.1c)

h5 S5 ERg

?i%n =g , (D.29)
P g
2
on
Y _a,  and (D.2b)
R g
2
&
g&i =a,. (D.2¢)
Py

Through the derivation in Section 3.3.2, Chapter 3, the radiuses of three circles are

obtained,
n=gdd 9 (D.33)
1-a g
_eea,d 0
r,= 75 and (D.3b)
1- & g

5
r, = = D.3c
T8 a7 (539
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In Equation (D.3a), if a,isincreased, obviously r; will be enlarged. Similarly, the
larger a, or a; in Equation (D.3b) and (D.3c), the larger r, or r, respectively. As
indicated in Equation (D.2a) and (D.2b), & and a, can be enlarged by only increasing
the received power P; a BS,;, and similarly a; can be enlarged by increasing received
power P,. Therefore, if the circles 1 and 2 do not intersect, we can either increase r, or
r,, resulting in manual increments in the received power P;; If circles 1 and 3 do not

intersect, increasing either r, or ry is necessary, which leads to increment in P, or Pa.

Similarly, increment in either P, or P, leads to larger r, or r, if circle 2 and 3 do not
Intersect.
D.2 Equally received powersresult in proximate inaccuracies

For the Equations (D.24d), (D.2b) and (D.2c), another problem possibly exists. If any
two of P4, P, and P; are equal, such as P;=P,, P1=P3, or P,=P3, which resultsin a, =1,
a,=1or a;=1respectively. For Equations (D.3a), if a, =1, r; will beinfinite, aswell as
r,and r; in Equation (D.3b) and (D.3c). If this happens, we smply assumethat r;, r, or
r; hasavery large value accordingly.

In general, the inaccuracies in SOA-based algorithms are caused by the above two
problems in Section D.1 and D.2. These inaccuracies do not primarily affect the
estimated PL for SOA evauating on SOCLSFM, for they are usualy within a distance
of afew meters, asillustrated in Section 3.4. However, log-normal shadowing and SOC
features in the SOCLSFM leads to much bigger PL estimation errors, usually more than

a hundred meters.
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Appendix E: Deter mination of Number of
MSsin SOA-Based Scheme

Among three SOA performance criteria, mean error is the average performance that
measures the mean distance between estimated MS locations and true MS PLs, and it is
the major criteria that indicates the average distance error over an unknown number of
MSs. The value of this number is commonly determined by the minimum size of amean
errors group with a relative stable variance compared to other groups of larger size.
Variance is a measure of dispersion of a set of data points around their mean value, the
mathematical expectation of the average squared deviations from the mean [Winer91].
On the other hand, it measures the “variability” (volatility) from an average, which can
be analyzed to obtain the best chosen number of the MSs. If the statistical significance
of the differences of means can be assessed, a more accurate comparison can be made
between different mean errors groups. Statistical differences are assessed through an
analysis of variance. The relationship between measurements of the variance of each
group provides the information needed in determining whether the difference between
groupsis significant. If not, the size of corresponding group is selected to be the number
of the MSs chosen in SOA-based scheme.

In the simulation, the sizes of mean errors groups are assumed to be {2, 5, 10, 50,
100}, and these groups are randomly chosen within the 100 SOA mean errors provided
in Table E.1. For instance, for the group with size of 2, the group is {200.2, 46.1}, and
for that of size 5, {21.7, 113.7, 46.1, 159.2, 91.2}. By calculating each group’s
corresponding variance, the figures of variances with respect to the groups size are

illustrated in Figure E.1, E.2, E.3 and E.4, in which different random mean errors are



chosenin all groups for every attempt.

Table E.1 100 mean errors (m) of SOA-based scheme on the SOCL SFM

96

200.2 | 1279 | 46.1 63.6 912 | 440.2 | 160.3 | 279 | 176.2 | 220.8
202.3 | 226.8 | 296.1 | 121.8 | 838 | 176.8 | 338.0 | 2034 | 835 | 107.6
160.5 | 4030 | 104.2 | 933 | 157.3 | 1994 | 2369 | 1535 | 83.2 | 1191
2014 | 1288 | 1936 | 21.7 707 | 177.7 | 52.8 83.6 23.2 | 320.0
1368 | 1214 | 1315 | 3943 | 1344 | 128.1 | 2214 | 1715 | 98.9 | 1298
2218 | 365.3 | 1130 | 276.8 | 171.9 | 188.0 | 104.3 | 155.0 | 1955 | 143.1
546.3 | 2715 | 87.8 | 113.7 | 156.8 | 49.6 | 1488 | 4978 | 744 | 1481
1224 | 216.7 | 1529 | 130.2 | 149.1 | 159.2 | 159.0 | 308.9 | 89.6 | 136.3
1905 | 260.6 | 132.6 | 2304 | 140.1 | 1916 | 1554 | 1685 | 138.1 | 126.6
2640 | 113.7 | 116.8 | 84.8 | 1536 | 361.3 | 64.1 66.5 | 2229 | 217.3
x 10°

“Wanance

“Warance

The size of mean arors groups

Figure E.1 Variance for mean errorsin SOA-based PL estimation (Attempt # 1)
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Figure E.4 Variance for mean errors in SOA-based PL estimation (Attempt # 4)
From the above figures, a group size of 100 does not appear to have a significantly
influence on the mean error variances for a group with size 50. Since 50 is the minimum
number that the corresponding variance starts to remain relative constant, it is regarded
as the optimal number of MSs plotted in the limited area in SOA-based scheme. In our

simulation, the average performance is trustful over the sampling number of 50.
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Appendix F: Backpropagation Learningand LM Training Algorithms

F.1 Neural Network Learning M ethod — Backpropagation

There are various learning methods for multilayer NN networks. In feed-forward
NNs, backpropagation is one of the methods. Backpropagation is an abbreviation for the
backwards propagation of error. Figure F.1 provides afully connected feed-forward NN
example with 53 inputs, one 20 neurons hidden layer, and 2 outputs. A more detailed

connected figure is specified in Figure 4.4.

NN process

inputl,

input2,
putputl
 —

putput2
—>

input3

ingut5§ '

Input layer Hidden layer Output layer
FigureF.1 A fully connected feed-forward 53-20-2 NN example
The following are the steps of using the backpropagation algorithm in a NN
[Hsiung99, Gurney96, and Gallant93]:
Create a fully connected feed-forward network with a specified number of inputs,
hidden, and output sigmoid units.

Initialize all weights {w; ;} in the network to small random values, where i, and |

identify the layer and node.

Repeat until the algorithm converges. For example, until weight changes and
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changes in the mean squared error, e , become sufficiently small.
1. Forward propagation step: Take the next training example, feed the input vector
through the network and compute every neuron in the network. This is done by
computing the weight sum coming into a neuron and then applying the sigmoid
function,

o=s (Wx), (F.1)

where the X vector denotes the activation of previous layer, the w vector denotes
the weights linking the neuron unit to the previous neuron layer, and o is activation
of each unit. In the Equation (F.1), the activation function is:

s (y)=— (F2)

1+e Y

2. Compute the square error of the network: This step is done by taking the sum of

the squared error of every unit in the output layer,

N_1o
E(W) = Ea kT outputs(tk B Ok )2 ! (F3)

where t denotes a target value in the target vector (The target vector is associated
with the training sample, the input vector.), and o denotes the activation of a neuron

in the output layer.

3. Backward propagation step: Start with the outputs, make a backwards pass

through the output and intermediate cells. It is computed as the following:

For each output neuron Kk, calculate the error term d, as:

d, =0y (1- oy )t - ok) (F4)

The error term is related to the partial derivative of each weight with respect to the
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network error.

For each hidden node h, calculate the error term as:
dp =oh(L- 0n)d ki outputsVkhdk (F.5)

where h is an integer, between 1 and the number of hidden layer. The hidden node
error term depends on the error terms calculated for the output units.
4. Update each network weight as. The network weights are updated by using the
Levenberg Marquardt algorithms that are mainly discussed in next Section F.2.
Equation (F.10) in that section is used in the backpropagation weights training and
updating.
F.2 NN Training Method — Levenberg Marquardt Algorithm
Similar to the quasi-Newton methods, the LM agorithm was designed to approach
second-order training speed without having to compute the Hessian matrix. When the
performance function has the form of a sum of squares, the Hessian matrix H,, can be

approximated as [Gallant93], [Hagan94].

H,=J"J (F.6)
and the gradient can be computed as:

g=J"d (F.7)
where J is the Jacobian matrix that contains first derivatives of the network errors with
respect to the weights and biases, and d is a vector of network errors mentioned in
Section F.1. The Jacobian matrix can be computed through a standard backpropagation

technique [Hagan94], which is much less complex than computing the Hessian matrix.

Newton' s method can be written as:
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Wisg = W~ Hi ' (F-8)
by combining Equation (F.6), (F.7) and (F.8), we get:
Wicig = W - l‘JII‘JkJ‘JIIdk- (F.9)
The problem with Equation (F.9) isthat J J, may not be invertible. Thus, the LM

algorithm warrants invertibility,
Wiy = W - [ +g1]71d0d, (F.10)

If the scalarg is zero, the equation degrades to Newton's method using approximate
Hessian matrix. If g is large, it becomes steepest descent with a small step size.

Newton’' s method is faster and more accurate near an error minimum.
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Appendix G: Additional Details about the

NN Simulation and Performance
G.1 Nguyen-Widow Weights I nitialization

This section presents the Nguyen-Widrow weightsinitialization algorithm.

NN uses LM agorithm to train the weights. The random choice of initial weights
and biases will affect the performance of LM algorithm. If the average performance of
the algorithm is required, a test using severa different sets of initial weights and biases
will be carried out. In the thesis, for each NN architecture (fix layers and nodes in the
layers), a training phase with eight random different sets of initial weights and biases
experiments is performed to get the average value of mean error results. The chosen
initial weights determine the starting point in the error landscape, which controls
whether the learning process will end up in alocal minimum or the global minimum.
The easiest method is to select the weights randomly from a suitable range, such as
between [-0.1, 0.1] or [-2, 2]. More sophisticated approaches to select the weights, such
as the Nguyen-Widrow initialization which calculates the interval from which the
weights are taken in accordance with the number of input neurons and the number of
hidden neurons, can improve the learning process [ Schmidt96].

D. Nguyen and B. Widrow use a multilayer perceptron with piecewise linear

activation functions as an approximation of a network with logistic activation functions.
Based on this simplification, they calculate an optimal length of din\/Vfor the randomly
initialized weight vectors and an optimal bias range of [-d, /Y, d;,+/Y]for neuronsin
the hidden layer, where Y is the number of hidden nodes and d,,is the farrin (or in-

degree) of a neuron, without justifying this interval further in a theoretica manner.The
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weights of the neurons in the output layer are randomly initialized in the interval [-0.5,
0.5], without any justification given [Nguyen90]. This algorithm only changes the
weights and biases initailization in each training experiment, it does not effect the size or

structure of the NN.

G.2 Size of Neural Network Deter mination

This section presents the detail simulations in determining the NN size, the process
to find the optimal number of hidden layers and nodes in each hidden layers. Because of
the randomly different initialized weights of NN, the average performance of the NN
algorithms is evaluated by using severa different sets of initial weights and biases. In
the thesis, for a fixed NN architecture, each average value of mean errors represents an
average of eight different training experiments, in each of which different random initial
weights are used. Mean error of one training phase is evaluated on average of the eight
training experiments in all tables below. The number of eight is a reasonable number to
get statistical results of average, as verified in Section G.3. It is assumed that all the
simulations are based on evaluating the PL criteria — mean error. The following PL
mean error results in Table G.1, G.2, G.3, G.4 and G.5 are provided inthe 0, 1, 2, 4 and
10 hidden layers NN simulations respectively. The simulation results clearly verified

that a53-20-2 NN is the optimal NN size to be selected in the simulation.

No hidden layer :

Table G.1 A zero-hidden layer NN
53nodes (input) — 2 nodes (outputs) NN

Mean error (m)

Nodes in hidden layer (#) (Training phase)

0 82.2




One hidden layer :

Table G.2 Seven one-hidden layer NNs
53nodes (input) — X nodes (hidden) — 2 nodes (outputs) NN

Nodesin hidden Mean errors (m) Mean error (m)
layer (#) (8 experiments) (Training phase)
x| RREmTET
X=20 | 008 7176, 6722, 125% 705
X=0 | 0 08, 71.05, 727 738
X=50 | (o4 s0s7, 842, 7055 787
X=100 | gt 5713 77.35, 96,06 =

PL mean errors (m)

30

g5

o0
(=]
T

-~
m
T

]
[}
TT

65

B0

5

10 202530 a0

100

Mumber of nodes in the hidden layer [
Figure G.1 PL mean errors vs. Number of nodes in one hidden layer NN simulation
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Diagram in Figure G.1 shows that mean error is the smallest at 20 nodes in one
hidden layer NN structure simulation.
Two hidden layers :

Table G.3 Four two-hidden layer NNs
53 nodes (input) —X nodes (hiddenl1) —Y nodes (hidden 2) — 2 nodes (outputs) NN

Nodes in hidden layer1(#) NO?;;“Z%"G” ('¥' Egi%cghg)
X =10 Y=10 217.02
X = 20 V=15 236.46
X=30 V=15 178.87
X=30 V=20 182.56

Four hidden layers:

Table G.4 Two four-hidden layers NNs
53nodes (input) — X1 nodes (hiddenl) — X2 nodes (hidden 2) — X3 nodes (hidden 3) —
X4 nodes (hidden 4) — 2 nodes (outputs) NN

Nodes in hidden layer (#) Mean error (m)

1 > 3 7 (Training phase)
X1=5 X2=5 X3=5 X4=5 272.4
X1=10 X2=10 X3=10 X4=10 265.3

Ten hidden layers (1linput-10hidden-Loutput):

Table G.5 A ten-hidden layer NN

53nodes (input) — X1 nodes (hiddenl) — X2 nodes (hidden 2) — X3 nodes (hidden 3) —
X4 nodes (hidden 4) — X5 nodes (hiddenl) — X6 nodes (hiddenl) — X7 nodes (hiddenl)
— X8 nodes (hiddenl) — X9 nodes (hiddenl) — X 10 nodes (hiddenl) —2 nodes (outputs)
NN

Nodesin hidden layer (#) Mean

error

1 2 3 4 5 6 7 8 9 10 m

X1:2| X2:2 | X3:2 | X4:2 | X5:2 | X6:2 | X7:2| X8:2 | X9:2| X10: 2 | 3285
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G.3 The Chosen Number of Training Experiments Deter mination

This section focuses on the determination of the number of eight training
experiments in atraining phase.

Because the weights are randomly initialized according to the Nguyen-Widrow
algorithm in every training experiment, the performance of each mean error differs from
others. The statistical number of training experiments must be determined in finding the
average mean error of atraining phase. Similar to Appendix E, the determination of this
number is assessed through an analysis of variance.

In the simulation, it is assumed that all the inputs to the NN are equivalent in every
NN training experiment, but the weights are initialized differently in each experiment. A
fixed NN structure chosen in every training experiment is 53-20-3. To analysis variance,
the sizes of mean errors groups are assumed as: {2, 4, 8, 16, 32, 64}, and these groups
are randomly chosen within the 64 NN mean errors provided in Table G.6.

Table G.6 64 mean errors (m) of 64 NN (53-20-3) training experiments

75.4 73.4 73.7 69.2 67.8 73.6 69.8 71.0
68.5 75.1 75.2 72.5 73.4 69.1 73.7 72.5
69.2 67.4 69.1 68.8 73.9 71.9 69.5 68.3
69.6 66.1 68.5 73.5 73.8 70.5 73.3 71.8
70.0 69.1 70.0 68.9 72.9 71.1 73.0 67.9
68.8 71.7 68.6 69.7 72.8 69.2 72.9 73.1
774 68.9 67.4 74.5 71.2 73.2 71.9 71.8
68.6 69.6 71.7 69.1 72.4 70.2 70.5 74.2

The figures of variances with respect to the groups’ size areillustrated in Figure G.2,
G.3, G.4 and G.5, in which the varying random mean errors are chosen in each group for

every attempt.
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From the above figures, the number of eight is chosen to be the minimum number
that the variance starts to remain relative constant. It is concluded that eight is the
optimal number of training experiments, which determines an average mean error in a
training phase.
G.4 The Evaluation of Mean Delaysin NN Inputs
The results of the simulation for mean delays are presented in this simulation. In order
to prove that mean delays significantly improve the NN training performance, one of the
criteria so-called mean error is selected to justify the performance. The smulation of both
zero mean delays and practical mean delays applied to the NN are performed. Asindicated

in Figure 4.3, the simulation of df, d4, and d§ = 0iscompared with df, d§ ,and d§ * O.

The comparison of the two simulation results demonstrates that there is a great difference
between the two obtained mean errors.

Both simulation results are demonstrated by the mean error of a NN training phase,
which is an average computed by mean errors of the eight training experiments. Each
training experiment is performed to obtain a mean error that indicates the NN
performance. The NN structure used in both simulations is assumed to be 53-20-2.

Table G.7 The comparison of zero mean delays and practical mean delays inputs of the
NN performance

Inputs of the NN Mean errors (m) Mean error (m)
NN structure (8 training experiments) (Training phase)
With 68.8, 68.9, 70.8, 72.8,
3meandelays | 2202 | 701,718, 67.2, 73.3 705
With
84.2,86.3, 71.0, 76.5
Smeendelays | 53202 | 75,9, 840, 836, 749 96
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From Table G.7, the variance between 79.6 m and 70.5 m is 9.1 m which isalarge
different for the E911 requirement. It is concluded that mean error can significantly
help improve the NN training performance. However, it consumes more time and leads a

higher complex PL scheme.
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Appendix H: The Determination of Number of MSsin SOA and NN
Integrated Technique Training and Testing Phases (1500, 50)

H.1 Determination of the Number of Training patterns in Integrated
Technique

In this section, a number of comparisons of the various training sample size are
performed based on evaluating the NN performance for every training sample size. Once
the training sample size or MSs sample size is determined, a NN training experiment
may provide good performance.

The simulation is performed on a Pentium |1 400 MHz computer with 384 MB ram,
and the NN structure is 53-20-2. The mean error is performance criteria in measuring
performance of the NN training experiment.

Table H.1 summarizes the results of training the network using five different training
sample sizes. Each entry of average of mean errors and mean time in the table represents
the average of eight training experiments, where different random initial weights but
same training sample sizes are used in each experiment.

Table H.1 Comparison of the performance for variant NN training sample sizes

Training S(ahTSr)sl )e sizes (#) Mean Time (s) (I\T/I r%??]iirg;(gh(arg)
500 286.3 86.1
1000 1153.5 74.8
1500 2952.1 70.5
2000 5715.5 68.4
2500 8627.5 67.9

The simulation results show that the number of 1500 training sample is optimal in

training the NN. Larger training sample size cannot help NN with more significant
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improvement and that takes much longer time in training. Results with smaller valuesin
estimation demonstrate that they are not large enough in getting required performance.
H.2 Determination of the Number of Testing patterns in Integrated
Technique

Similar to Appendix E, the determination of number of test sample size (the number
of MSs) for two integrated technique is provided. The determination of this number is
based on analysis of variance.

In the ssimulation, the sizes of mean errors groups are assumed as. { 2, 5, 10, 50, 100}
and these groups are randomly chosen within the 100 integrated technique mean errors
provided in Table H.2. Every mean error in Table H.1 indicates a performance result of
a NN training experiment. By calculating each group’s corresponding variance, the
figures of variances with respect to the groups size are illustrated in Figure H.1, H.2,
H.3 and H.4, where the different random mean errors are chosen in all groups for every
attempt.

Table H.2 100 mean errors (m) of integrated technique with a 52-20-2 NN

859 | 359 | 843 | 1029 | 1936 | 432 | 341 | 421 | 8/6 | 7/.1
168.0 | 432 | 543 | 839 | 478 | 382 | 906 | 811 | 1021 | 56.7
146 | 768 | 563 | 87.8 | 338 | 140.2 | 118 | 264 | /83 | 77.9
371 | 418 | 33.7 | 365 | 1548 | 56.6 | 46.7 | 41.7 | 98.2 | 299.2
773 | 1235 | 56.7 | 1110 | 376 | 1571 | 410 | 544 | 354 | 10.2
492 | 456 | 540 | 2743 | 721 | 463 | 389 | 759 | 30.0 | 88.0
2186 | 1664 | 669 | 169 | 68.1 | 2299 | 114 | 196 | 56.7 | 456
263 | 550 | 308 | 564 | 282 | /55 | 128 | 5/.7 | 1632 | 67/.5
288 | 311 | 125 | 216 | 676 | 1843 | 882 | 789 | 646 | 235
392 | 603 | 189 | 526 | 196 | 604 | 94.7 | 125 | 50.2 | 110.8




114

15000

10000

Wariance

5000

10 10’ 10

YVariance

0 1 I
025 10 50 100
The size of mean errars groups

Figure H.1 The variance for mean errorsin integrated technique (Attempt # 1)

8000

5000

Variance
I
[}
[
i

2000

oo
o
=
o

Yariance
I
[l
(o]
[
T
i

100
The size of mean errars groups

Figure H.2 The variance for mean errors in integrated technique (Attempt # 2)



115

10° 10' 10°
The size of mean errors groups in semi-log scale

The size of mean errars groups

Figure H.3 The variance for mean errorsin integrated technique (Attempt # 3)

15000
o 10000
Q
=
)
&
> 5000
RS .
10° 10' 10°
The size of mean errors groups in semi-log scale
15000 L — !
[s¥}
L=
[
i
&
=3
P i

0
025 10 50 100
The size of mean errors groups

Figure H.4 The variance for mean errorsin integrated technique (Attempt # 4)



116
From the previous figures, the number of 50 is selected because the statistical results

of the variance remains constant after this point of test sample size.
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Appendix | MATLAB® Source Code
This chapter lists afew short major parts of source code involved thisthesis.
1.1 SOCLSFM
Here is an example of building the first SOCLSFM propagation set. The two other

propagation sets are the same except titles in labeling each step of the SOCLSFM

implementation. A few of the smple functions developed in this program are not provided.

OBt
% This programis built for the SOCLSFM for the first propagation set

% of SOCLSFM

% hl, h2, h3,h4. hwiderl are | abel ed for each step of the SOCLSFM

% i mpl ement ati on, which includes random coefficient values, propagation
% del ay, exponential power delay profile and RVS del ay spread, path

% | oss and | og-nornmal shadowi ng, and SOC in RVB del ay spread

% Aut hor: Jie Liu n925a@nb. ca

% Copyri ght

% Date Created: Decenber 19, 2000

% Dat e Modi fied: Decenber 19, 2000

R R R R R R e e st et sy
cl ear;

close all;

R=2000; %¢ m

d=50; % m

€c=2.998e8; ¥ m s)

rms_del ay_spread=le-7; % 100ns)

Nover cell _width=length([-R d:R]);

Bl S95=1. 2e6; % MHz)

T sanpling_receiver=1/ Bl S95; % s)

rs_del ay_spreadn=rns_del ay_spread/ T_sanpl i ng_recei ver;
T _prop_edgeof cel | =R/ c; %4 us)

Tmax_Del ay=T_pr op_edgeof cel | *2; % us)

N taps=Tnax_Del ay/ T_sanpl i hg_recei ver;

N_t aps=round(N_taps);

%gener at e the Random dat a
hl=(1/sqrt(2))*...
(randn(Nover _cell _wi dth, Nover cell _wi dth, N taps)+...
1*i *randn(Nover _cel |l _wi dth, Nover _cell _w dth, N taps));
i _centre=find([-R d: R ==0);
save hl hil;

%°r opagati on del ay
for k=1:Nover _cell _wdth
for | =1: Nover _cell _width
di stance_kl=sqrt((k-i_centre)”2+(l-i _centre)”2)*d;
ti me_kl =di stance_kl/c;
N zeros=fix(time_kl/ T _sanpling receiver)+1;
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hi(k, I, (1: N zeros)) =0;
end
end
h2=h1;
save h2 h2z;

URVS_del ay
b=1/(rms_del ay_spreadn”2) +2;
al pha=(1/2)*1 og((b+sqrt (b”2-4))/2);
for k=1: Nover _cell _width
for |1=1:Nover_cell _wdth
di stance Kkl =sqrt((k-i_centre)”2+(l-i _centre)”2)*d;
time_kl =di stance_kl /c;
N zeros=fix(time_kl/T _sanpling receiver)+1;
for i=1: N taps-N zeros
h3(k, I, (N zeros+i))=h2(k,|, (N _zeros+i))...
. *exp(-2*al pha*i);
end
end
end
save h3 h3;

%at h | oss/1 og normal shadow ng
n=4; %at h |1 oss exponent
si gma=11. 8; %IB shadow ng vari ance
d0=10; % m
Pl dObar =0; %dBW at 50(m)
for k=1: Nover _cell _width
for |I=1:Nover _cell _wdth
di stance Kkl =sqrt((k-i_centre)”2+(l-i _centre)”2)*d;
i f distance_kl ~=0
Pl dbar =PI dObar - 10*n*| 0g10( di st ance_kl / d0) ;
el se
Pl dbar =PI dObar ;
end
Pl d=PI dbar +sqgrt (si gma) *(randn(1)/5); % og normal shadow ng
Pl d=10~( Pl d/ 10) ; %0t in dB
% ormalize energy to 1
ha(k,1,:)=h3(k,I,:)/sqgrt(sumabs(h3(k,|,:))."2));
h4(k,1,:)=h4(k,|,:)*sqgrt (Pl d);
end
end
save h4 h4;

hwi derl = h4; % the inpulse hwiderl has been assigned to a old inpulse
response
% Add spl ashes of changes

nspl ashes = 10 ; % nunber of spl ashes
wi dt h_per _splashes = 10; % (m
mean_spl ash_hei ght = 2;
for i = 1. nsplashes
% Step 1 : pick a random point xr, yr.
range = length(-R d: R);
Xr fix(rand(1)*range);
yr fix(rand(1)*range);
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while (xr == 0)|(yr == 0)

xr = fix(rand(1)*range);
yr = fix(rand(1)*range);
end

% Step 2: generate a relative change, Rr.
Ur rand(1);
Rr (2/sqrt(pi))*mean_spl ash_height*sqrt(-(log(1 - U)));

% Step 3: generate a relative width, Wis a Rayleigh RV, with nean
% equal to nean wi dth per splash W

W = wi dt h_per _spl ashes;

Uv = rand(1);

W= (2/sqrt(pi))*Ve*sqrt(-(log(l - U));

% Step 4: calculate the 2-di mensional bell-curve point using R and W
% bel | curve: height = R, width = W
bc_bell = zeros(range, range);
for i2 = 1:range
for j2 = 1l:range
bc bell(i2,j2) = Re*exp(-((i2-xr)."2)/(2*W2))*...
exp(-((j2-yr)."2)/(2*W2));
end
end

% Step 5: generate a new relative changes in RVS del ay spread
rc_bell = zeros(range,range);
for i3 = 1l:range
for j3 = 1l:range

Rc = bc_bell (i3,j3);

Uc = rand(1);

rc_bell(i3,j3) = (2/sgrt(pi))*Rc*sgrt(-(log(l - We)));
end

end

%ot ep 6: appl yi ng changes
%St ep(a): G ven
present RVB del ay _spread whol e= cal crnsds(h4);
for i4 = 1:range
for j4 = 1:range
onerc = rc_bell (i4,j4);%ne relative change
mean_del ay_nunber = find_nmean_del ayl(i4,j4);

%t ep(b): Find hwi der
present RVB del ay spread = present RMS del ay _spread _whol e(i4,j4);
al phal = RV5 del ay_spread_t o_al pha(present RVS del ay_spread);
new RVS del ay _spread = (onerc+l) *present RMS del ay_spread;
al pha2 = RV5 _del ay_spread_t o_al pha(new RVS _del ay_spread);
i ndices_of _interest = [1 + nean_del ay_nunber: N _t aps];
for i = mn(indices_of interest): max(indices_of interest)
hwi der1(i4,j4,i) = hwider1(i4,j4,i).*...
exp(-2*(al pha2-al phal).*(indices_of interest(i-
mean_del ay_nunber) -. ..
(mean_del ay_nunber+1)));
hwi der1(i 4,j4,:) =
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hwi der1(i 4,j4,:)*(sumabs(h4(k,I,:)).72))/ (sumabs(hwi derl1(i4,j4,:))."2
)
end
end
end
end % for |oop of per splash
save hwi der1l hwi der1;

OBt R R R R R
% This programis built for plot the nean received power for each step
% of the first propagation set.

% Aut hor: Jie Liu n925a@nb. ca
% Copyri ght
% Dat e Created: Decenber 19, 2000
% Date Modified: July 12, 2002
R R R R R R e e s e e sy
cl ear;
clf;
close all;
figure(l)
clear ;
| oad hl. mat ;
hedB = calcnrp( hl ) ;
col ormap(gray);
R=2000; % m
d=50; % m
xset=[-R d: R];
yset=[-R d:R]';
cont our (xset, yset, hedB); col orbar ;
title(' Contour plot of nmean received power of random data');
axi s(' square');

figure(2)

clear ;

| oad h2. mat ;

hedB = calcnmrp ( h2 ) ;

col ormap(gray);

R=2000; % m

d=50; % m

xset=[-R d: R];

yset=[-R d: R ';

cont our (xset, yset, hedB) ;col orbar ;

title(' Contour plot of mean received power after added propagation
del ay signal');

axi s(' square');

figure(3)
clear ;
| oad h3. mat ;
hedB = calcmrp ( h3 ) ;
col ormap(gray);
R=2000; % m
d=50; % m
xset=[-R d: R];
yset=[-R d:R]';
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cont our (xset, yset, hedB) ;col orbar ;

title('Contour plot of nmean received power of added RM5S del ay
spread');

axi s('square');

figure(4)

clear ;

| oad h4. mat ;

hedB = calcnmrp ( h4 ) ;

col or map(gray);

R=2000; %¢ m

d=50; % m

xset=[-R d: R];

yset=[-R d:R';

cont our (xset, yset, hedB) ; col orbar ;

title(' Contour plot of mean received power of added pass |oss and
| og nornmal shadowi ng signal');

axi s('square');

figure(b)

clear ;

| oad hwi derl. mat ;

hedB = calcrmrp ( hwiderl ) ;

col ormap(gray);

R=2000; %¢ m

d=50; % m

xset=[-R d: R];

yset=s[-R d: R ';

cont our (xset, yset, hedB) ; col orbar ;

title(' Contour plot of nean received power of added splashes of
changes signal');

axi s(' square');

OBt R R R R R
% This programis built for plot the RVS delay spread for each step of
%the first propagation set.

% Aut hor: Jie Liu n925a@nb. ca

% Copyri ght

% Dat e Created: Decenber 19, 2000

% Date Modified: July 12, 2002

Vet R H R RS R H SR R R R H R R R R R R
cl ear;

clf;

close all;

figure(1)
cl ear;
| oad hl. mat;
R=2000; % m)
d=50; % m
xset=[-R d: R];
yset=[-R d:R';
rms_del ayspread_arrary=cal crnmsds(hl);
col or map(gray);
cont our (xset, yset, abs(rns_del ayspread_arrary)) ;
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axi s(' square');

col orbar;
title(' Contour plot of RVS delay spread of random data');
axi s('square');

figure(2)
cl ear;
| oad h2. mat;
R=2000; % m)
d=50; % m
xset=[-R d: R];
yset=[-R d:R';
rms_del ayspread_arrary=cal crmsds(h2);
col or map(gray);
cont our (xset, yset, abs(rnms_del ayspread_arrary)) ;
axi s(' square');
col or bar;
title(' Contour plot of RVMS delay spread of added propagation del ay
signal');
axi s('square');

figure(3)
cl ear;
| oad h3. mat;
R=2000; % m)
d=50; % m
xset=[-R d: R];
yset=s[-R d: R ';
rms_del ayspread_arrary=cal crmsds(h3);
col or map(gray);
cont our (xset, yset, abs(rmnms_del ayspread_arrary)) ;
axi s(' square');
col or bar;
title(' Contour plot of RVE delay spread of added RVS delay signal');
axi s(' square');

figure(4)
cl ear;
| oad h4. mat;
R=2000; %¢ m
d=50; % m
xset=[-R d: R];
yset=[-R d:R]';
rims_del ayspread_arrary=cal crnsds(h4);
col ormap(gray);
cont our (xset, yset, abs(rns_del ayspread_arrary)) ;
axi s('square');
col orbar;
title(' Contour plot of RVB delay spread of added pass |oss and |og
nor mal shadowi ng signal');

figure(bh)
clear;
| oad hwi der 1. nat;
R=2000; ¢ m
d=50; % m
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xset=[-R d: R];
yset=[-R d:R]";
rms_del ayspread_arrary=cal crnsds( hw derl);

colormap(' gray');
cont our (xset, yset, abs(rns_del ayspread_arrary)) ;
axi s('square');
col orbar;

title(' Contour plot of RVS del ay spread of added spl ashes of changes
signal');

OBt R R R R
% This programis to built calcnrp (cal cul ate nean recei ved power)
% function

% Aut hor: Jie Liu n925a@nb. ca

% Copyri ght

% Dat e Created: Decenber 19, 2000

% Date Modified: July 12, 2002

R R R R R R e e st e s sy
function hedB = calcmrp ( h)

% ALCVRP hedB = calcnrp ( h)

% Takes a 3 dinensional array h, which is a 2 dinensional

% array of inpulse responses and nakes cal cul ati ons

% of mean received power, with the maxi mum val ue normali zed

%to 0 dB. hedB is a two dinmensional array of power values in dB.

% Exanpl
% cl ear
% for i
% for |
% for k :
%h(i,j,k) =1
% end

% end

% end

% hedB = calcmrp ( h) ;
% nmesh(hedB) ;

%

% cl ear ;

% | oad h2. mat ;

% hedB = calcmrp ( h2 ) ;
% cont our (hedB) ;

e

-
=
o

~ e w s ow s

( 40-(i+j+k) ) ;

% Aut hor: Jie Liu n925a@nb. ca

% Copyri ght

% Dat e Created: Decenber 19, 2000
% Dat e Modi fied: Decenber 19, 2000

% Find the energy of each tap.
hm = abs(h).”2 ;

% Find the energy of all the taps.
he = sun{hm 3) ;

% Express the energy in dB.
maxmaxval ue = max(max(he)) ;
hedB = 10 * 10910 ( he/ maxmaxval ue ) ;
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return ;

OBt R R R R
% This programis to built cal cnmsds (cal cul ate RVS del ay spread)
% function

% Aut hor: Ji e Liu n925a@inb. ca

% Copyri ght

% Date Created: Decenber 19, 2000

% Date Modified: July 12, 2002

VA B H R R R R R R R R R R R R R R
function rms_del ayspread_arrary=cal crmsds(h)

%ALCVRP hedB = calcnrp ( h)

% Takes a 3 dinensional array h, which is a 2 dinensional

% array of inpulse responses and nakes cal cul ati ons

% of 3 d rms delay spread and contour plot of rnms delay spread.

% Exanpl e:
% clear;
% | oad h2. mat;

% R=2000; % m

% d=50; % m

% xset=[-R d: R];
% yset=[-R d:R]';

% rms_del ayspread_arrary=cal crmsds(h2);

% mesh(xset, yset, abs(rns_del ayspread_arrary));
% xlabel ( "x" ) ;

% ylabel ( 'y'" ) ;

% zlabel ( '2' ) ;

% title(' RVB del ay spead');
%

% cl ear;

% | oad h2. mat;

% R=2000; %¢ m

% d=50; % m

% xset=[-R d: R];

% yset=s[-R d: R ';

% rms_del ayspread_arrary=cal crmsds(h2);

% cont our (xset, yset, abs(rns_del ayspread_arrary)) ;
% axi s('square');

% col orbar;

% Aut hor: Jie Liu n925a@nb. ca

% Copyri ght

% Dat e Created: Decenber 20, 2000
% Dat e Modi fi ed: Decenber 20, 2000

% Find the rns delay spread of each tap.
R=2000; % m)
d=50; % m
Nover cell _width=length([-R d:R]);
rms_del ayspread_arrary=zeros(Nover_cel |l _wi dth, Nover _cel | _wi dth);
for i=1:Nover _cell _wdth
for j=1:Nover _cell _wdth
oneh=h(i,j,:);
rms_del ayspread_arrary_of _oneh=rmns_del aycal c(oneh);
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rms_del ayspread_arrary(i,j)= rns_del ayspread _arrary_of oneh;
end
end

.2 SOA
The following is the main program for SOA-based scheme evaluated on the SOCL SFM.

A few of the ssimple functions developed in this program are not provided.

OBt R R R HBH BB R R R R R R R
% This programis to setup the SOA-based schene on SOCLSFM
%1t involves the SQOA-based schene and SQA- based schene results

% Aut hor: Ji e Liu n925a@inb. ca

% Copyri ght

% Date Created: Decenber 19, 2000

% Date Modified: July 12, 2002

Ot HHHHHH B H R R R R R R R R R R R R R
cl ear;

close all;

R=2000; %4 m

d=50;

i _centre=find([-R 50: R ==0);

i _centre_ref=[i_centre,i_centre];

bcl=[0,0];

bc2=[ 1500, 0] ;

bc3=[ 750, 750*sqrt(3)];

Num t r y=50;

SE SOA=zeros(1, Numtry);

% he points are chosen the central points inside the circle

cofficient=rand(1, Numtry);

delta test=linspace(0,2*pi, Numtry);
delta=rand(1, Numtry).*delta_test;
x=750+cof fi ci ent *866. *cos(del ta);
y=433+cof fici ent *866. *si n(del ta);

X _axi s=x;

X_head=zeros(1, Numtry);

y_head=zeros(1, Numtry);

%-or every point,find error between the estimated val ue and fixed val ue
p=0; % nnitailize the nunber of error of estimate | ocation |ess than 125m
to O

g=0;%nitailize the outage | ocation estinmation

for i=1:Numtry

me=[ X _axis(i), Y axis(i)];

fprl ntf(' ********************************************\ n' ),

fprintf('The nobile is located at: %.4d\n',nc(1));

fprintf(' %.4d\n' ,nt(2));

fprintf(' The nunber of selected location %.0d\n',i);

| oad hwi der 1. mat;
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hedBl = calcnrp ( hwiderl) ;

| oad hwi der 2. mat ;

hedB2 = calcnrp ( hwider2 )

| oad hwi der 3. mat ;

hedB3 = calcnrp ( hwider3 ) ;

ic=find([-R d: R ==0);

% he calculate fornms for Nunber 1 generation of LSF
nc_di stancel=di st ance(bcl, nt);

% he cal culate forns for Number 2 generation of LSF
nc_di st ance2=di st ance(bc2, nt);

% he cal culate forns for Number 3 generation of LSF
nc_di st ance2=di st ance(bc3, nt);

%-or each base station

%et an inpul se reponse by interpolation

%Cal | them hcl, hc2, hc3

%-or the Bast Station 1

p3=[ nc(1)-nmod(ne(1),d), ne(2)-nmod(ne(2),d)];
pl=[p3(1), p3(2)+d];

p2=[ p3(1) +d, p3(2) +d] ;

p4=[p3(1)+d, p3(2)];

p_di st ancel=di st ance(bcl, pl);

p_di st ance2=di st ance(bcl, p2);

p_di st ance3=di st ance(bcl, p3);

p_di st ance4=di st ance(bcl, p4);

p_power 1=hedBl1(p_di stancel(1), p_di stancel(2));
p_power 2=hedB1( p_di stance2(1), p_di stance2(2));
p_power 3=hedB1( p_di stance3(1), p_di stance3(2));
p_power 4=hedB1( p_di stance4(1), p_di stance4(2));
L1=l en(pl, nt);

L2=l en( p2, nc) ;

L3=l en(p3, nt);

L4=I en(p4, nt) ;

L=[ L1, L2, L3, L4]";
wl=-(sqgrt(2)*L1)/(2*d)+L2/ (2*d) +L3/ (2*d);
W2=-(sqrt(2)*L2)/(2*d)+L1/ (2*d) +L4/ (2*d);

W3=- (sqrt(2)*L3)/(2*d) +L1/ (2*d) +L4/ (2*d);

wA=- (sqrt(2)*L4)/ (2*d)+L2/ (2*d) +L3/ (2*d);

w=[ wi, w2, w3, w4] ;

w=sum(w) ;

hcl=p_power 1* (wWl/ w) +p_power 2* (W2/ w) +p_power 3* (W3/ w) +p_power 4* (w4/ w) ;

%-or the base station 2

p_di st ancel=di st ance(bc2, pl);

p_di st ance2=di st ance(bc2, p2);

p_di st ance3=di st ance(bc2, p3);

p_di st ance4=di st ance(bc2, p4);

p_power 1=hedB2( p_di stancel(1), p_di stancel(2));
p_power 2=hedB2( p_di stance2(1), p_di stance2(2));
p_power 3=hedB2( p_di stance3(1), p_di stance3(2));
p_power 4=hedB2( p_di st ance4(1), p_di stance4(2));
L1=l en(pl, nc);

L2=l en(p2, nt) ;

L3=l en( p3, nt) ;

L4=I en(p4, nt) ;

L=[ L1, L2, L3, L4]";
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wl=-(sqrt(2)*L1)/(2*d)+L2/ (2*d) +L3/ (2*d);
W2=-(sqrt(2)*L2)/(2*d)+L1/ (2*d) +L4/ (2*d);

W3=- (sqrt(2)*L3)/(2*d) +L1/ (2*d) +L4/ (2*d);

wA=- (sqrt(2)*L4)/ (2*d)+L2/ (2*d) +L3/ (2*d);

w=[ wi, w2, w3, w4] ;

w=sum(w) ;

hc2=p_power 1* (wWl/ w) +p_power 2* (W2/ w) +p_power 3* (W3/ w) +p_power 4* (w4/ w) ;

%-or the Bast Station 3
p3=[nt(1)-nod(nme(1),d), nc(2)-nmod(ne(2),d)];
p1=[p3(1),p3(2) +d];

p2=[ p3(1) +d, p3(2) +d] ;

p4=[p3(1)+d, p3(2)];

p_di stancel=round(di stance(bc3, pl));

p_di st ance2=r ound( di st ance(bc3, p2));

p_di st ance3=round(di st ance(bc3, p3));

p_di st ance4=r ound(di st ance(bc3, p4));

p_power 1=hedB3( p_di stancel(1l), p_di stancel(2));
p_power 2=hedB3( p_di st ance2(1), p_di stance2(2));
p_power 3=hedB3( p_di stance3(1), p_di stance3(2));
p_power 4=hedB3( p_di st ance4(1), p_di stance4(2));
L1=l en(pl, nc);

L2=l en(p2, nt) ;

L3=l en( p3, nt) ;

L4=Il en( p4, nt) ;

L=[ L1, L2, L3, L4]";

wl=-(sqrt(2)*L1)/(2*d)+L2/ (2*d)+L3/(2*d);

w2=- (sqrt(2)*L2)/(2*d) +L1/ (2*d) +L4/ (2*d);
wW3=-(sqrt(2)*L3)/(2*d)+L1/ (2*d) +L4/ (2*d);

wa=- (sqrt(2)*L4)/ (2*d) +L2/ (2*d) +L3/ (2*d);

w=[ wl, w2, W3, w4] ;

w=sum(w) ;

hc3=p_power 1* (wWl/ w) +p_power 2* (W2/ w) +p_power 3* (W3/ w) +p_power 4* (w4/ w) ;

% onput e the power (Prl,Pr2,Pr3)of hcl, hc2,hc3 not in dB
% ind the power of hcl
Pr1=10"(hcl/ 10);

% onput e the power (Prl,Pr2,Pr3)of hcl, hc2,hc3 not in dB
% ind the power of hc2
Pr2=10"(hc2/ 10);

%Comput e the power (Prl,Pr2,Pr3)of hcl, hc2,hc3 not in dB
% ind the power of hc3
Pr3=10~(hc3/ 10);

%&stimate | ocation based on powers. assunme n=4
%ind the first circle

n=4;

assqrt((Prl/Pr2)~(2/n));

g=bc2(1);

xcl=g/ (1-ar2);

ycl=bcl(2);

% l=abs((a*q)/(1-a"2));

ri=(a*g)/ (1-a"2);
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%-ind the second circle

n=4;
a=sqrt((Pr1/Pr3)7(2/n));
g=bc2(1);

xc2=g/ (2*(1-a"2));
yc2=(sqrt(3)*g)/(2*(1-a"2));
% 2=abs((a*g)/(1-a"2));
r2=(a*g)/ (1-a"2);

%ind the third circle

n=4;
a=sqrt((Pr2/Pr3)”(2/n));
g=bc2(1);

xc3=(g-2*g*ar2)/ (2*(1-an2));
yc3=(sqrt(3)*g)/(2*(1-a"2));
% 3=abs((a*g)/(1-an2));
r3=(a*qg)/(1-a"2);

%-ind the intersected points of these three circles
[x1,y1,x2,y2,x3,y3] =recal cul ate_power (Prl1, Pr2, Pr3);
%f the circles do not overlap, then reduce the power to nake the
circle bigger
Unabl e_| ocat e=0; %abl e to be | ocated
if (real (x1)~=x1]real (yl)~=yl)
k=1;
whi | e k<1000
Pr 1=Pr 1- Pr1*0. 025*k;
[ x1,yl] =recal cul ate_power1(Pri, Pr2, Pr3);
if (real (x1)~=x1]|real (yl)~=yl)
k=k+1;
i f (k>=1000]| Pr 1<=0)
Unabl e_| ocat e=1; Yunabl e to be | ocated,;
br eak;
end
el se
i f
len([x1(1),y1(1)], [rme(1), me(2)]) <=len([x1(2),y1(2)],[nc(1),mc(2)])
c1=[x1(1),y1(1)];
el se
c1=[x1(2),y1(2)];
end
br eak;
end
end
end

if (real (x2)~=x2|real (y2)~=y2)
k=0;
whi | e k<1000
k=k+1;
Pr2=Pr 2- Pr 2*0. 025*k
[x2,y2] =recal cul ate_power2(Pr1, Pr2, Pr3);
if (real (x2)~=x2|real (y2)~=y2)
k=k+1;
i f (k>=1000]| Pr2<=0)
Unabl e_| ocat e=1; %unabl e to be | ocat ed;
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br eak;
end
el se
if
len([x2(1),y2(1)],[mc(1),me(2)])<=len([x2(2),y2(2)],[nmc(1),nme(2)])
c2=[x2(1),y2(1)];
el se
c2=[x2(2),y2(2)];
end
br eak;
end
end
end

if (real (x3)~=x3|real (y3)~=y3)
k=0;
whi | e k<1000
k=k+1;
Pr 3=Pr 3- Pr 3*0. 025*k
[x3,y3] =recal cul ate_power3(Pri, Pr2, Pr3);
if (real (x3)~=x3|real (y3)~=y3)
k=k+1;
i f (k>=1000| Pr 3<=0)
Unabl e_| ocat e=1; %unabl e to be | ocat ed;
br eak;
end
el se
if
len([x3(1),y3(1)],[nme(1),me(2)])<=len([x3(2),y3(2)],[nc(1),m(2)])
c3=[x3(1),y3(1)];
el se
c3=[x3(2),y3(2)];
end
br eak;
end
end
end
%f the circles are overlapped, then conmpute axes of central three
poi nts

if (real (x1)==x1]|real (yl)==y1)
if len([x1(1),y1(1)],[rme(1),nc(2)])<=len([x1(2),y1(2)],[mc(1),nc(2)])
cl=[x1(1),y1(1)];
el se
c1=[x1(2),y1(2)];
end
end

if (real (x2)==x2|real (y2)==y2)
if Ten([x2(1),y2(1)],[nme(1),me(2)])<=len([x2(2),y2(2)],[nc(1),mc(2)])
c2=[x2(1),y2(1)];
el se
c2=[x2(2),y2(2)];
end
end
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if (real (x3)==x3|real (y3)==y3)
it len([x3(1),y3(1)],[nc(1),nme(2)])<=len([x3(2),y3(2)],[nc(1),m(2)])
c3=[x3(1),y3(1)];
el se
c3=[x3(2),y3(2)];
end
end

i f (Unabl e_I| ocat e==0)
% Find the central weight of the intersection
% X, y] =sol ve('y-yl=((yl- (y2+y3)/2)/(x1 (x2+x3)/2)) (x-x1)","y-y2=((y2-
(y1l+y3)/2)/ (x2- (x1+x3)/2)) *(x-x2)"' "y')
X_head(i)=1/3*c1(1)+1/ 3*02( 1) +1/3*c3(1);
y_head(i)=1/3*c2(2)+1/3*c1(2)+1/3*c3(2);
c=[x_head(i),y_head(i)];
SE SQA(i)=sqgrt((c(l)-nc(1))"2+(c(2)-nc(2))"2); oot of Square
error of SOA nethod
if SE SOA(i)<=125
p=p+1;
end
% Find the nean square error between these input points and output
poi nts
el seif (Unabl e | ocat e==1)
fprintf('It is out of range for nobile to be located.\n'");
q=q+1;
end
end

MBE_SOA = sun{ SE_SOA(fi nd(SE_SOQA~=0)))/I1 engt h(fi nd( SE_SQA~=0)) ;
MSE_SQA percent = (p*100)/ (Il ength(find(SE_SQA) ~=0));
MBE out age_percent = (g/Num_try)*100;

% he follow ng the SOA estinmate results using SOCLSFM
P=[ x_head; y_head];

T=[ X _axi s; Y_axi s];

format short;

figure(1)

hol d on;

for i=1:Numtry
s=sprintf('%',i);

if P(:,i)~=0

plot( P(1,i),P(2,i),"0"),text(P(1,i)+8,P(2,i)+8,s);
end

plot( T(1,i),T(2,i),"*"),text(T(1,i)+8,T(2,i)+8,s);

end

plot (0,0, ro");plot(1500,0,'ro"); plot (750, 750*sqrt(3),'ro');

t ext (0+8, 0+8, ' BS1' ) ; t ext (1500+8, 0+8, ' BS2' ) ; t ext ( 750+8, 750*sqrt (3) +8, ' BS
3');

hol)d of f;

s=sprintf('Estimated | ocations, Qutage is:%l\n', MSE out age percent);
x| abel (s);

yl abel (' SOA estinated | ocations :o Target locations :*');
s=sprintf('Mean Error of SOA-based schenme is %\ n', MSE_SQA);
title(s);

grid;
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f pr intf ( ! =======—=——-—-——-—-———-—-——-—-——————--——-—————————————=—=—=—=—=—=—=—===—======\ ' ) ;
fprintf(' The percentage less than 125 m after SOA-based schene
%3. 4d\ n' , MSE_SQA percent);

fprintf(' The outage of SOA-based schene is 93.4d\n', MSE out age_percent);

1.3 NN

The following is the main program for the first integrated NN and SOA scheme. A

few of the simple functions developed in this program are not provided.

OBt
% This programis built NN inputs for training.

% x_head, y_head: coordi nates of SOA estinmated PL

% mean_del ayl, mnean_del ay2, mean_del ay3: three mean del ays

% i mpul se_response_arraryl (16-tap): |npul se response 1

% i mpul se_response_arrary2 (16-tap): |npul se response 2

% i mpul se_response_arrary3 (16-tap): |npul se response 3

% Aut hor: Jie Liu n925a@nb. ca

% Copyri ght

% Date Created: Decenber 19, 2000

% Dat e Modified: Decenber 19, 2000

VBt HHHHHH B H R R R R R R R R R R R R R R
9%\N network inplenentation with Randominputs (the central points
% nside the circle)

%rai ning and testing use the sanme pattern of SOA-based schene
%ave the NN inputs data for the training test

cl ear;

close all;

R=2000; %4 m

d=50;

i _centre=find([-R 50: R ==0);

i _centre_ref=[i_centre,i_centre];

bcl=[0,0];

bc2=[ 1500, 0] ;

bc3=[ 750, 750*sqrt(3)];

Numtry = 500;

SE SOA = zeros(1l, Numtry);

% he points are chosen the central points inside the circle

cofficient=rrand(1, Numtry);

delta_ test=linspace(0,2*pi, Numtry);
delta=rand(1, Numtry).*delta_test;
x=750+cof fi ci ent *866. *cos(del ta);
y=433+cof fi ci ent *866. *si n(del ta);

X _axi s=x;

Y_axi s=y;

save X axis X axis; %etwork training data
save Y axis Y_ axis; %etwork training data

X_head=zeros(1, Numtry);
y_head=zeros(1, Numtry);
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mean_del ayl=zeros(1l, Numtry);
mean_del ay2=zeros(1, Numtry);
mean_deal y3=zeros(1, Numtry);
%-or every point, the error between the estinmated val ue and fixed val ue
is set to 0, p=0
%Wnitailize the nunmber of error of estimate location |less than 125mto
0, g=0
%nitailize the outage | ocation estimation
for i=1:Numtry
me=[ X _axis(i), Y axis(i)];
fprl ntf(' ********************************************\ n' )1
fprintf(' The nobile is located at: 9%.4d\n',nt(1l));
fprintf(' %R.4d\n' , nt(2));
fprintf(' The nunber of selected location %.0d\n",i);
| oad hwi der1_new. nmat ;
hedBl = calcnmrp ( hwiderl new) ;
| oad hwi der2_new. nat ;
hedB2 = calcnmrp ( hwi der2_new ) ;
| oad hwi der 3_new. nat ;
hedB3 = calcnmrp ( hwi der3_new ) ;
ic=find([-R d: R ==0);
%al cualte the mean del ay
Nover cell _width=length([-R d:R]);
for p=1:Nover _cell _wdth
for g=1: Nover _cell _wdth
onehl=hwi derl new(p,q,:);
mean_del ays_of _onehl=nean_deal y_cal c(onehl);
mean_del ays_arraryl(p, q) = nean_del ays_of onehl
i mpul se_response_arraryl(p, q) =onehl
oneh2=hwi der2_new(p, q,:);
mean_del ays_of _oneh2=nean_deal y_cal c(oneh2);
mean_del ays_arrary2(p, q) = nmean_del ays_of oneh2;
i mpul se_response_arrary2(p, q) =onehl
oneh3=hwi der3_new(p, q,:);
mean_del ays_of oneh3=mean_deal y_cal c(oneh3);
mean_del ays_arrary3(p, q) = nmean_del ays_of _oneh3;
i mpul se_response_arrary3(p, q) =onehl
end
end

%-or each base station

%t an inpul se reponse by interpolation

o%Cal | them hcl, hc2, hc3

%-or the base station 1
p3=[nc(1)-nmod(ne(1),d), ne(2)-nmod(ne(2),d)];
pl=[p3(1), p3(2)+d];

p2=[ p3(1) +d, p3(2) +d] ;

p4=[p3(1)+d, p3(2)];

p_di st ancel=di st ance(bcl, pl);

p_di st ance2=di st ance(bcl, p2);

p_di st ance3=di st ance(bcl, p3);

p_di st ance4=di st ance(bcl, p4);

p_power 1=hedB1( p_di stancel(1), p_di stancel(2));
p_power 2=hedB1( p_di stance2(1), p_di stance2(2));
p_power 3=hedB1( p_di stance3(1), p_di stance3(2));
p_power 4=hedB1( p_di stance4(1), p_di stance4(2));
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p_del ayl=nean_del ays_arraryl(p_di stancel(1l), p_di stancel(2));

p_del ay2=nean_del ays_arraryl(p_di stance2(1), p_di stance2(2));

p_del ay3=nean_del ays_arraryl(p_di stance3(1), p_di stance3(2));

p_del ay4=nean_del ays_arraryl(p_di stance4(1), p_di stance4(2));

L1=l en(pl, nt);

L2=l en(p2, nt) ;

L3=l en(p3, nt);

L4=I en(p4, nt) ;

L=[ L1, L2, L3, L4]";

wl=-(sqrt(2)*L1)/(2*d)+L2/ (2*d) +L3/ (2*d);

W2=- (sqrt(2)*L2)/(2*d)+L1/ (2*d) +L4/ (2*d);

W3=- (sqrt(2)*L3)/(2*d) +L1/ (2*d) +L4/ (2*d);

wA=- (sqrt(2)*L4)/(2*d)+L2/ (2*d) +L3/ (2*d);

w=[ wl, w2, w3, w4] ;

w=sum(w) ;

hcl=p_power 1* (wl/ w) +p_power 2* (wW2/ w) +p_power 3* (W3/ w) +p_power 4* (w4/ w) ;
mean_del ayl1(i)=p_del ayl* (wl/ w) +p_del ay2* (w2/ w) +p_del ay3* (w3/ w) +p_del ay4
*(wa/w) ;

%-or the base station 2

p_di st ancel=di st ance(bc2, pl);

p_di st ance2=di st ance(bc2, p2);

p_di st ance3=di st ance(bc2, p3);

p_di st ance4=di st ance(bc2, p4);

p_power 1=hedB2( p_di stancel(1l), p_di stancel(2));

p_power 2=hedB2( p_di st ance2(1), p_di stance2(2));

p_power 3=hedB2( p_di stance3(1), p_di stance3(2));

p_power 4=hedB2( p_di st ance4(1), p_di stance4(2));

p_del ayl=nean_del ays_arrary2(p_di stancel(1), p_distancel(2));
p_del ay2=nean_del ays_arrary2(p_di stance2(1), p_di stance2(2));
p_del ay3=nean_del ays_arrary2(p_di stance3(1), p_di stance3(2));
p_del ay4=nean_del ays_arrary2(p_di stance4(1), p_di stance4(2));
L1=l en(pl, nt);

L2=l en( p2, nc) ;

L3=l en(p3, nt);

L4=Il en( p4, nc) ;

L=[ L1, L2, L3, L4]";

wl=-(sqrt(2)*L1)/(2*d)+L2/ (2*d)+L3/(2*d);

w2=- (sqrt(2)*L2)/(2*d) +L1/ (2*d) +L4/ (2*d);
wW3=-(sqrt(2)*L3)/(2*d)+L1/ (2*d) +L4/ (2*d);

wa=- (sqrt(2)*L4)/(2*d) +L2/ (2*d) +L3/ (2*d);

w=[ wi, w2, w3, w4] ;

w=sum(w) ;

hc2=p_power 1* (wWl/ w) +p_power 2* (W2/ w) +p_power 3* (W3/ w) +p_power 4* (w4/ w) ;
mean_del ay2(i ) =p_del ayl* (wl/ w) +p_del ay2* (wW2/ w) +p_del ay3* (wW3/ w) +p_del ay4
*(wa/ W) ;

%-or the base station 3

p_di st ancel=r ound(di st ance(bc3, pl));

p_di st ance2=r ound( di st ance(bc3, p2));

p_di st ance3=r ound(di st ance(bc3, p3));

p_di st ance4=r ound( di st ance(bc3, p4));

p_power 1=hedB3( p_di stancel(1), p_di stancel(2));
p_power 2=hedB3( p_di stance2(1), p_di stance2(2));
p_power 3=hedB3( p_di stance3(1), p_di stance3(2));
p_power 4=hedB3( p_di stance4(1), p_di stance4(2));
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p_del ayl=nean_del ays_arrary3(p_di stancel(1l), p_di stancel(2));

p_del ay2=nean_del ays_arrary3(p_di stance2(1), p_di stance2(2));

p_del ay3=nean_del ays_arrary3(p_di stance3(1), p_di stance3(2));

p_del ay4=nean_del ays_arrary3(p_di stance4(1), p_di stance4(2));

L1=l en(pl, nt);

L2=l en(p2, nt) ;

L3=l en(p3, nt);

L4=I en(p4, nt) ;

L=[ L1, L2, L3, L4]";

wl=-(sqrt(2)*L1)/(2*d)+L2/ (2*d) +L3/ (2*d);

W2=- (sqrt(2)*L2)/(2*d)+L1/ (2*d) +L4/ (2*d);

W3=- (sqrt(2)*L3)/(2*d) +L1/ (2*d) +L4/ (2*d);

wA=- (sqrt(2)*L4)/(2*d)+L2/ (2*d) +L3/ (2*d);

w=[ wl, w2, w3, w4] ;

w=sum(w) ;

hc3=p_power 1* (wl/ w) +p_power 2* (wW2/ w) +p_power 3* (W3/ w) +p_power 4* (w4/ w) ;
mean_del ay3(i) =p_del ayl* (wl/ w) +p_del ay2* (w2/ w) +p_del ay3* (w3/ w) +p_del ay4
*(wa/w) ;

%Comput e the power (Prl,Pr2,Pr3)of hcl, hc2,hc3 not in dB
% ind the power of hcl
Pr1=10~(hc1/ 10);

%Comput e the power (Prl,Pr2,Pr3)of hcl, hc2,hc3 not in dB
% ind the power of hc2
Pr2=10"(hc2/ 10);

% onput e the power (Prl,Pr2,Pr3)of hcl, hc2,hc3 not in dB
% ind the power of hc3
Pr3=10"(hc3/10);

%kstimate | ocati on based on powers. assune n=4
%ind the first circle

n=4;

a=sqrt((Pr1/Pr2)n(2/n));

g=bc2(1);

xcl=g/ (1-a"r2);

ycl=bcl(2);

% 1l=abs((a*g)/(1-a"2));

ri=(a*g)/(1-a"2);

%-ind the second circle

n=4;
a=sqrt((Pr1/Pr3)~(2/n));
g=bc2(1);

xc2=g/ (2*(1-a"2));
yc2=(sqrt(3)*g)/(2*(1-a"2));
% 2=abs((a*qg)/(1-a"2));
r2=(a*g)/ (1-an2);

%ind the third circle

n=4;
a=sqrt((Pr2/Pr3)7(2/n));
g=bc2(1);

xc3=(g-2*g*ar2)/ (2*(1-an2));
yc3=(sqrt(3)*g)/(2*(1-a"2));
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% 3=abs((a*qg)/ (1-a"2));
r3=(a*qg)/ (1-a"2);

%-ind the intersected points of these three circles
[x1,y1, x2,y2,x3,y3] =recal cul ate_power (Pr1, Pr2, Pr3);
%Wf the circles do not overlap, then reduce the power to make the
circle bigger
Unabl e_| ocat e=0; %abl e to be | ocated
if (real (x1)~=x1]|real (yl)~=yl)
k=1;
whi | e k<1000
Pr1=Pr 1- Pr 1*0. 025*k;
[x1,yl] =recal cul ate_power1(Pri, Pr2, Pr3);
if (real (x1)~=x1|real (yl)~=yl)
k=k+1;
i f (k>=1000]| Pr 1<=0)
YWprintf('It is out of range for nobile to be located.\n")
Unabl e_| ocat e=1; %unabl e to be | ocat ed;
br eak;
end
el se
i f
len([x1(1),y1(1)],[rme(1), me(2)]) <=len([x1(2),y1(2)],[nc(1),mc(2)])
c1=[x1(1),y1(1)];
el se
c1=[x1(2),y1(2)];
end
br eak;
end
end
end

if (real (x2)~=x2|real (y2)~=y2)
k=0;
whi | e k<1000
k=k+1;
Pr2=Pr 2- Pr 2*0. 025*k
[x2,y2] =recal cul ate_power2(Pr1, Pr2, Pr3);
if (real (x2)~=x2|real (y2)~=y2)
k=k+1;
i f (k>=1000]| Pr2<=0)
YWprintf('It is out of range for nobile to be located.\n")
Unabl e_| ocat e=1; %unabl e to be | ocat ed;
br eak;
end
el se
i f
len([x2(1),y2(1)],[nmc(1), ne(2)]) <=len([x2(2),y2(2)],[nc(1),mc(2)])
c2=[x2(1),y2(1)];
el se
c2=[x2(2),y2(2)];
end
br eak;
end
end
end
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if (real (x3)~=x3|real (y3)~=y3)
k=0;
whi | e k<1000
k=k+1;
Pr 3=Pr 3- Pr 3*0. 025*k
[ x3, y3] =recal cul ate_power 3(Pr1, Pr2, Pr3);
if (real (x3)~=x3|real (y3)~=y3)
k=k+1;
i f (k>=1000]| Pr3<=0)
%Wprintf('It is out of range for nobile to be |ocated.\n")
Unabl e_| ocat e=1; Yunabl e to be | ocated,;
br eak;
end
el se
i f
len([x3(1),y3(1)],[rme(1), me(2)])<=len([x3(2),y3(2)],[nc(1),nmc(2)])
c3=[x3(1),y3(1)];
el se
c3=[x3(2),y3(2)];
end
br eak;
end
end
end
%f the circles are overlapped, then conpute axes of central three
poi nts

if (real (x1)==x1]|real (yl)==y1)
if len([x1(1),y1(1)],[ne(1),me(2)])<=len([x1(2),y1(2)],[nc(1),nc(2)])
c1=[x1(1),y1(1)];
el se
c1=[x1(2),y1(2)];
end
end

if (real (x2)==x2|real (y2)==y2)
if len([x2(1),y2(1)], [me(1), nme(2)])<=len([x2(2),y2(2)],[nc(1),nmc(2)])
c2=[x2(1),y2(1)];
el se
c2=[x2(2),y2(2)];
end
end

if (real (x3)==x3|real (y3)==y3)
if len([x3(1),y3(1)],[ne(1),me(2)])<=len([x3(2),y3(2)],[nc(1),nc(2)])
c3=[x3(1),y3(1)];
el se
c3=[x3(2),y3(2)];
end
end

% f Unabl e | ocate==1

% break;

%l sei f Unabl e_| ocat e==0
i f (Unabl e_I| ocat e==0)
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% Find the central weight of the intersection
% X, y] =sol ve(" y-y1=((y1l- (y2+y3)/2)/(x1-(x2+x3)/2))*(x-x1)","y-y2=((y2-
(y1l+y3)/2)/ (x2- (x1+x3)/2))*(x-x2)',"' X" ,"y")
X_head(i)=1/3*c1(1)+1/3*c2(1)+1/3*c3(1);
y_head(i)=1/3*c2(2)+1/3*c1(2)+1/3*c3(2);
c=[x_head(i),y_head(i)];
SE SQA(i)=sqgrt((c(l)-nc(1))"2+(c(2)-nc(2))"2); oot of Square
error of SOA nethod
if SE SOA(i)<=125
p=p+1
end
% Find the mean square error between these input points and out put
poi nts
el seif (Unabl e_| ocat e==1)
fprintf('It is out of range for nobile to be located.\n'");
q=q+1
end
end
MBE_SQA = sum( SE_SOA(fi nd(SE SQA~=0)))/ I engt h(fi nd( SE_SOA~=0)) ;
MBE_SOA percent = (p*100)/ (I engt h(fi nd(SE_SQA) ~=0));
MBE out age_percent _SQA = (g/ Num_try)*100;
f pr intf ( ! ======—=—=—=—=—=———=—————————————————————————————————=———=—=—=—=—=====\ ' ) :
fprintf(' The percentage less than 125 m after SOA-based schene
%3. 4d\ n' , MBE_SQOA percent);
fprintf(' The nean square error of SOA-based schene 93.4d\n', MBE_SQA) ;
fprintf(' The out age of SQA- based schene is
3.4d\ n' , MSE_out age_percent _SQA) ;
save X_head x_head; ¥%Network traini ng data
save y_head y_head; %Net work training data
save nmean_del ayl nean_del ayl; %Net work trai ning data
save nean_del ay2 nean_del ay2; %Net wor k trai ni ng data
save mean_del ay3 nean_del ay3; %Net work trai ning data
save inpul se_response_arraryl; ¥%Network trai ning data
save i npul se_response_arrary2; ¥%Network training data
save inpul se_response_arrary3; ¥%Network trai ning data

Vet B H R R R R R R R AR R R R R R R R
% This programis to train the NN

% x_head, y_head: coordi nates of SQA estinmated PL

% nean_del ayl, mean_del ay2, nean_del ay3: three nmean del ays

% i mpul se_response_arraryl (16-tap): |npul se response 1

% i mpul se_response_arrary2 (16-tap): |npul se response 2

% i mpul se_response_arrary3 (16-tap): |npul se response 3

% Aut hor: Jie Liu n925a@nb. ca

% Copyri ght

% Dat e Created: Decenber 19, 2000

% Date Modified: Decenber 19, 2000
OBt R R R
cl ear;

close all;

| oad x_head; %Net work training data

| oad y_head; ¥Net wor k traini ng data

| oad nean_del ayl; % Networ k traini ng data
| oad mean_del ay2; ¥%Net wor k traini ng data
| oad nean_del ay3; %Net work training data
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| oad i nmpul se_response_arraryl; ¥%Network training data
| oad inmpul se_response_arrary2; %Networ k training data
| oad i nmpul se_response_arrary3; ¥Network training data
load X axis X axis;%etwork training data
load Y axis Y axis; %Network training data
count =0;
Numtry =1500;
for i=1:Numtry
whil e x_head(i) ==
count = count +1;
for k=i:Numtry-1
X_head(k) = x_head(k+1);
y_head(k) = y_head(k+1);
mean_del ay1(k) mean_del ay1(k+1);
mean_del ay2( k) mean_del ay2(k+1) ;
mean_del ay3(k) mean_del ay3(k+1);
for i=1:Numtry
i mpul se_response_arraryl(i, k) =
i mpul se_response_arraryl(i, k+1);
i mpul se_response_arrary2(i, k)= inpul se_response_arrary2(i, k+1);
i mpul se_response_arrary3(i, k) =
i mpul se_response_arrary3(i, k+1);

end

X axi s(k) = X axis(k+1);

Y _axis(k) = Y_axis(k+1);
end

end
end

X_head = x_head(1: Numtry - count);
y_head = y_head(1l: Numtry - count);
mean_del ayl mean_del ay1(1l: Numtry - count);
mean_del ay2 mean_del ay2(1: Numtry - count);
mean_del ay3 mean_del ay3(1: Numtry - count);

for i = 1:16

i mpul se_response_arraryl(i) = inpulse_response_arraryl(i,1l:Numtry -
count);

i mpul se_response_arrary2(i) = inpulse_response_arrary2(i,1l:Numtry -
count);

i mpul se_response_arrary3(i) = inpulse_response_arrary3(i,1l:Numtry -
count);

end

X axi s X axis(l:Numtry - count);

Y axis = Y _axis(1l:Numtry - count);

P=[ x_head; y_head; mean_del ay1; mean_del ay2; nean_del ay3; i npul se_response_a
rraryl(l);...

i mpul se_response_arraryl(2);inmpul se response_arraryl(3);inpul se_respons
e arraryl(4);..

i mpul se_response_arraryl(5);inpul se_response_arraryl(6);i npul se_respons
e arraryl(7);...

i mpul se_response_arraryl1(8);inpul se_response_arraryl(9);i nmpul se_respons
e arraryl(10);..

i mpul se_response_arraryl1(11);inpul se_response_arraryl(12);inpul se_respo
nse_arraryl(13);...

i mpul se_response_arraryl1(14);inpul se_response_arraryl(15);inpul se_respo
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nse_arraryl(16);...

i mpul se_response_arrary2(1);...

i mpul se_response_arrary2(2);inmpul se_response_arrary2(3);inmpul se_respons
e arrary2(4);..

i mpul se_response_arrary2(5);inpul se_response_arrary2(6);i nmpul se_respons
e arrary2(7);...

i mpul se_response_arrary2(8);inmpul se response_arrary2(9);inpul se_respons
e arrary2(10);..

i mpul se_response_arrary2(11);inpul se_response_arrary2(12);inpul se_respo
nse_arrary2(13);...

i mpul se_response_arrary2(14);inpul se_response_arrary2(15);inpul se_respo
nse_arrary2(16);...

i mpul se_response_arrary3(1);...

i mpul se_response_arrary3(2);inpul se_response_arrary3(3);inmpul se_respons
e arrary3(4);..

i mpul se_response_arrary3(5);inmpul se_response_arrary3(6);i nmpul se_respons
e arrary3(7);...

i mpul se_response_arrary3(8);inmpul se_response_arrary3(9);i nmpul se_respons
e arrary3(10);..

i mpul se_response_arrary3(11);inpul se_response_arrary3(12);inpul se_respo
nse_arrary3(13);...

i mpul se_response_arrary3(14);inpul se_response_arrary3(15);inpul se_respo
nse_arrary2(16);...

]

T=[ X _axi s; Y_axi s];

net 1=newf f ([ m nmax(x_head) ; mi nmax(y_head) ; m nmax( nean_del ayl) ; m nmax(me
an_del ay?2) ; mi nmax(nean_del ay3); ...

m nmax (i mpul se_response_arraryl(1));

m nmax (i mpul se_response_arraryl(2));...

m nmax(i npul se_response_arraryl(3)); m nmax(i npul se_response_arraryl(4))
;m nmax(i mpul se_response_arraryl(5));...

m nmax (i mpul se_response_arraryl(6)); m nmax(i npul se_response_arraryl(7))
;m nmax(i mpul se_response_arraryl1(8));...

m nmax (i mpul se_response_arraryl(9)); m nmax(i npul se_response_arraryl(10)
); minmax(i mpul se_response_arraryl(11));...

m nmax (i nmpul se_response_arraryl(12)); m nmax(i nmpul se_response_arraryl1(13
)); m nmax(i npul se_response_arraryl(14));...

m nmax (i nmpul se_response_arraryl(15)); m nmax(i nmpul se_response_arraryl(16

)i

m nmax (i mpul se_response_arrary2(1));

m nmax (i mpul se_response_arrary2(2));...

m nmax (i mpul se_response_arrary2(3)); m nmax(i npul se_response_arrary2(4))
;m nmax(i mpul se_response_arrary2(5));...

m nmax (i mpul se_response_arrary2(6)); m nmax(i npul se_response_arrary2(7))
;m nmax(i mpul se_response_arrary2(8));...

m nmax (i mpul se_response_arrary2(9)); m nmax(i npul se_response_arrary2(10)
); mi nmax(i nmpul se_response_arrary2(11));...

m nmax(i npul se_response_arrary2(12)); m nnax(i nmpul se_response_arrary2(13
)); mi nmax(i nmpul se_response_arrary2(14)); ...

m nmax(i npul se_response_arrary2(15)); m nnax(i nmpul se_response_arraryl(16

)i

m nmax (i mpul se_response_arrary3(1));
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m nmax (i mpul se_response_arrary3(2));...

m nmax (i mpul se_response_arrary3(3)); m nmax(i npul se_response_arrary3(4))
;m nmax(i mpul se_response_arrary3(5));...

m nmax (i mpul se_response_arrary3(6)); m nmax(i npul se_response_arrary3(7))
;m nmax(i mpul se_response_arrary3(8));...

m nmax (i mpul se_response_arrary3(9)); m nmax(i npul se_response_arrary3(10)
); minmax(i mpul se_response_arrary3(11));...

m nmax (i npul se_response_arrary3(12)); m nnax(i nmpul se_response_arrary3(13
)); mi nmax(i nmpul se_response_arrary3(14)); ...

m nmax (i npul se_response_arrary3(15)); m nnax(i nmpul se_response_arrary3(16
)i

1,[20,2],{ ' tansig", " purelin'},"trainlm);

net 1. t r ai nPar am show=20;

net 1. trai nPar am epochs=120;

net 1. trai nPar am goal =1e- 10;

save netl net1;

save P P

save T T;

save count count;

OBt
% This programis to evaluate the performance of the integrated schene
% on SOCLSFM

% Aut hor: Jie Liu n925a@nb. ca
% Copyri ght
% Dat e Created: Decenber 19, 2000
% Dat e Modi fied: Decenber 19, 2000
OBt SRR TR R R R R R R R R SRR R
clear;
| oad net 1;
| oad P
| oad T,;
| oad count;
Num t r y=1500;
net2 = train(netl, P, T);
save net2 net 2;
a= simnet2, P)
e = T-a;
MBE NN = mean(sqrt(e(l,:)."2+e(2,:)."2));
m=0;
for i=1:.Numtry-count

RSE NN=sqrt(e(1,i)”2+e(2,i)"2);

i f RSE _NN<125

mEme1;

end
end
MSE_NN _percent =(nm (Num try-count))*100;
f pr intf ( ! =====—=—=—=—=—=—=—=——=—————————————————————————————————=———=—=—=—=—===—==\ ' ) :
fprintf('Mean Error of NN test is 93.4d\n', MSE_NN)
fprintf(' The percentage |ess t han 125m after NN estination
%3. 4d\ n' , MSE_NN _percent);



