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Abstract

The topic of this dissertation is a digital multiuser communications system whose

structure is identical to a single cell of a typical cellular telephone system. It consists

of several spatially distributed portables (users) which communicate simultaneously

with a central base station. The general objective is to investigate and improve the

central receiver which detects the signals of all in-cell portables.

In order to support several users, a multiple access scheme combining frequency

diversity (SSMA – spread spectrum multiple access) with receive antenna diversity

(SDMA – space division multiple access) is considered. The system is designed for

high data rates, frequency selective and quasi-stationary radio channels.

A vector model of the system is developed, which incorporates frequency diversity

as well as multiple receive antennas. In addition to simplifying the mathematical

analysis, it provides precious insight into the behavior of the system.

A new approach to approximate and bound the error probability in linear systems

is described, which is accurate, numerically very efficient and easy to use. The results

show that it compares very well with the existing state-of-the-art approximations.

Promising detectors for multiuser systems are numerically efficient and take the

signals of all users into account for the estimation process. One of the candidates

strongly considered for a practical implementation in future systems is the equalizer

family with multiple inputs (from multiple receive antennas) and multiple outputs

(one for the signal of each user). This detector type is analyzed here. Although

significantly less complex than the optimum detectors, multiple-inputmultiple-output

(MIMO) equalizers require a total number of operations which is too heavy a burden
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for present systems. For that reason, numerically more efficient approaches for the

optimization of the equalizer coefficients are considered.

In addition, an extension of the standard MIMO equalizer with decision feedback is

analyzed. This detector addresses the special situation of cellular systems in which the

received signal strengths differ significantly. It is shown that the inclusion of simple

delay elements may strongly reduce the requirements for power control, a technique

that adds considerable complexity but is crucial to current cellular systems.
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ã 1 ×N continuous-valued data estimate at

the input to the decision device

137 Fig. 4.1
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172 Eqn. (4.81)
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ĕk k-th component of ĕ 137 Eqn. (4.4)
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λ real part of the parameter Λ 105 Eqn. (3.96)

λ̄ parameter which yields the tightest first-

order upper bound for the threshold prob-

ability (λ̄ ∈ R)
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Chapter 1

Introduction

1.1 Overview

Exchanging information with other individuals or the environment is one of the basic

human needs. In particular, it is very important for many of us to find out and be

aware of certain events within reasonable time. This means, very often, that informa-

tion has to be exchanged over long distances; and it has to be done, if not for necessity

at least for convenience, as soon as possible. However, it has not been until the late

nineteenth century that the speed of a horse or a train limited not only the traveling

time but also the form of the message. By that time, a major breakthrough in the evo-

lution of communications means occurred. For the first time, electromagnetic signals

were used for the transport of information. This initiated, starting with the inven-

tion of telegraphy, a new area of communication, telecommunication, which has been

changing our ethics, philosophy, knowledge and perception of the world irreversibly.

Since then, telecommunications has and will become increasingly faster, more power-

ful and enabling ever new products and lifestyles. Some of the most important include

broadcast radio, the telephone, television, to name only a few. The world wide web

and cellular telephony are the current hot products fuelling an unprecedented growth

of the telecommunications market. The preliminary climax was reached in the middle

of the year 2000 with the auction of third generation cellular phone licences in sev-

eral European countries. For example, the licence fees filled the treasury of England
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with more than 38 billion EURO (US$ 36 billion) and that of Germany with more

than 51 billion EURO (US$ 48 billion) [23]. Moreover, telecommunication companies

spent these large sums without yet having the third generation wireless products and

applications using the licenced bandwidth. The financial pressure to develop these

products fast will add to the already strong activities of telecommunications hardware

and software manufacturers. An end to this long-term trend cannot be foreseen at

this point of time.

Presently, envisioned capabilities of future telecommunications systems are very

often far ahead of current products and even research results. Not surprisingly, the

research is very active in this field. Among others, four important areas within

communications are networks, digital, broadband and wireless systems.

The trend towards networks is as old as electrical communication and stems from

the fact that some systems need to connect many different locations and individuals.

A great deal of work has been carried out on this subject during the twentieth century.

Not surprisingly, many existing communication systems are examples of mature and

reliable networks. At this time, probably the most sophisticated network is the global

telephone system. Nonetheless, new systems are emerging which offer more and better

services as well as an integration of voice, video, and data. These networks have to be

designed for the specific requirements of the intended services and the characteristics

and constraints of the system. A very simple type of network is a multiuser system

consisting of several portables and one base station. In the down- or forward link, the

base station sends data simultaneously to all users. While in uplink or reverse mode,

the portables transmit information to the base station. The base station can be used

as a control and/or switching unit, and it may be connected to a larger network.

Digital data became popular with the invention and development of computers.

In parallel, it was observed that the inherently analog signals of our real world can

be time sampled and coded with negligible loss of information. Consequently, the

foundation for the digital representation of analog signals was laid. The final break-

through of digital systems was based on two properties. Firstly, data compression,

also called source coding, enables the extraction of relevant information only; sec-

ondly, digital systems can easily integrate different data formats and offer more and
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better services.

Compression techniques are able to discard redundant parts of the signal. This

reduces the total amount of data to be transmitted and increases the capacity of

communication systems. Due to a large amount of redundancy in real world signals,

digital systems are nowadays usually far more efficient than analog systems.

The integration of different data formats such as still and moving images, text,

voice and data has already been achieved in applications for the world wide web.

Products with similar abilities are currently under development for third generation

cellular systems. The digital data representation is ideal for this kind of integration

since all formats are coded into symbol sequences using the same binary alphabet. At

the basic data level, all signals, whether they are voice, images or any other format,

look the same. Moreover, additional user services are easily included with appropriate

protocols and software.

Recent technological advances paved the way for a variety of new services and

applications, among them digital television/radio, video on demand and world wide

web services. In spite of highly effective compression methods, these applications

have in common that they require the transmission of enormous amounts of data.

Moreover, the required data quantities are constantly increasing. In order to be able

to use these services without unacceptable delay and waiting periods, it is necessary

to develop sufficiently fast broadband systems which are able to keep pace with the

growing information transfer.

In many communication applications, wireless systems are preferable. Firstly, the

cost of systems may be reduced if no cables are required. The installation of wireless

systems is easier and more convenient. Even more important is that wireless systems

enable the mobility of users. People become instantly accessible and are able to access

information “anywhere at any time”. Whether or not the hereby inspired culture is

necessary or desirable, many people are willing to spend money for this service. The

recent success of cellular phones has been a direct consequence. In the near future,

new wireless systems will emerge and existing products will become more powerful.

The combination of network, digital, broadband and wireless properties is nec-

essary for many envisioned products. It is also the basis for the type of system
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investigated in this work.

Important aspects for the system design are performance, efficiency and com-

plexity. The most reasonable quality or performance measure for digital systems is

the bit error rate (BER), which expresses the probability that a received informa-

tion bit is detected wrongly. The system must guarantee that a certain BER value,

which is dictated by the type of application, not be exceeded. More efficient sys-

tems require less resources and achieve a higher capacity for the same properties.

For example, more users are supportable and/or higher data rates are possible. Sim-

pler systems are usually less expensive, more reliable and easier to design than more

complex ones. Interestingly, there exists a trade-off among performance, efficiency

and complexity. For example, a higher efficiency or performance is often achieved by

adding additional complexity (error correction codes, multiple antennas, sophisticated

receivers/detectors). System resources like bandwidth or transmit power may be sac-

rificed for higher performance and vice versa. Consequently, a reasonable compromise

has to be found by taking all system requirements and resources into account.

Two other important factors for the design are system properties and application

requirements. The system properties include the amount of available bandwidth,

transmit power, interference, the channel characteristics, noise level and so forth.

Resources like bandwidth and transmit power are more or less restricted; other effects

like interference, noise, time-varying and frequency selective channels may require

special attention. In addition, the type of application determines the requirements

for capacity, data rate and performance. As a consequence, each system requires

different solutions and techniques in order to meet all objectives most efficiently.

Let us illustrate the practical differences with two examples. Ordinary telephone

systems operating over twisted pair cables are mainly bandwidth limited because of

the physical characteristics of the twisted pair cable. The noise in the system is

usually small and the transmitter may send the signals with a relatively high power.

The channel may be approximated very accurately as time invariant. Consider now

a cellular phone system. The portables are mostly operating on batteries. This puts

a strong constraint on the transmitter power. The parameters of the radio channel

are time varying, especially if the portables are moving. Another characteristic of
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the radio channel is multipath signal propagation which spreads the signal in time

and may cause an overlap of adjacent symbols (intersymbol interference). The detri-

mental effect of intersymbol interference (ISI) can only be mitigated by employing

more complex receivers and/or transmitters. Additional interference may be caused

by other system portables or different radio systems accessing the same or adjacent

frequency bands. The bandwidth of the radio channel is usually higher than that of

a twisted pair cable, but it is by no means unlimited. This example shows that the

transceiver solutions for a telephone and cellular phone system will be different. Each

solution has to be considered individually depending on the system properties. The

requirements in terms of capacity and performance depend mainly on the signals be-

ing transmitted. A voice signal, for example, needs only low data rates in the order of

kbits/s. It may tolerate relatively high bit error rates, but it is very sensitive to time

delays. On the other hand, data signals require usually a high performance transmis-

sion with BER’s lower than 10−7. Digital video signals convey a lot of information

and need high data rates in the order of Mbits/s for real time applications.

1.2 This Work in the Context

The evolution of cellular telephone systems into an affordable popular service can be

roughly described by three main steps. The introduction of analog systems during

the 1980s, so called first generation (1G) cell phones, made it possible to offer wireless

phone services at low prices and it became affordable and attractive to people with

average income. However, the enormously increasing customer base soon became

a problem because the capacity of the systems needed to be strongly increased in

urban areas. This triggered strong efforts to improve the system efficiency, leading to

move from analog to digital solutions. Currently, these digital second generation (2G)

systems dominate the cellular market. They offer, for now, only circuit-switched voice

and very low speed (≈ 10 kbit/s) circuit-switched data services. However, standards

for the next generation of cellular systems have been under development since the late

1980s and are expected to enter the market in Europe by mid 2001, in North America

a little later. These third generation (3G) systems will offer higher data rates and the



1.2 This Work in the Context 6

support for packet-switched data in addition to circuit-switched voice signals. While

telecommunications equipment manufacturers are working hard to provide reliable 3G

systems, research and standard bodies envision already even higher speed systems,

currently called fourth generation (4G) or beyond 3G systems.

Tables 1.1 and 1.2 show some characteristics and specifications of the different

systems [19, 100]. With the introduction of the cellular telephone standard IS-95,

the spread spectrum technique CDMA1 became a popular multiple access alternative

to TDMA. Both TDMA and CDMA have proven to be significantly more efficient

than conventional FDMA used in the public switched telephone network (PSTN) and

early first generation cell phone standards (e.g. AMPS). In spite of a hot discussion in

the research community as to which technique, TDMA or CDMA, is the better, both

multiple access schemes turn out to be in practice approximately equally efficient in

terms of data rate per bandwidth. Used in different existing cell phone networks, both

TDMA and CDMA achieve spectral efficiencies between 0.04 and 0.07 bits/s per Hz

per sector [19]. Consequently, both TDMA and CDMA are considered in future 3G

standards, while tending slightly more to CDMA. Especially in Europe and the rest

of the world excluding North America, the 3G standard WCDMA (wideband CDMA)

seems to be the dominating future standard. In North America, the situation will

be different as not sufficient spectrum is available for the realization WCDMA. As a

consequence, three other standards are being considered, namely EDGE (TDMA), IS-

2000 (CDMA) and HDR (hybrid TDMA/CDMA). In essence, the spread spectrum

technique CDMA is and will be an important multiple access scheme for cellular

and wireless systems. This dissertation considers a spread spectrum multiple access

system (SSMA) which is a generalization of CDMA.

As shown in Table 1.2, the required data rates and spectral efficiencies grow by

going from one cellular generation to the next. Current second generation CDMA

systems achieve spectral efficiencies of only 0.04–0.07 bits/s per Hz and sector. The

1CDMA stands for code-division multiple access and refers in this context exclusively to direct
sequence (DS) CDMA as opposed to frequency hopping (FH) CDMA. Other multiple access schemes
are FDMA (frequency-division multiple access) and TDMA (time-division multiple access). Detailed
definitions and descriptions of CDMA, TDMA and FDMA may be found, for example, in the books
of Rappaport [101] or Proakis [99].



1.2 This Work in the Context 7

Table 1.1: Characteristics of different generations of cellular telephone systems.

System Type Multiple Access Signals Switching

1G analog FDMA only voice circuit

2G digital TDMA, CDMA mainly voice circuit

3G digital TDMA, CDMA voice and data circuit and packet

4G digital OFDM?, TDMA, CDMA data (incl. voice) packet

main reason is a simple receiver which is in essence a filter matched to the received

signal waveform (rake receiver plus despreader). The matched filter receiver is unable

to reduce interference caused by other users (portables). Higher spectral efficiencies

can only be achieved by employing more complex detectors which take special sta-

tistical properties of the interference into account in order to reduce or cancel its

effects. An excellent detector is based on maximum likelihood sequence estimation

(MLSE), however, it requires a known channel and an amount of operations that

grows exponentially with the number of system users times the channel memory.

As a consequence, the MLSE detector requires, very often, too many computations

to be implemented. This is especially the case when more than only a handful of

users are to be detected in a frequency-selective environment. Possible alternatives

are equalizers with multiple input and multiple output signals (MIMO equalizers).

Their performance has been proven to be significantly superior to the matched filter

receiver. Although not achieving the same quality as the MLSE detector, equalizers

are able to perform almost as well at a numerical complexity only growing linearly

with both the number of users and the channel memory. Thus, one practically re-

alizable solution to the increasing demands for performance, capacity and spectral

efficiency are MIMO equalizers. This kind of detector, which exists in both linear

and nonlinear (decision-feedback) form, is the subject of this work.

The dissertation consists of two main parts:

1. efficient approximation of error probabilities (Chapter 3);

2. analysis and evaluation of existing and new equalizer structures for spread spec-

trum multiuser systems (Chapters 4 and 5).
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Table 1.2: Specifications for different generations of cellular telephone systems.

System Data Rates in kbit/s per user Efficiency Target

Outdoor Indoor in bit/s per Hz per sector

high speed low speed

1G analog 3.1 kHz voice signal — N/A

2G ≈ 10 — 0.04 – 0.07

3G ≥ 144 ≥ 384 ≥ 2000 0.1 – 0.5

4G larger than 3G > 0.5

The equalizer structures considered in this dissertation are designed for a specific

spread spectrum system. A detailed description of the system characteristics is given

in Chapter 2.

The systems investigated (including transmitter, channel and equalizer) are either

linear or can be fairly approximated by linear models. Nevertheless, the calculation

of error probabilities becomes complex or difficult unless the interference part is elim-

inated in the output signal of the equalizer. Since this is not necessarily the case,

special methods have to be used in order to approximate the error probability effi-

ciently. A new approach is described in Section 3.4, which is very accurate, efficient

and easy to use.

The equalizer structures described in the second part of this work have certain spe-

cial characteristics. They are designed for use in the reverse link of a spread spectrum

(SSMA, CDMA) multiuser system consisting of multiple portables and one base sta-

tion. The equalizers are MIMO structures whose theoretical description is suited for

the accommodation of an arbitrary number of receive antennas or antenna elements.

It is the main purpose of the equalizers to combat and mitigate interference caused

by frequency selective channels (intersymbol interference, ISI) and other portables

(co-channel interference, CCI). The main properties of these suboptimal multiuser

detectors are capability to achieve high performance and bandwidth efficiency for a

moderate degree of complexity.

There are three main objectives with respect to the investigated MIMO equaliz-

ers. The first is a general analysis and description of these detectors, including the

determination of the optimal parameters and expressions for their performance. It is
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intended to evaluate and compare the performance, complexity and capacity of the

different structures. Finally, alternative approaches and new equalizer structures are

introduced and explored in order to further improve the performance, increase the

capacity and/or reduce the complexity.

Equalizers may be analyzed in either the time or the frequency domain. The

time-domain approach is better suited to time-varying systems while a frequency-

domain analysis requires, usually, stationary or quasi-stationary2 environments. On

the other hand, the optimal equalizer and expressions for the performance may be

determined more efficiently in the frequency-domain. In spite of that, most publica-

tions within the field of multiuser detection perform a time-domain analysis. This

work concentrates on the frequency-domain approach.

Let us finally outline the system for which the investigated equalizers are suited.

The MIMO equalizers perform inherently a joint detection of several signals. This

implies that they be used in the receiver of a base station which detects the data

signals of multiple users. Although similar structures may also be used in the forward

link, the investigation concentrates solely on the reverse link. One characteristic of

the reverse link is that the signals of different users are received asynchronously,

i.e. the data sequences are delayed relatively to each other. The special structure

of the equalizers considered here is able to deal with asynchronous signals. The

equalizers are space-time filters and can be viewed as a bank of discrete-time filters.

This makes them suitable for mitigating frequency-selective channels and implies

that the symbol period is on the order of or shorter than the impulse response of the

channel. In other words, the data rate is relatively high and the system is broadband.

The frequency-domain analysis requires quasi-stationary channels. This is especially

reasonable for high data rate systems, whose symbol period and thus block duration

is short and whose portables are stationary or slowly moving. It will be shown that

MIMO equalizers are highly bandwidth efficient and that they may achieve a very

2In practice, data is transmitted in blocks or frames of a specified length rather than continuously
without interruption. A system will be called quasi-stationary if its characteristics are time-variant
but do not, for all practical purposes, change during the length of one data block. The system can
then be described as long term time-variant with respect to several data blocks, but short term
stationary within each block.
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good performance. That makes them appropriate for a wide application of services.

Taking the possible large data rates into account, even broadband services such as

video and high speed data may be supported (especially for indoor systems). In

summary, a possible application of the equalizers investigated here is as detectors in

the reverse link of a wireless multiuser system with the following characteristics and

requirements:

• spread spectrum multiple access (SSMA, DS-CDMA),

• multiple receive antennas (optional),

• asynchronous signal reception,

• frequency selective channels (high data rate),

• quasi-stationary channels (slowly moving portables, high data rates),

• high bandwidth efficiency,

• low error probabilities,

• moderate complexity.

1.3 Background

1.3.1 Frequency and Antenna Diversity

A multiuser system requires a multiple access scheme in order to support several users

(portables) simultaneously. The scheme spread spectrum multiple access (SSMA)

realizes this by using the principle of frequency diversity.

Consider a discrete-time signal to be transmitted over a continuous-time channel at

a symbol period of T [s]. This requires, according to the well known Nyquist criterion,

a double-sided bandwidth3 of at least B = 1/T [Hz]. A spread spectrum system,

3In baseband systems, the double-sided bandwidth comprises both negative and positive fre-
quencies of the signal. In contrast, the double-sided bandwidth of a passband (modulated) system
includes only the signal bandwidth around the carrier frequency in the positive frequency region.
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however, converts the information sequence to a continuous-time signal with a larger

bandwidth of W = KB [Hz], where the integer K > 1 is called the spreading factor

or the processing gain. The bandwidth spreading may be realized in different ways4.

The process of spreading introduces K-fold diversity into the transmitted signal.

In particular, the complete information is contained in any connected subband of

bandwidth B [Hz] within the total spread spectrum signal bandwidth W = KB [Hz].

The process of spreading may therefore be interpreted by producing K (different)

copies of the original information and transmitting them in K parallel subbands of

bandwidth B [Hz] over the channel. Since the resource of diversity is additional

frequency, spread spectrum systems provide frequency diversity.

In multiuser systems, each user generates a spread spectrum signal by using a

different code or filter characteristic. Although the signals of all users overlap and

interfere with each other, the receiver may recover any individual signal. This can

be done by correlating and despreading the received, combined signal with the code

of the desired user. If all codes are mutually uncorrelated, the original signal will

be ideally regenerated without residual interference. One way to achieve this is by

choosing orthogonal codes. However, even initially orthogonal signals may become

correlated at the receiver when the channel is sufficiently time dispersive. In this

case, residual interference from other user’s signals remains in the desired signal after

correlation and despreading (matched filtering). This can be avoided by applying a

linear transformation to the despreaded signal which inverts the correlation charac-

teristic of the received signals or, alternatively, which minimizes the combined signal

distortion caused by interference and noise. A publication of Shnidman [113] is one

of the first works recognizing that different signals overlapping both temporally and

spectrally can be recovered completely. He derived the generalized Nyquist criterion,

which is an extension of the Nyquist criterion for zero ISI in a system that modulates

only one waveform (single user systems) to a system that modulates several different

4One method of bandwidth spreading is to multiply each symbol of the original information
sequence with a code sequence whose sample period is Ts = T/K (chip period). In another technique,
the information sequence is K-times upsampled (expanded), i.e. K − 1 zeros are inserted between
either two information symbols, and the resulting expanded sequence is fed into an arbitrary linear,
time-invariant filter.
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waveforms. It is a necessary and sufficient condition for minimizing the noise variance

under the constraint of zero interference.

A fundamental result is that all individual signals from different users may be

totally recovered without any residual interference by a linear transformation if the

number of users (N) does not exceed the processing gain:

N ≤ K. (1.1)

This result was foretold by Shnidman [113]. It has been derived by Gardner in the

context of cyclostationarity, [37, 38], which represents an alternative way to describe

spread spectrum signals. Note that condition (1.1) is necessary but not sufficient

since, even for N ≤ K, some original signals may not be recovered if the set of all

codes (or received signal waveforms) is linearly dependent, which is equivalent to a

singular correlation matrix.

The above discussion implies that the multiple access scheme SSMA relies on

bandwidth expansion in order to support several users. In essence, each user’s signal

bandwidth is expanded to K times the fundamental (single user) Nyquist bandwidth

such that a maximum of N = K users may transmit information simultaneously.

Since each user may send data at a rate of B = 1/T [symbols/s], the maximal system

capacity is C = KB [symbols/s]. The important thing to note is that each individual

signal occupies the whole bandwidth W = KB [Hz] at all times.

Interestingly, other schemes like frequency-division multiple access (FDMA) and

time-division multiple access (TDMA) also use bandwidth expansion for the support

of multiple users. FDMA reserves a separate frequency band of at least B [Hz] for

each user transmitting symbols at a rate of B = 1/T [symbols/s]. Assuming that

the FDMA system provides K frequency bands, up to N = K users may transmit

data simultaneously and the maximal system capacity is C = KB [symbols/s]. The

required system bandwidth is in this case at least W = KB [Hz]. Hence, formally

FDMA and SSMA achieve the same capacity. Note that FDMA is an orthogonal

multiple access scheme since all transmitted signals occupy different frequency bands

and do not interfere with each other as long as the individual bands are spaced
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sufficiently apart. In TDMA, a certain user is allowed to send data during a specific

time period while all other users are silent. Each user is assigned a different time

period in order to share the system resources. This prevents that signals from different

users interfere with each other; consequently TDMA is an orthogonal multiple access

scheme. Assuming that the total system bandwidth is W [Hz], the active user may

transmit data according to the Nyquist criterion at a symbol rate of W [symbols/s].

The system capacity is thus C = W [symbols/s], which turns out to be theoretically

the same as for FDMA or SSMA. In practice, however, FDMA systems achieve a

lower capacity than SSMA or TDMA since frequency bands have to be reserved at

all times, even when the number of active users is smaller than the maximum. In

this case, the unused bands are wasted, which reduces the effective capacity of the

system [101].

Another way of supporting several users simultaneously is by using several in-

dividual, physically separated channels between the transmitters and the receiver.

This principle is obvious for wired systems. Suppose a system similar to the one

described above connects N users to a central base station and there is one cable

used between each user and the base. If the bandwidth of each cable is B [Hz], up

to B [symbols/s] may be transmitted by each user. This results in a total system

capacity of C = NB [symbols/s]. Note that the capacity is increased by a factor

of N when N separate cables are used, even if each cable uses the same frequency

band. The capacity gain will not be diminished if there exists serious crosstalk among

the different cables. In this case, a linear transformation, similar to that discussed

above for SSMA systems, may be used at the receiver in order to invert the crosstalk

characteristics caused by the channels.

The same principle can now be applied to wireless radio channels by using multiple

transmit5 and receive antennas. Suppose that the base station employs A ≥ 1 receive

antennas. Then, there are A signal paths between each user and the receiver, which

results in an A-fold antenna diversity. Whether the paths are realized by a cable or

the radio channel is not important. In both cases, the receiver may be able to recover

5Note that the total number of transmit antennas in the whole system is N when each of the
N users has a single transmit antenna.
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each signal completely for

N ≤ A (1.2)

users sending different data simultaneously in the same frequency band of bandwidth

B [Hz]. This results in maximal system capacity of C = AB [symbols/s], even

though the total system bandwidth is only W = B [Hz]. Hence, the number of

supportable users and thus the capacity of a multiuser system may increase linearly

with the number of receive antennas. A necessary condition for a linear capacity

increase is that, for all users, the channel impulse responses between a certain user

and all receive antennas are distinct. This implies that the receive antennas must

be sufficiently spaced. If this is not the case and the channel impulse responses are

not distinct, the capacity increase will be less than linear in the number of receive

antennas.

The phenomenon of increasing the system capacity (number of users) by adding

receive antennas while keeping the bandwidth constant has been described in several

publications of Winters. He derived the above result (1.2) initially for frequency non-

selective (flat) fading channels [128, 129]. In a later paper, it was verified through

simulations that the same result also holds in frequency selective environments [130].

The linear transformation required for the complete recovery of each individual signal

has been termed optimum combining.

If not used for increasing the system capacity, the methods of frequency and

antenna diversity can be employed to improve the performance. This concept is

particularly beneficial in systems with flat fading channels [99, 128, 129]. In particular,

Winters et al. [130] showed theoretically for flat fading channels with a linear antenna

diversity receiver that an N user, A antenna system can null out all interferers and

A−N+1 path diversity improvement can be achieved by each of the users. The impact

of antenna diversity on the performance of a single user system with a frequency

selective channel was investigated by Scott et al. [111]. They showed that a lower bit

error rate (BER) can be achieved with more than one antenna at the receiver. Similar

results have been obtained by Balaban and Salz [10], who examined the impact of
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dual antenna diversity on the performance of a single user system.

Several authors have investigated approaches that use both frequency and an-

tenna diversity in an effort to increase the number of system users or to improve

the performance. Using a linear transformation of the received signals, it was shown

analytically that the number of completely suppressible interferers increases linearly

by the product of the number of receive antennas and the processing gain [93, 33]. In

other words, all transmitted signals may be recovered without residual interference

as long as the number of users is smaller than or equal to the product of antenna and

frequency diversity (processing gain):

N ≤ AK. (1.3)

Similar results have been observed for an alternative optimization criterion which

minimizes the overall distortion energy caused by interference and noise in the re-

ceiver output (minimum mean-square error, MMSE). Qualitative simulation results

for a nonlinear detector using the MMSE criterion, [114, 63], indicate that the com-

bination of frequency and antenna diversity improves the system performance and

capacity. Another publication shows the derivation of a lower bound for the MMSE

of a multiuser system with a linear detector [108]. This bound exists only in the

region where the number of users exceeds the product AK. This implies that a linear

transformation has a basic performance limitation if N > AK. On the other hand,

the system performance is merely noise limited when N ≤ AK. In addition, it is

shown that the number of diversity channels in the system is equal to AK.

The important thing to note is that the benefits from antenna and frequency

diversity increase with their product. For example, in order to realize a 16-fold

diversity, one may use either 16 receive antennas or a 16-fold bandwidth expansion.

Alternatively, the same result may be achieved by applying 4 receive antennas in

combination with a 4-fold bandwidth expansion.
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1.3.2 Optimization Criteria

This dissertation considers a combination of SSMA and antenna diversity as multiple

access scheme. Both methods have a very similar characteristic as the transmitted

signals from different users do not remain orthogonal. In contrast, they overlap and

interfere with each other. Hence, the received signals are a linear combination of all

transmitted signals. Still, the original data may be recovered, as discussed in the

previous section, provided that certain conditions are satisfied. For this purpose,

a detector is required at the receiver which uses the interference-distorted receiver

signals as input and provides, based on linear or nonlinear operations, estimates

of the original data. The detector used here has a defined structure with variable

coefficients which have to be optimized to obtain the best possible estimate. What

“best possible” exactly means is determined by the optimization criterion for the

detector.

The ultimate performance criterion of any communications system with discrete-

valued and discrete-time input signals is the error probability. This justifies its ap-

plication for detector optimization. However, its value is strongly diminished by the

fact that it leads to mathematically intractable optimization problems for some de-

tectors. This is, for example, the case for equalizers, which are used in the following

chapters as multiuser detectors. Thus, other criteria are required for the optimization

of equalizers, which are both mathematically convenient and also good indicators of

the system performance. Two of the most commonly used optimization rules that

meet both conditions are the zero-forcing (ZF) and the minimum mean-square error

(MMSE) criterion.

The ZF rule minimizes the noise variance in the detector output under the con-

straint that all interference be completely removed. The MMSE criterion, on the

other hand, minimizes the variance of the overall distortion consisting of residual

interference and noise. A theoretical advantage of the ZF equalizers is that the dis-

tortion in the detector output signal is Gaussian distributed (provided that the noise

at the receiver input is Gaussian distributed, too). Thus, the error probability of

these equalizers can be calculated with a very simple expression. This is not the case



1.3 Background 17

for MMSE detectors since their output signals include residual interference.

The mathematical complexity required for the detector optimization is approxi-

mately the same when using the MMSE or ZF rule. However, the performance is

significantly different in both cases. It is well known that the ZF rule may cause

a strong amplification of the noise signal in the detector output. As a result, op-

timizing the detector according to the MMSE criterion results generally in a better

system performance. In addition, the MMSE exhibits a strong correlation with the

error probability. In particular, decreasing the MMSE translates almost exclusively

into a reduction of the error rate. It will be shown in Chapter 4 that a certain upper

bound of the error probability is a strictly monotonically increasing function of the

MMSE. Moreover, the MMSE criterion lends itself to adaptive equalization, in which

the detector coefficients are constantly updated. The MMSE equalizer may also be

used for a blind reduction of unknown interference. On the other hand, adaptive

and blind equalizers are not as straightforwardly realized based on the ZF criterion.

Therefore, for all practical purposes, the MMSE rule should be preferred.

1.3.3 Receiver Structures for Spread Spectrum Multiuser

Systems

A common characteristic of the SSMA scheme and multiple receive antenna structures

is the overlapping of received signals from different users in both frequency and time

which causes interference among all signals. It is, therefore, crucial to apply a detector

at the receiver which is able to reconstruct the signal of interest.

An overview on multiuser detectors, for the special application in CDMA systems,

can be found in several tutorial publications [30, 79, 124]. Possible detector types in-

clude the matched filter detector, the optimum MLSE detector, multistage detectors,

successive and parallel interference cancelers, linear decorrelating (ZF) and MMSE

detectors, and multiuser decision-feedback equalizers (DFE).

The simplest detector for SSMA systems is the matched filter receiver. It con-

sists simply of a filter that is matched to the waveform of the transmitted signal

followed by a despreader (integrator) and a decision element (quantizer). The term
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waveform describes the pulse shape of a symbol measured at the receiver. It may

be obtained by a convolution of the impulse responses of all system parts that the

original data sequence passes before it arrives at the receiver. For a practical system,

the waveform is the convolution of the impulse responses of spreading filter (code

sequence), transmit filter, radio channel and receive filter [108]. The matched filter

effectively enhances the signal of interest and reduces all other signals. In fact, it

is the optimal detector for systems with only stationary noise and no interference

because it maximizes the signal-to-noise ratio (SNR) at the filter output. However,

the received signals of SSMA and multiple antenna systems include a large amount of

nonorthogonal interference. Since the cross correlations between the signal of interest

and all other signals are typically nonzero for asynchronous and frequency selective

channels, the output of the matched filter and despreader still contains components

of the interfering signals which lead to signal distortion. Note that the matched filter

detector is effectively a single user detector because it does not take into account any

information about the interferers and treats their signals like stationary noise. As a

result, the performance of the matched filter detector is significantly suboptimal.

Particularly sensitive is the matched filter receiver to the near-far effect. In this

case, the received power of an interfering signal is much higher than that of the signal

of interest. The remaining cochannel interference6 (CCI) after the matched filter is

proportional to the received power of the interfering signal. A strong near-far effect

may cause a low signal-to-interference ratio (SIR) which results in a high error proba-

bility, even when the cross correlations between the desired and the interfering signals

are small. One way to mitigate the near-far effect is to use power control, i.e. each

user adjusts its transmit power such that all signals are received at approximately the

same power level. A disadvantage of power control is additional system complexity.

The optimal detector7 for multiuser systems has been described by Verdú [122].

It consists of a bank of matched filters, where each filter is matched to one of the

6Cochannel interference (CCI) is the interference caused by other system users.
7The term optimal detector refers in this context to the detector that maximizes the joint posterior

distribution (maximum-likelihood sequence estimation). Note that this is different from the detector
that minimizes the marginal posterior distributions of each symbol (minimum probability of error
detection) [122].
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transmitted waveforms, followed by a MLSE8 or Viterbi algorithm [99]. It is shown

in another publication of Verdú, [123], that unlike the matched filter detector, the

optimal detector is near-far resistant. However, the complexity of the optimum detec-

tor may become very high. It increases exponentially by the product of the number

of users and the channel memory. This prevents a practical implementation of the

MLSE detector in many systems, especially when the number of users is on the order

of or larger than 10 and when the channels are frequency selective.

The poor performance of the conventional matched filter and the enormous com-

plexity of the optimum detector in many practical situations motivated many re-

searchers to look for suboptimal, high-performance detectors. The objective was to

find receivers that are near-far resistant, perform significantly better than the conven-

tional matched filter and have a complexity that might be implemented in systems

with many users and/or highly frequency selective channels. Indeed, an enormous

amount of suboptimal detectors has been described in the literature. Most of them

may be assigned to one of three main classes:

• multistage detectors,

• interference cancelers, and

• equalizers.

The general structure of multistage detectors, [120, 121], consists of several identi-

cal blocks. In the first stage, decisions are made on the symbols of all users based on

the received signals only. Possible choices for the first stage are, for example, the con-

ventional matched filter detectors, ZF- or MMSE- type receivers. The second stage

is very similar to the first except that it uses the preliminary decisions from the first

stage in conjunction with the received signals in order to make decisions of improved

quality. The following stages are identical to the second. In particular, the k-th stage

uses preliminary decisions made in the previous stage k − 1 and the received signals.

Note that multistage detectors are nonlinear since they use hard-decisions in the es-

timation process. Obviously, the detection delay as well as the receiver complexity

8MLSE is the abbreviation for maximum likelihood sequence estimation.
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increases with every additional stage. It is therefore desirable to limit the detector

to only a few stages. This is justified by results that show diminishing returns for

additional stages.

Interference cancelers (IC) use available soft- or hard-decisions of previous symbols

in order to cancel intersymbol and cochannel interference in the received signals.

If soft-decisions, obtained from a linear transformation, are used, the IC will be

considered a linear detector. On the other hand, the IC is nonlinear when hard-

decisions from the output of the quantizer are employed.

Successive IC’s, [50], perform the decisions on a user-by-user basis. The individual

signals are ordered according to their received powers. At first, the (soft or hard)

decisions for the strongest user are made conventionally using a matched filter with or

without an additional linear transformation. The decisions are appropriately weighted

in order to remodulate the interference terms that this user caused in all other signals.

These terms are then subtracted from the weaker signals. The same procedure is

repeated for the second strongest signal and so on. The successive IC processes the

different signals successively, hence its name.

Conversely, parallel interference cancelers subtract simultaneously from all signals

the interference caused by all other signals. For this, only the decisions of previous

(past) symbols may be used.

The hard decisions of weaker users are less reliable. Hence, they may deteriorate

instead of enhancing the signal of stronger users when they are used for interference

cancellation. This inspired the IC with partial cancellation [24] which does not remove

the interference completely. Instead, the decisions are weighted according to their

quality with a weight factor between 0 (completely unreliable) to 1 (very reliable)

before they are remodulated and removed from the received signals.

It has been found, [90], that successive interference cancelers perform better when

the received signal powers are significantly different while parallel IC’s yield better

results when the received signal energies are similar.

The combination of successive interference cancelers and multistage detectors re-

sults in the multistage successive interference cancellation (MSIC) receiver [82, 56].

Provided that the channel estimate is sufficiently accurate, this receiver may yield
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performance improvements. The combined structure, however, increases the receiver

complexity, hardware requirements (memory) and the overall delay.

Equalizers used for multiuser signal detection have to be generalized to multiple-

input multiple-output (MIMO) structures [55, 27] in order to be able to reduce or

cancel cochannel interference and to detect several signals simultaneously. The equal-

izer structure contains coefficients (tap weights). Equations and methods to calculate

the coefficients are derived mathematically based on an optimization criterion. In

contrast, the coefficients of the previously described structures, multistage detectors

and interference cancelers, are directly obtained from the channel information accord-

ing to intuitive reasoning (cancel interference) rather than by optimization. MIMO

equalizers exist as linear or nonlinear (decision-feedback) structures. They are the

main subject of this dissertation. A detailed literature discussion is included in the

following section.

1.4 Literature Survey

1.4.1 Calculation of the Error Probability

It is important in the analysis and design of digital communication systems to de-

termine the system performance. The most intuitive and important performance

criterion is the probability of error. A nonzero error probability is, due to system

imperfections, caused by a distortion component in the receiver output signal. The

probability distribution of the distortion signal is not Gaussian for most receivers, in-

cluding the MMSE equalizer. Even for zero-forcing equalizers with an ideally Gaus-

sian distributed noise component, system imperfections such as erroneous channel

estimation, finite-length filters or a non-ideal sampling time may cause an interfer-

ence component in the output signal, which is not Gaussian. In addition, a Gaussian

approximation for the interference has been shown in many cases to lead to signif-

icantly inaccurate results for the error probability [21, 94]. Thus, it is desirable to

describe the statistical properties of the interference accurately.
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Problem Statement Consider a communication system with a linear time-invariant

channel. For the sake of clarity, the input signal is assumed to be a sequence of binary

symbols. Stationary noise is added at the receiver front end. After sampling at the

symbol rate 1/T , the unquantized equivalent baseband signal at the output of the

receiver is

α̃(t0) = α0h(t0) +
∞∑

i=−∞
i�=0

αih(t0 − iT ) + ζ(t0) (1.4)

where t0 is the sampling instant, αi ∈ {−1; 1} is the transmitted sequence of binary

symbols, h(t) is the overall channel impulse response between the transmitter and

the receiver and ζ(t) is the additive stationary noise signal with variance Eζ . Note

that the first term in Equation (1.4) is the signal component and the second term is

intersymbol interference (ISI). For simplicity, let us define α̃0 � α̃(t0), hi � h(t0− iT )
and ζ0 � ζ(t0). In addition, consider the ISI random variable (RV)

Z �
∞∑

i=−∞
i�=0

αihi (1.5)

and the overall signal distortion RV

X � Z + ζ0 (1.6)

which consists of ISI and noise.

Based on Equation (1.4), the decision variable can be expressed as

α̃0 = α0h0 + Z + ζ0 = α0h0 +X. (1.7)

Note that the error probability of the system can be calculated by considering only the

decision variable α̃0 � α̃(t0) obtained at time t = t0 because the system is assumed

to be stationary. Consequently, the statistics of all other receiver samples taken at

previous or subsequent times are identical.

Assuming that the symbols 1 and −1 occur with equal probability, the optimal
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decision threshold is the midpoint 0 between the binary symbols.

Considering the symbol α0 = −1 has been sent, the first class of expressions for

the error probability is obtained with Equation (1.7) by [72, 134]

Pe = Prob{α̃0 > 0}

= Prob{ζ0 > h0 − Z} (1.8)

=

∫ ∞

−∞
q

(
h0 − z√

Eζ

)
PZ(z) dz (1.9)

=

∫ ∞

−∞
Q

(
h0 − z√

Eζ

)
pZ(z) dz (1.10)

= EZ

[
Q

(
h0 − z√

Eζ

)]
(1.11)

where q(z/
√

Eζ) and pZ(z) are the probability density functions (pdf) of the noise

RV ζ0 and the ISI RV Z, respectively. The corresponding complementary distribution

function (cdf) of the noise is Q(z/
√

Eζ) =
∫∞
z/
√

Eζ
q(u) du, while the cdf of the ISI RV

Z is PZ(z) =
∫∞
z
pZ(u) du. Note that in the case of Gaussian noise, the noise pdf is

q(u) = 1/
√
2π exp{−u2/2}. EZ [. . . ] is the expectation operator, where the subscript

‘Z’ indicates that the expectation is taken over the RV Z.

In order to obtain the second class of expressions for the probability of error, let

us assume for simplicity that α0 = 1 and substitute again Equation (1.7):

Pe = Prob{α̃0 < 0}

= Prob{X < −h0}

=

∫ −h0

−∞
pX(x) dx (1.12)

where pX(x) is the pdf of the overall distortion RV X. Define the characteristic

function of X by ψX(s) � EX [e
−sx] =

∫∞
−∞ e

−sxpX(x) dx. Since X is the sum of

the independent RV’s Z and ζ0, its characteristic function is the product of the

characteristic functions of Z (ψZ(s)) and ζ0 (ψζ0(s)) [99]: ψX(s) = ψZ(s)ψζ0(s).

The pdf of X can then be obtained through an inverse Laplace transformation by
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the contour integral 1/(2πj)
∫
C
ψX(s)e

sx ds. Substituting the last expression into

Equation (1.12), exchanging both integrations and noting that
∫ −h0

−∞ esx dx = s−1e−h0s

yields the probability of error expressed by an inverse Laplace transform [47]

Pe =
1

2πj

∫
C

ψZ(s)ψζ0(s)
1

s
e−h0s ds. (1.13)

If the noise is Gaussian distributed, ψζ0(s) will be given by a simple expression.

In addition, an expression for ψZ(s) may also be obtained easily provided that the

interfering symbols are statistically independent. Nevertheless, a closed-form solution

of the equations (1.9), (1.10), (1.11) or (1.13) has not been found and does most

probably not exist. The more accurate and efficient methods used to approximate

or bound the error probability start with one of these expressions and perform an

approximation in order to achieve a mathematically tractable formulation.

Basic Approaches The most straightforward approach to calculate the error prob-

ability is the truncated pulse train approximation [66]. While small interference pulses

are neglected, all possible combinations of the dominant interference samples are eval-

uated in order to calculate the probability density of the interference. In particular,

assume that the ISI is caused by M neighboring symbols. In this case, the RV Z

takes on, with equal probability, 2M discrete values, one for each combination of the

binary, interfering symbols. Let us denote these possible values of Z by Zm, where

m = 1, 2, . . . , 2M . The error probability can then be calculated from Equation (1.8)

by averaging over all values Zm

Pe = Prob{ζ0 > h0 − Z}

=
1

2M

2M∑
m=1

Prob{ζ0 > h0 − Zm}

=
1

2M

2M∑
m=1

Q

(
h0 − Zm√

Eζ

)
. (1.14)

If the noise is Gaussian distributed, Q(x) will be the well-known Q-function and the

above expression can readily be solved. However, its evaluation is only economical
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if M is very small. It becomes inefficient for moderate to large M as the required

amount of operations grows exponentially with the number of interfering symbols.

Very often, not all but only the M largest interferers are included in the calculation

in order to reduce the computational effort (truncated pulse train). For most cases

of practical interest, the result can be shown to be a lower bound of the true error

probability [52].

The worst case bound [66] is a more efficient method. It always assumes the largest

possible amount of interference, i.e. Zmax = max{Zm}. This leads to the very simple

expression

Pe < Q

(
h0 − Zmax√

Eζ

)
. (1.15)

However, this upper bound is in most cases rather loose.

Chernoff Bounds Define the complementary step function S(x) � 1, ∀x < 0;

S(x) � 0, ∀x ≥ 0. With this, the probability of error in Equation (1.12) can equiva-

lently be expressed as

Pe =

∫ ∞

−∞
S(x+ h0)pX (x) dx

= EX [S(X + h0)] (1.16)

where EX [. . . ] denotes the statistical expectation taken over the RV X. Since the

step function can be upper bounded by the negative exponential e−λx ≥ S(x), ∀x ∈
R, λ > 0, the following inequality for the error probability holds

Pe < e
−λh0EX

[
e−λX

]
. (1.17)

The second term on the right hand side is the exponential moment of X, which can

be expressed in closed form because X consists of a sum of independent RV’s. λ is

an arbitrary positive real number, that is usually optimized to determine the tightest
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upper bound. The above bounding technique is called the Chernoff bound.

The first application of the Chernoff bound for the calculation of the error prob-

ability can be found in Saltzberg’s publication [103]. Instead of using the exact ex-

pression for the exponential moment of the ISI RV Z, he introduced two exponential

functions which are always larger than EZ [e
−λZ ] in order to simplify the mathematical

formulation further. In his most general result for the error probability, both approx-

imations are used. The interference samples hi have to be assigned to either of two

sets which correspond to the two exponential approximations. The assignment of the

hi as well as the determination of λ is done such that the tightest bound is achieved.

Hence, in general all hi have to be known, the noise is restricted to be Gaussian and

the data symbols αi have to be statistically independent. However, an important

special case is obtained by assigning all hi to one set. Although suboptimal, this

leads to a very simple bound, often referred to as the Saltzberg bound, which requires

knowledge only about the variance of the combined distortion consisting of ISI and

noise. Foschini et al. [34] applied this bound to SISO MMSE equalizers, which leads

to an upper bound on the error probability that depends only on the value of the

MMSE.

Saltzberg’s approach has been extended and refined by Lugannani [67]. The re-

sulting upper bound never exceeds the worst case bound. However, the bound exceeds

the true error probability, depending on the channel impulse response, by at least two

to more than ten times.

Worst-Case Distribution Bounds Glave [41] determined the worst-case distri-

bution of the ISI RV Z that maximizes the error probability. This resulted in an

upper bound on Pe, which is valid for both correlated and uncorrelated input data αi

and requires an “open eye” (i.e. the peak distortion Zmax is smaller than the distance

between the decision threshold and h0). The noise needs to be Gaussian and the only

quantities required for the calculation of the very simple expression are the peak dis-

tortion Zmax, the signal sample h0, the variance of the Gaussian noise E[ζ20 ] and the

variance of the ISI EZ [Z
2]. Results suggest that Glave’s approximation is somewhat

tighter than Lugannani’s Chernoff bound. Matthews [71] extended Glave’s method
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and derived both upper and lower bounds for different cases.

Other Simple Bounds McLane [73] presented two simple lower bounds on the

error probability which hold for an open eye and in some cases when the source

symbols αi are correlated. The calculation of the bounds requires the value of the

peak distortion and the second moment of the ISI RV Z. For one bound, also the

fourth moment of Z is needed. The bounds are given by a simple expression which

is independent of the number of interfering symbols. They are reasonably accurate

considering their simplicity.

Milewski [76] derived upper and lower bounds for systems with an open eye,

whose computation requires the knowledge of all interference samples hi. His results

showed that they were tighter than the Chernoff and worst-case distribution bounds.

The number of necessary operations increases linearly with the number of interfering

symbols (M).

A lower and an approximate upper bound, which are fairly tight, are described

by Jenq et al. [53]. The approximation to the upper bound is twice the lower bound

and their expression is very simple. The noise is not restricted to be Gaussian, but

its cdf is required. One needs to know all interference samples and the number of

operations grows linearly with M . The published results show that the bounds are

significantly tighter than the Chernoff bounds of Saltzberg and Lugannani.

Another class of upper and lower bounds, which are based on bounds on the

distribution function of the sum of two random variables, is presented by Prabhu [95].

They can be used to calculate the error probability with arbitrarily small error. Their

application is, however, more complex than the above methods.

Approximations and Bounds on the Error Integral This class of methods

starts with either of the two equivalent expressions (1.10) or (1.11) for the error prob-

ability and approximates a certain part of it in order to solve the problem analytically

or numerically. Since the expectation over the noise cdf with respect to the ISI RV Z,

EZ [Q([h0− z]/E1/2
ζ )], normally cannot be solved, one usually tries to manipulate this

expression such that it reduces to the moments EZ [Z
n] (n = 2, 4, 6, . . . ) or the ex-
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ponential moment EZ [e
−λZ]. These moments can be calculated. The computational

complexity for the following methods generally increases linearly with the number of

interfering symbols. Nevertheless, the exact number of operations required as well as

the complexity of applying the different algorithms varies significantly.

One of the first approaches to yield high precision results for the error probability

has been proposed by Ho and Yeh [48]. Considering expression (1.10), they developed

the Gaussian noise cdf Q([h0−z]/E1/2
ζ ) into a Taylor series around z = 0 and obtained

the error probability in terms of the even ISI moments EZ [Z
n]. Theoretically, the

accuracy of the result can be made arbitrarily small by increasing the number of series

terms. In practice, however, the truncated series expansion for the error probability

tends to oscillate occasionally when additional higher order terms are included. This

is in particular the case when the signal-to-noise ratio (SNR) is high and/or when

the peak distortion Zmax becomes large. Later, the above method, valid for binary

modulation, was extended to multilevel pulse amplitude modulation (PAM) by the

same authors [49].

The main problem of the series expansion used by Ho and Yeh is that the Tay-

lor approximation is locally optimal around the point of development and becomes

increasingly inaccurate for growing distances. Similarly, Murphy [84] proposed a poly-

nomial approximation of Q([h0 − z]/E1/2
ζ ), but he used a Legendre polynomial which

minimizes the L2-norm. Hence, this approximation is globally optimal within the

region of support (ROS) of the RV Z, i.e. it minimizes the error variance between

the approximation and the original function. Consequently, this method does not

oscillate and converges fast towards the exact value for additional polynomial terms.

In the same paper, he also introduced the approximation of Q([h0 − z]/E1/2
ζ ) by a se-

ries of negative exponentials whose parameters are determined according to the same

strategy of global approximation.

In a similar approach, Nakhla [85, 86] approximated the noise cdf Q([h0−z]/E1/2
ζ )

by a polynomial which is globally optimal in a minimax sense (Chebyshev approxi-

mation) within the ROS of Z. Again, an evaluation of the ISI moments is required.

The method does not oscillate with additional polynomial terms, converges fast and

promises very accurate results.
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The previous methods are all based on a polynomial approximation of the noise

cdf with respect to different optimization criteria. Consequently, the moments of

the ISI RV Z are required. In comparison, a calculation of the exponential moment

EZ [e
−λZ ] may be done more efficiently. This suggests to approximate Q([h0−z]/E1/2

ζ )

by a linear combination of exponentials.

One approach is to use a Fourier series expansion for the noise cdf, which minimizes

the variance of the approximation error within the ROS of Z and is thus globally

optimal. This idea was introduced by Levy [65] and extended by Beaulieu [11].

The latter also derived several bounds for the approximation errors. Obtained are

approximations for the error probability rather than bounds. Later, the method was

generalized by Reuter [102] in order to apply it to arbitrary modulation formats.

Amadesi [7] used only one exponential which is a “good” approximation of the

noise cdf within the ROS of Z. The parameters of the approximation are given

by an empirical expression rather then being optimized in a strict sense. Only one

exponential moment has to be determined and the number of required operations is

consequently significantly smaller than in the Fourier series approach. However, the

accuracy of the approximation for the error probability is lower.

In the same manner, McGee [72] applied only one exponential in order to bound

the noise cdf. For this purpose, he developed the natural logarithm of the noise cdf

into a Taylor series and truncated it after the linear term. Hence, the approximation

is locally optimal around the point of development, which may be chosen arbitrarily.

In practice, the choice of this point should be optimized to obtain the tightest upper

bound. However, McGee outlined the method only briefly and suggested to use a

crude approximation of Q(x) in order to find a good point of development.

Yao and Tobin [134] obtained upper and lower bounds for the error probability

by replacing the noise cdf with functions whose expectations over the ISI RV Z can

be calculated. Their approach was to apply an isomorphism theorem from the theory

of moment spaces. Functions used were the absolute value of Z, Z2, Z4, and an

exponential in Z. It was found that the absolute value leads to the same lower bound

as that derived by McLane [73] and that Z2 results in the worst-case distribution

bounds of Glave [41] and Matthews [71]. In addition to an analytical approach, the
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bounds can be obtained with a graphical method. Yao [132] used the same method

for calculating error probabilities for asynchronous SSMA/CDMA systems with a

matched filter receiver. In this publication, he also applied a linear combination

of (real) exponentials as approximation to the noise cdf. The parameters of the

exponentials were chosen such that the approximation is identical to the noise cdf at

several points within the ROS of Z.

Instead of directly evaluating the expectation over the noise cdf (1.11), Yao and

Biglieri applied the principal representation of Krein in the theory of approximation

in order to upper or lower bound the error probability [133]. The tightest bounds

have been obtained with this method. However, their computation is extremely com-

plicated [47].

Benedetto et al. [15] found an approximation for the whole integral (1.10) by ex-

pressing it as a linear combination of values of the noise cdf. The parameters of the

linear combination are determined by the method of Gauss quadrature rules, which

requires the moments EZ [Z
n]. The noise is not restricted to be Gaussian, very accu-

rate results are obtained and the method converges very fast, but the computations

are long and intricate [47].

The methods described previously all use a similar approach in that they ap-

proximate either the noise cdf or the whole error integral. For that, the moments or

exponential moments of the ISI RV Z have to be calculated. In contrast, Metzger [75]

described a numerical algorithm in order to approximate the pdf of the ISI RV, pZ(z),

by a staircase function. With this knowledge, an approximation of the error proba-

bility can be computed by numerically evaluating the integral (1.10). The accuracy

as well as the number of required operations depends on the resolution chosen for the

representation of the ISI pdf.

Approximations and Bounds on the Inverse Laplace Integral Shimbo and

Celebiler [112] developed a very similar method to that of Ho and Yeh [48] at about

the same time. The difference is that they start with the representation of the error

probability as an inverse Fourier transform, which is practically identical to expres-

sion (1.13). After that, they developed the characteristic function of the ISI RV Z,
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ψZ(s), into a Taylor series around the origin s = 0. The remaining integral expression

can then be solved by calculating the even ISI moments. Like Ho and Yeh’s approach,

their method can be made arbitrarily accurate in theory by including additional se-

ries terms. In practice, however, the truncated series tends to oscillate for a growing

number of terms. The problem is again the use of a locally optimal approximation

around a nonoptimal point of development (s = 0).

Upper and lower bounds have been derived by Prabhu [96]. The upper bound was

obtained by realizing that the absolute value of the integral (1.13), which is identical

to the error probability, is smaller than or equal to the integral over the absolute

value of its integrand. A parameter search and the determination of the exponential

moment of the ISI RV is required for the calculation of the result.

Starting with Equation (1.13), Yue [135] expanded the natural logarithm of the

product ψZ(s)ψζ0(s)e
−h0s into a Taylor series around the saddle point of the integrand.

He truncated the series after the linear term and solved the remaining integral. The

resulting approximation for the probability of error is very accurate and requires

a relatively low number of operations. In addition, his expression is easy to use.

The main reason for the accuracy of the method is that the locally optimal Taylor

expansion is developed around a well chosen rather than an arbitrary point. Although

not shown analytically, the result is almost exclusively smaller than the true error

probability. In addition, less accurate upper and lower bounds were derived.

Helstrom [47] proposed to solve the inverse Laplace integral (1.13) by numerical

quadrature. He applied the trapezoidal rule and evaluated the integrand at equally

spaced points. The truncation of the integration interval as well as the integration step

size are chosen such that a desired accuracy is achieved. A bound for the truncation

error in the case of Gaussian noise is given. The method is applicable to arbitrary

noise as long as the characteristic function of the noise pdf is known. A very useful

feature is a term which upper bounds the effects of neglected ISI symbols based on

their energy. Generally, the method can be made arbitrarily accurate. However,

the number of necessary operations usually exceeds that of Yue’s method for the

same accuracy because Helstrom’s approach requires the calculation of one complex

exponential moment for each integration point.
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1.4.2 MIMO Equalizers for Spread Spectrum Systems

This section reviews findings and results in the area of multiple-input multiple-output

(MIMO) equalizers, a structure which is able to detect several signals simultaneously.

In general, the MIMO structure is a generalization of the well-known single-input

single-output (SISO) equalizer, which is mainly used in order to reduce intersymbol

interference (ISI) caused by time-dispersive channels.

MIMO Linear Equalizers The earliest MIMO equalizer structure proposed as a

detector for SSMA/CDMA multiuser systems is the decorrelating detector [68, 110]

for synchronous signal reception. It is identical to the MIMO linear equalizer (LE)

optimized according to the zero-forcing (ZF) criterion. The first part of the decor-

relating detector is identical to the matched filter detector and consists of a bank of

filters matched to each of the received signal waveforms. The structure detects simul-

taneously a block of data symbols and is similar for synchronous, flat fading [68] and

asynchronous/frequency selective fading channels [60]. In the case of synchronous

data reception and flat fading channels, the N outputs9 of the matched filters are

multiplied by a N ×N matrix which is the inverse of the autocorrelation matrix for

all received signal waveforms. If the data is received asynchronously or if the channels

are strongly frequency selective, the autocorrelation matrix is of dimensionNL, where

L denotes the total number of symbols per transmitted data block. The realization

of the block decorrelator [60, 131], which requires the inversion of the autocorrelation

matrix, may thus be computationally intensive. Alternatively, a continuous signal

detector following the matched filters may be employed [29]. The N matched filter

outputs are fed into a matrix filter with N inputs and N outputs. The matrix filter

can be interpreted as a matrix in which each element is a linear discrete-time filter

rather than a simple scalar value.

The decorrelating detector eliminates effectively all remaining interference (ISI

and CCI) components in the output signals of the matched filters. In other words, it

cancels interference resulting from correlated waveforms of different users. Hence the

9The variable N denotes the number of users in the system.
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name decorrelating detector.

Lupas et al. [68] have shown that the decorrelating detector exhibits the same

degree of near-far resistance as the optimum MLSE detector. For synchronously re-

ceived data, its complexity per detected symbol is shown to increase only linearly

with the number of users. This characteristic makes the decorrelating detector at-

tractive for practical implementation. An alternative structure of the decorrelating

receiver for synchronous, frequency selective (multipath fading) channels is described

by Zvonar [137]. This detector can be extended to a receiver using multiple receive

antennas in asynchronous, frequency selective channels [138].

It is important to note that the price for completely cancelled (zero-forced) in-

terference is amplified noise in all output signals. For this reason, the decorrelating

detector performs generally worse than the MIMO linear equalizer (LE) optimized ac-

cording to the minimum mean-square error (MMSE) criterion. MMSE MIMO equal-

izers minimize the variance of the combined distortion consisting of both interference

and noise. The MMSE MIMO LE structure has been described and investigated by

several authors [16, 27, 51, 105, 131].

The optimal single-input single-output (SISO) MMSE linear receiver for nonlinear

channels has been derived by Biglieri et al. [16]. However, it is possible to apply their

results to multiuser systems with linear channels. The equalizer is optimal even if the

the Gaussian noise signal is not white.

The system described by Salz [105] consists of a continuous-time channel with

N inputs (users) and N outputs (receive antennas). An expression for the MMSE

averaged over all N signals is derived. Using a time-domain analysis, it is shown that

the optimal continuous-time MMSE receiver consists of the same bank of matched

filters that is part of the decorrelating detector followed by symbol rate samplers and

a discrete-time N × N matrix filter. The structures of the linear decorrelating and

MMSE LE detectors are therefore the same.

The most general case has been considered by Honig et al. [51]. The solution

for the MMSE MIMO LE is applicable for correlated input signals, colored Gaussian

noise, an arbitrary linear continuous-time N × N channel and N receiver inputs.

Mean-square error (MSE) expressions for the MMSE and zero-forcing (decorrelating)
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LE were derived. Almost identical results have been obtained independently by Duel-

Hallen [27] for an N × N discrete-time channel model, which implicitly assumes a

waveform matched filter front-end structure of the detector.

A surprisingly early work about an adaptive version of the MMSE MIMO LE has

been described by Harrison in his Masters thesis [44]. An extension to the MMSE

MIMO DFE with feedback of the signal of interest is also outlined. The equalizer

structure was based on an implementation initially derived by Kaye and George [57],

which seems to be the first description of the optimal MMSE MIMO LE. Interestingly,

his work already considered potentially a multiuser system, multiple receiver inputs

(antenna diversity) and he showed that the optimal structure may be realized by a

bank of filters matched to each signal waveform followed by symbol-rate samplers and

tapped delay-lines.

Madhow et al. [70] analyze another adaptive implementation of the MMSE LE.

This structure does not require a priori knowledge of the channel and can be used in a

time-varying environment. However, in the case of strong cochannel interference, the

convergence performance and speed of the adaptive algorithm are a major concern.

Miller [77] performed a time-domain analysis of an adaptive MMSE LE consisting

of a chip matched filter followed by an adaptive, chip-spaced equalizer structure.

The adaption may be performed with a standard LMS or RLS algorithm. Only a

training sequence for the user of interest is required in order to adapt the tap weights.

The detector is immune to the near-far problem and shows good performance in the

presence of both narrowband and multipath interference. This structure can easily

be extended to a receiver with multiple antenna elements [63], which improves the

performance and increases the capacity (larger number of possible users). However,

the dimension of the matrix to be inverted, either directly or by using an adaptive

algorithm, increases linearly with each additional equalizer coefficient. The number

of coefficients may easily become large for this structure and the number of required

operations grows rapidly.

While the previous MMSE equalizers are continuous signal structures (matrix

filters), Xie et al. describe a block implementation of the MIMO MMSE LE for an

additive white Gaussian noise (AWGN) channel and asynchronously received CDMA
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signals [131]. Instead of processing the signals symbol by symbol, all symbols within

one block are detected simultaneously. The detector is realized in the time domain

by inverting the modified autocorrelation matrix. It is practically identical to the

MMSE block linear equalizer used for frequency-selective channels [61]. Note that

the dimension of the matrix to be inverted is equal to the product of the number of

users and the block length of the transmitted symbols, which may be a very large

number. Some reduction in the number of operations is achieved by using a LU

decomposition.

An implementation of the block decorrelator and MMSE block LE which avoids a

direct inversion or decomposition is based on the polynomial expansion of the inverse

autocorrelation matrix [80, 81]. This approach may reduce the number of required

operations significantly.

MIMO Decision-Feedback Equalizers An improvement to the linear equalizer

can be achieved by feeding previous decisions back into a linear filter in order to

reduce interference in the present symbol. The resulting decision-feedback equalizer

(DFE) is nonlinear since nonlinear decisions are used in the detection process. An-

alytical treatments and performance evaluations of the single user SISO DFE have

been published already more than three decades ago [6, 9, 39, 58, 98, 104]. Later, this

structure has been extended to receivers with multiple inputs and outputs. There ex-

ists now a wide variety of different implementations for the multiuser DFE, which all

share the concept of feeding back symbols from the outputs of the nonlinear decision

elements.

The continuous signal DFE consists of a linear feedforward matrix filter with

Udiv inputs and N outputs, where Udiv is the number of receiver inputs (diversity

paths) and N is the number of users or waveforms. Subtracted from each output is a

noise estimate that is obtained from a linear transformation of previous (nonlinear)

decisions. This linear transformation is in general a linear, causal N × N feedback

matrix filter. In the case of flat fading channels and synchronous data reception, the

matrix filters reduce to conventional matrices with scalar values as elements; in this

case, half of the elements of the feedback matrix including the main diagonal elements
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are constrained to zero in order to satisfy the causality requirement.

The block DFE consists of two matrices, one in the forward and the other in the

feedback section, which are obtained from a Cholesky factorization of the (modified)

autocorrelation matrix. In the synchronous, flat fading channel case, the matrices are

of size N × N . However, their dimension will increase to10 NL × NL if the signal

reception is asynchronous or if the channels are time-dispersive.

It has been shown in the single user case that the DFE achieves, depending on the

channel, more or less significant performance gains over the linear receivers provided

that the error rate in the output signals is sufficiently low [104]. The difference among

various multiuser DFE structures and descriptions is a result of

• block structure or continuous signal structure,

• different optimization criteria (MMSE, ZF),

• different analysis domains (time, frequency),

• continuous- or discrete-time implementation of the forward filter,

• different channel characteristics (flat, frequency selective fading),

• synchronous or asynchronous data reception,

• the feedback of all possible or only some output signals,

• adaptive or nonadaptive implementation, and

• different feedback structures (noise-predictive or conventional).

Belfiore et al. [14] described an alternative implementation of the single user DFE

which feeds back the noise component in the output signal of the forward filter rather

than the decisions. Since the feedback filter estimates the noise component in the

present symbol before quantization from the known noise components of past symbols,

it is in fact a linear prediction filter. Hence, this structure of the DFE has been named

noise-predictive (NP) DFE. The output of the predictor is added to the output of

10L is the number of symbols per data block and N is the number of users in the system.
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the forward filter and the error signal at the input of the decision element is equal

to the prediction error provided that all previous decisions are correct. It can easily

be shown that the conventional DFE and the NP-DFE are equivalent and that their

performance is identical. In fact, the feedback filters of both structures are the same.

Only the forward filters are different. Interestingly, the forward filters of the NP-DFE

and the LE (with respect to either MMSE or ZF criterion) are identical. These results

also hold for the corresponding MIMO structures.

Let us now discuss some specific MIMO DFE structures. The decorrelating (ZF)

decision-feedback equalizer [28] minimizes the MSE under the constraint of zero in-

terference in the input signals to the decision elements. A CDMA system, flat fading

channels and synchronous signal reception have been considered. The DFE structure

has one input and consists of a bank of code matched filters followed by a N × N

upper triangular matrix, which has been obtained from Cholesky factorization of

the code autocorrelation matrix. The output signal of the strongest user is directly

connected to a decision element. The hard decision is appropriately weighted and

subtracted from the remaining outputs of the forward matrix. Then, a decision on

the second strongest user signal is made, which is also weighted and fed back to the

remaining weaker signals. This procedure is continued for all other signals until the

complete cochannel interference in the weakest user’s signal is cancelled. Provided

that all previous decisions are correct, the decorrelating DFE eliminates completely

the cochannel interference in all input signals to the decision element. It can be shown

that the performance of the LE and DFE decorrelating detectors are identical for the

strongest user. For the DFE, however, the error probability of the weakest user is

equal to the single user case, i.e. the hypothetical situation when only the weakest

user’s signal is transmitted over the channel. Thus, for all but the strongest user, the

decorrelating DFE performs better than the decorrelating LE.

Decorrelating (zero-forcing) DFE structures suited for asynchronous and/or fre-

quency-selective channels have been described by Duel-Hallen [29] (continuous signal

version with matrix filters) and Klein et al. [61] (block version with scalar matrices).

The MMSE DFE structure described by Petersen et al. [92] consists of a single-

input single-output continuous-time forward filter whose output is sampled at the
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symbol rate. Only the signal of interest is detected and fed back to an infinite-length

discrete-time filter. The results are valid for asynchronous as well as synchronous

data reception over flat or frequency selective fading channels. It is shown that the

optimal structure of the forward filter may be realized with the well known bank of

matched filters11 followed by symbol-rate samplers and a N × 1 vector filter whose

components are anti-causal, infinite-length, discrete-time filters. An expression for

the MMSE performance of this equalizer is derived. In addition, it is shown for a

generalized ZF LE (decorrelating detector) that the number of supportable users12

has to be smaller than or equal to the signal bandwidth in terms of the data rate. The

same author [91] has performed a frequency-domain analysis of this DFE structure.

He derived expressions for the optimal filters and the MMSE. In addition, it is shown

that the performance will be significantly better if the cyclostationary nature of the

interference is taken into account rather than modeling it by equal energy stationary

noise.

The same DFE structure as before has been used by Abdulrahman et al. [2] with

the exception that the continuous-time forward filter [92] is replaced by a sampler

followed by a fractionally-spaced discrete-time filter. The output of the forward filter

is downsampled to the symbol rate, which is equivalent to the symbol-rate samplers

in Petersen’s structure [92]. If aliasing is avoided by sampling the input signal at

a rate of at least twice the signal bandwidth, both structures will have the same

performance. It has been found that cyclostationary interference can be effectively

suppressed and that the fractionally-spaced DFE (FS-DFE) is not sensitive to the

sampling phase. A suboptimum structure with a symbol-rate spaced forward filter was

also investigated. This structure shows sensitivity to the sampling phase and performs

significantly worse. The performance of the FS-DFE, depending on the number of

system users and forward filter taps, has been simulated by the same authors [3].

This investigation was performed for a CDMA system with processing gain 8 and

slow fading frequency selective channels. The issues of convergence time, birth/death

of interferers and decision-directed convergence for an adaptive implementation of

11The filters are matched to the waveform of the received signal.
12The users are interferers that operate at the same symbol rate as the user of interest.
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the FS-DFE are addressed in other publications of Abdulrahman et al. [1, 4]. The

results show that the parameters converge relatively slowly. The convergence time

varies between several hundred and several thousand symbols in a system with 4 to

6 interferers.

A generalization of the above DFE to a structure with multiple receive antenna

elements can be found in publications of Subramanian [114] and Legnain et al. [62].

Their results confirm that the performance and capacity of the system improved

significantly with additional antennas.

DFE detectors that feed back decisions from all signals have been described and

analyzed by Kavehrad et al. [55] and Duel-Hallen [27]. These fully connected MIMO

structures are suited for systems with frequency-selective channels and asynchronous

data reception. They consist of a linear forward matrix filter and a feedback block.

The feedback part is essentially a linear N ×N matrix filter whose inputs are the N

output signals of the decision elements for each user. The outputs of the feedback filter

are added to the output signals of the forward filter. The first detection approach [55]

can be described as completely parallel in time. All symbols transmitted at the time

n = n0 are detected simultaneously based on previously detected symbols transmitted

at n < n0 only. Thus, all symbols transmitted at the same time are detected with

the same amount of available information provided by the feedback filter.

The second detection approach [27] is slightly different. Rather than using only

previous symbols as feedback inputs, the output signals of the feedback matrix are

based on both previous and some present symbols. For that, the received signals

are ordered according to their strength or performance. The signal with the largest

received power is signal 1, the second strongest is signal 2, and so on. At time

n = n0, the decision is made on the symbol of user 1 first. Then follows the decision

on the symbol of user 2, until finally user N ’s symbol is detected. Note that, for

the detection of user i’s symbol (i = 2, 3, . . . , N), not only are all previous decisions

available but also the decisions of the present symbols from users 1 to i− 1. Despite

this time-sequential element, the described detector operates mainly parallel in time.

The optimal MMSE MIMO DFE for a N -input N -output discrete-time channel is

derived in the same paper [27]. A frequency-domain method is used which requires
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the spectral factorization of a matrix spectrum. The channel model implies that the

receiver front end consists of filters matched to the received signal waveforms (codes

plus channels).

The DFE with feedback from all users may also be applied to receivers with

multiple receive antennas [64]. The system capacity increases and the performance

improves with each additional antenna. However, the numerical complexity will

strongly increase with the number of antennas, especially if the equalizer coefficients

are determined according to the conventional time-domain approach [64, 46]. Another

method to calculate a fixed structure, realizable MIMO MMSE DFE is outlined by

Tidestav et al. [115].

Eleftheriou et al. [31] have described a MMSE MIMO DFE based on the noise-

predictive structure. The optimal forward and feedback matrix filters are determined

using a frequency-domain approach similar to that of Duel-Hallen [27]. The solution

is expressed in terms of a matrix filter obtained through spectral factorization. As

the detector described before [27], this equalizer detects the N signals predominantly

parallel in time. The predicted noise is calculated from all past and some present

decisions.

In contrast to the above DFE realizations, which are continuous signal structures,

Klein et al. [61] derived a block implementation of the DFE. Both ZF and MMSE block

DFE are described. Basically, these structures are an extension of the decorrelating

DFE for flat fading channels and synchronous signal reception to systems with time-

dispersive and/or asynchronous channels.

Optimal Detector Structures Let us review optimal structures for the class of

linear and decision-feedback equalizers. Using a time-domain approach, one obtains

the optimal equalizer usually directly in a “one-block” realization. In the frequency-

domain analysis, however, it is often advantageous to split the equalizer into different

blocks. To my knowledge, Kaye et al. [57] were the first to observe that the optimal

structure of a linear equalizer, using several inputs (antenna diversity) and arbitrary

signal bandwidth, may be obtained by a bank of filters matched to each of the received

signal waveforms followed by symbol rate samplers and a discrete-time matrix filter.
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If the additive noise signals at the receiver input are colored or correlated, a noise-

whitening matched matrix filter has to precede the bank of (waveform) matched

filters [117]. Interestingly, the front-end part of the MLSE detector consists as well of

the matched noise-whitening, waveformmatched filters and symbol rate samplers [99].

In fact, the discrete-time outputs of this combined front-end structure constitute a

set of sufficient statistics. Recently, it has been shown by Vandendorpe et al. [118]

that the same front-end structure is also a possible realization of the optimal MMSE

MIMO DFE.

Block Detectors Versus Continuous Signal Detectors This section shall be

concluded by a different method of categorizing equalizers. Firstly, it is important to

distinguish between detectors used in two different systems:

• synchronous signal reception and flat (frequency-nonselective) fading channels,

and

• asynchronous signal reception or frequency selective fading channels.

Equalizers for the first case of synchronous reception and flat fading channels

reduce to relatively simple structures because only N − 1 “same time” symbols of

cochannel users interfere with the symbol of the desired user. In fact, the task of

estimating all symbols transmitted at different times decouples into successively esti-

mating the N symbols of all users transmitted at time n, after that those transmitted

at time n+ 1 and so on. Each time instant is independent of symbols transmitted at

other times and can be treated separately. The problem becomes effectively one of

inverting or decomposing a N ×N matrix. Thus, the total number of required oper-

ations per symbol depends on the number of users, N . Among the above mentioned

equalizers, other approaches fall into this category [28, 68, 110].

On the other hand, if either the signals are received asynchronously or the channels

are time dispersive (frequency selective), each symbol to be detected not only depends

on those of other users but also on previously and subsequently transmitted data. In

this situation, the symbol detection cannot be decoupled anymore and the problem
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becomes more complex. Generally, two main types of detectors can be distinguished

for this situation:

• signal block detectors, and

• continuous signal detectors.

Note that in the special case of synchronous, flat fading channels, both the signal

block and the continuous signal detectors reduce to the N × N matrix equalizers

mentioned before.

Normally, it is assumed that the system uses a block transmission scheme. In this

case, a certain number of symbols, say L, is transmitted over the channel. A straight-

forward extension of the synchronous detectors to asynchronous or time-dispersive

systems lead to signal block detectors. Instead of estimating N symbols at each time

instant, all LN symbols transmitted in the whole data block are detected simulta-

neously. Block detectors [60, 61, 131] may realize the decorrelator, MMSE LE or

DFE exactly for the transmitted data block. Additionally, the effect of time-varying

channels can easily be incorporated in the problem formulation provided that the

channel impulse responses are known at all times. However, the correlation matrix

is now of size LN × LN , which may be large if there are many symbols per data

block. Although the correlation matrix is more or less sparse, its inversion or de-

composition may be numerically very complex. The total number of operations per

symbol depends in most cases on the matrix dimension LN . This inspired a search

for alternative methods avoiding a direct inversion or decomposition of the correlation

matrix and thus reducing the number of required operations [79, 80, 81]. Another

method of reducing the number of operations is to consider only a finite data window

of length M � L [54]. The resulting truncated detectors are suboptimal due to edge

effects, however, it has been demonstrated that moderate window sizes are sufficient

to obtain almost the same performance as the ideal block detectors even under severe

near-far conditions [54]. The complexity then reduces to inverting or decomposing a

matrix of size MN ×MN .

Continuous signal detectors are usually implemented as time-domain filters (tap-

ped delay-line structure), but they can also be described by linear frequency-domain
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transformations. Rather than realizing the ZF (MMSE) LE or DFE exactly, they

approximate these equalizers by truncating their time length (delay-line) for all prac-

tical purposes to a certain number of symbol periods, say M . Although theoretically

derived for continuous, infinite-length signals, continuous signal detectors may also

be used in block transmission systems which have many symbols per block (compared

to the channel memory). The parameters of these equalizers can be determined via

time- or frequency-domain analysis.

The time-domain approach [1, 4, 57, 63, 62, 64, 70, 77, 105, 114, 115] is better

suited to channels varying during the block duration. For example, the equalizer

coefficients may be adaptively updated. The complexity of calculating the optimal

equalizer coefficients is roughly on the order of (NM)3 operations per data block. In

addition, the detection process requires (MN) operations per symbol.

The equalizer coefficients may only be determined with a frequency-domain anal-

ysis [27, 29, 51, 91, 92] if the channels are at least quasi-stationary. In other words,

the channel impulse response must be constant for the whole block duration, but it

might change from one block to another. The main advantage of this approach is that

the number of operations can be significantly reduced. There are approximately only

N3M operations per block required for the calculation of the equalizer coefficients

and only on the order of N operations13 for the detection of each symbol.

Note that continuous-time detectors become attractive from the viewpoint of nu-

merical efficiency when the truncated equalizer lengthM is significantly smaller than

the block length L.

1.4.3 Delayed-Decision-Feedback Equalization

Consider the reverse link of a multiuser system with frequency selective channels or

asynchronously received signals at the base station. Spatially distributed portables

and fading channel conditions may cause more or less severe near-far conditions. At

the base station, a continuous signal MIMO DFE is employed in order to detect the

SSMA multiplexed signals of all intracellular users. As discussed before, the common

13It is considered that all calculations are performed in the frequency domain. The number of
operations required for the time/frequency signal transformation (FFT/IFFT) is not included.
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MIMO DFE structures operate mainly parallel in time [27, 55], i.e. only decisions of

all previous and some present symbols of all N users may be used in the purely causal

feedback filter14 in order to reduce interference.

Monsen [78] noticed that the parallel operation may be relaxed by “introducing

delay into the desired signal channel to allow time for formation” of fed back decisions

from cochannel users. This would make it possible to use decisions of subsequent

(future) symbols from other users for an improved reduction of cochannel interference

in the desired signal. The same idea was formulated by Duel-Hallen [29] who proposed

the partial feedback detector with delay. With this detector, some users may apply

decisions of future symbols from other users in the feedback process.

An adaptive version of the partial DFE with delay has been employed by Ful-

ghum et al. [35, 36] in a two user, narrowband system with twofold spatial (antenna)

diversity. It was found that the common, parallel feedback of only past and present

symbols will yield a better performance if the received powers from both signals are

similar. With an increasing difference between the received powers, the partial DFE

with delay will eventually perform better than the parallel DFE if a detection delay

is added to the weaker signal. This behavior can be explained as follows:

• In a system with a strong near-far effect, the decisions on the stronger user’s

symbols are significantly more reliable than the decisions from the weaker sig-

nals. Feeding back less reliable decisions with a larger error probability from

weaker users to cancel interference in the strong signals may actually cause a

performance degradation. No or less feedback of decisions from weaker signals

may be the better choice.

• If the received powers are significantly different, the weaker users will have a

much larger error probability. It is thus the weaker users who limit the overall

system performance. Improving the quality of the weaker users by using more

(past and future) decisions of stronger users thus results in a higher system

performance.

14For the definition of “purely causal” see publication [27].
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• The performance difference among strong and weak users may be large. Thus,

putting more effort into an improvement of the weaker signals while sacrificing

potential enhancement of stronger signals is a good strategy. Exactly this is

achieved by delaying the detection process of weaker users, since more informa-

tion (past and future decisions) is available in the feedback part for interference

reduction.

Schlagenhaufer et al. [107, 106] introduced a mathematical model of the MIMO

DFE with delay, called the delayed-decision-feedback equalizer (DDFE). The DDFE

has a variable number of delay elements at each output of the forward matrix filter,

just before the interference estimates provided by the feedback filter are canceled.

DDFE structures are found for both the conventional and the noise-predictive MIMO

DFE [106]. The DDFE is analyzed in the frequency-domain. Expressions for the in-

dividual MMSE’s as well as the optimal forward and feedback filters are derived [107].

1.5 Thesis Contributions

System Model (Chapter 2) An equivalent symbol-rate discrete-time model for

the reverse link of a spread spectrum multiuser system is derived. It is suited for

receivers with an arbitrary number of antennas. The system equations may be for-

mulated conveniently in vector form. The description unifies the concepts of spread

spectrum (frequency diversity) and input (antenna) diversity. It is shown that a sys-

tem with processing gain K and A receiver inputs provides effectively Udiv = AK

parallel diversity channels. The mathematical treatment shows that there is no con-

ceptual difference between frequency and antenna diversity. Both lead, in a similar

manner, to an increase in the number of diversity channels.

Calculation of Error Probabilities (Chapter 3) For systems using arbitrary

rectangular quadrature amplitude modulation (QAM) whose inphase and quadrature

signals are independent, expressions of the Saltzberg upper bound on the error proba-

bility have been derived. These expressions depend only on the signal-to-interference-
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and-noise ratio (SINR) at the input of the decision device and the number of modu-

lation levels.

A new class of bounds and approximations for the error probability is described.

It includes a first and a second order approximation which provide very accurate

results. The algorithms require the explicit knowledge of all interference symbols and

they are both efficient and easy to use. As a special case, an energy upper bound,

requiring information of the noise and interference variance only, is obtained.

Numerical results are presented which verify that the derived bounds and approx-

imations are very accurate in all situations of practical interest. In addition, the

algorithms are significantly more efficient than other very accurate methods such as

those of Helstrom [47] and Beaulieu [11].

Equalizers for Spread Spectrum Multiuser Systems (Chapter 4) An ex-

tensive analysis is performed for multiple-input multiple-output (MIMO) linear and

decision-feedback equalizers. The analysis is done in the frequency domain in order

to reduce the number of operations required to calculate the optimal parameters of

MIMO equalizers used in stationary or quasi-stationary systems.

Different equations for the optimal linear equalizer coefficients are presented,

among them an expression for a direct realization of the linear equalizer (LE). This

expression, which can be interpreted as a multidimensional extension of the non-

causal Wiener filter from estimation theory, requires knowledge only about the power

spectrum of the received signal and the cross-power spectrum of the received signal

and the desired data. Provided that the desired data is known (for example from

training or pilot symbols), the optimal coefficients may be calculated from quantities

directly available at the receiver. In contrast, the current literature describes the

LE in the frequency-domain by a cascade of noise-whitening matched filter, channel

matched filter and symbol rate equalizer. For this formulation, explicit knowledge of

the channel transfer matrix and the noise statistics are required.

The time- and frequency-domain approaches for the calculation of the optimal

equalizer coefficients are compared. The result shows that the number of necessary

operations increases linearly with the (time-) length (M) of the equalizer for the
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frequency-domain based methods, while it grows cubically inM when a time-domain

approach is applied.

A new lower bound for the average minimum mean-square error (MMSE) of a

MMSE MIMO LE is derived. It is valid for overpopulated systems, i.e. for systems

with more users than diversity channels. The bound becomes very tight for high SNR

scenarios.

It is shown for the MMSE MIMO decision feedback equalizer (DFE) that its op-

timal structure may be realized by a cascade consisting of a noise-whitening matched

filter, a channel matched filter and a symbol rate matrix filter. A different formal proof

for this optimal structure has been found only recently by Vandendorpe et al. [118].

It is well known that there exists a unique relationship between the signal-to-

interference-and-noise ratio (SINR) and the MMSE of the single-input single-output

MMSE LE and DFE [99]. This dissertation provides a proof that the same relation-

ship holds also for both the MIMOMMSE LE and DFE. This enables the application

of Foschini’s et al. [34] and Saltzberg’s [103] upper bound on the error probability to

multiuser systems with MIMO linear or decision-feedback equalizers.

A lower capacity bound is derived for multiuser systems using square quadra-

ture amplitude modulation (QAM). The inphase and quadrature signals have to be

independently pulse amplitude modulated with an equal number of signal levels.

Finally, numerical results are provided for the performance of the MIMO LE and

DFE in terms of the MMSE, bit error rate (BER), outage probability and capacity.

It is found that the LE will be able to perform well only if the number of system users

is smaller than the number of diversity channels. On the other hand, a MIMO DFE

may perform satisfactorily even in overloaded systems with more users than diversity

channels.

Delayed-Decision-Feedback Equalization (Chapter 5) Monsen [78] and Duel-

Hallen [29] initially formulated the idea that the performance of a MIMODFE may be

improved by delaying the decisions on the weaker signals with respect to the stronger

ones. Simulation results published by Fulghum [35, 36] verify this assumption for an

adaptive MIMO DFE applied in a multiuser system, in which the received powers
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from the users differ significantly. However, a mathematical analysis of the problem

has not been performed yet.

This dissertation introduces a model for the MIMO delayed-decision-feedback

equalizer (DDFE). The delay elements for each signal are described by a diagonal

matrix. This enables the mathematical analysis of the system. A closed-form solu-

tion for the optimal coefficients of the MIMO DDFE is derived and expressions for

the equalizer performance are found.

It is generally necessary to perform a matrix spectral factorization in order to de-

termine the optimal MIMO DDFE. This procedure is, however, numerically complex

and requires many operations. A hybrid algorithm for the noise-predictive structure

of the MIMO DDFE is developed, which does not need a matrix spectral factoriza-

tion. In the first step, the forward filter is calculated in the frequency domain. After

that, the optimal coefficients of the feedback filter are determined in the time domain.

The MIMO successive decision-feedback equalizer (S-DFE) is a special case of the

DDFE. It is obtained by increasing the delays between two consecutive signals hypo-

thetically to infinity. In other words, the signals from different users are completely

processed one after another. At first, all symbols of the first user are detected, then

all symbols of the second user and so on. The concept of the S-DFE is introduced and

a model is described. A mathematical analysis is performed and the optimal equal-

izer coefficients are derived. Compared to the DDFE, the optimal S-DFE can be

calculated with a less complex and numerically significantly more efficient method.

It requires solely Cholesky factorizations of several matrices rather than a matrix

spectral factorization.

Numerical data are presented which compare the MIMO DFE, DDFE and S-

DFE detectors. The results show that the equalizer versions with delay perform

superior in near-far situations when the received powers of different signals differ

significantly. In particular, the DDFE and S-DFE versions are able to mitigate the

malicious consequences of the near-far effect, either eliminating the necessity for power

control or requiring a less stringent and simpler power control technique.
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1.6 Notation

The notation used in this dissertation is discussed in Appendix A. Section A.1 ex-

plains the general symbol notation. Arguments supporting a row vector notation are

provided in Section A.2. Functions, operators, constants and sets are defined and

explained in Sections A.3 to A.5. Section A.6 includes some statistical definitions. A

short section about a specific set of orthogonal basis functions can be found in A.7.

Finally, four different kinds of Fourier transforms are described in Section A.8.

1.7 D-Transform

The D-transform provides a powerful tool to analyze systems. It is regularly used in

this thesis. This section defines the transform and states some important properties.

Let V [n] be an arbitrary dimensional matrix, vector or scalar whose elements

[V [n]]ik are scalar, complex sequences ([V [n]]ik ∈ C).

Definition 1.1 D-transform.

The D-transform of the matrix sequence V [n] is

V (D) = D {V [n]} �
∞∑

n=−∞
V [n]Dn (1.18)

where D belongs to the set of complex numbers (D ∈ C).

Accordingly, the inverse D-transform is denoted by

V [n] = D−1 {V (D)} . (1.19)

An alternative notation for the transform pair V [n],V (D) is

V [n]
D←→ V (D). (1.20)

The D-transform is very similar to the z-transform [88]. They are related byD = z−1.
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There are numerous properties of the D-transform, most of which are identical

or almost identical to those of the z-transform. A good reference is Oppenheim and

Schafer’s book [88] for scalar sequences. In many cases, the properties are easily

extended to matrix sequences. Some important properties are assumed explicitly or

implicitly throughout this dissertation and are mentioned in the following.

Let n,∆ ∈ Z, c1, c2 ∈ C and V [n],U [n] be arbitrary dimensional complex matrix

sequences with corresponding D-transforms V (D) = D {V [n]} ,U(D) = D {U [n]} .

Property 1.1 Linearity.

The D-transform is a linear transformation, i.e.

c1V [n] + c2U [n]
D←→ c1V (D) + c2U(D). (1.21)

Property 1.2 Time-shift.

V [n−∆]
D←→ V (D)D∆. (1.22)

Property 1.3 Time reversal of the conjugate transpose matrix sequence.

V H [−n] D←→ V H(D−∗). (1.23)

For convenience, the notation D−∗ is defined as D−∗ � (D−1)∗ = (D∗)−1 (see Ta-

ble A.3).

Definition 1.2 Time-Shift Notation.

The notation “V [n]D∆” denotes a delay of the sequence V [n] by ∆ symbols.

V [n]D∆ � V [n−∆] (1.24)

where ∆ ∈ N.

With this notation, the delay operator D∆ becomes invariant with respect to the
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D-transform, i.e.

V [n]D∆ D←→ V (D)D∆ . (1.25)

Note that there is a direct connection between the discrete-time Fourier trans-

form (DTFT) and the D-transform. Comparing the definitions of both transforms in

Equation 1.18 and Table A.9, it can immediately be seen that the DTFT can directly

be obtained by evaluating the D-domain signal on the unit circle D = e−j2πf̌ :

V̌ C(e
−j2πf̌ ) = V (D)|D=e−j2πf̌ (1.26)

The power spectrum of a signal plays an important role in system analysis. It is

directly related to the cross- or auto-correlation sequence. Let the complex row vector

sequence u = [u1, u2, . . . , uN ] be composed of N scalar sequences uk[n] (k ∈ IN ,
uk[n] ∈ C). The corresponding truncated sequence uM [n] be restricted to (2M + 1)

nonzero samples

uM [n] �


 u[n], for |n| ≤M

0N , for |n| > M .
(1.27)

Let v[n] be another row vector signal whose truncated sequence is vM [n]. Denote the

D-transforms of the signals u[n], v[n], uM [n] and vM [n] by u(D), v(D), uM (D) and

vM (D),respectively.

Definition 1.3 Cross-power spectrum.

The cross-power spectrum of the signals u[n] and v[n] is

EM [uH(D−∗)v(D)] � lim
M→∞

1

2M + 1
E[uH

M (D−∗)vM(D)]. (1.28)

Denote SM,uv(D) = uH
M (D−∗)vM(D) and let X l(D), Xr(D) be time-invariant

matrix filters.
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Lemma 1.1

EM [Xl(D)SM,uv(D)X r(D)] =X l(D)EM [SM,uv(D)]X r(D). (1.29)

Proof.

EM [X l(D)SM,uv(D)X r(D)] = lim
M→∞

1

2M + 1
E[X l(D)SM,uv(D)X r(D)]

=X l(D) lim
M→∞

1

2M + 1
E[SM,uv(D)]Xr(D)

=X l(D)EM [SM,uv(D)]X r(D).

The matrix filters X l(D) and Xr(D) can be moved out of the expectation because

they are assumed to be constant; the expectationE[. . . ] is only taken over the stochas-

tic signals uM and vM .

�

Define the cross-correlation matrix of the wide-sense stationary signals u and v

as

Ruv[m] � E[uH [n−m]v[n]]. (1.30)

The relationship between the cross-correlation Ruv[m] and the cross-power spectrum

Suv(D) = EM [uH(D−∗)v(D)] is then given by

Lemma 1.2

Suv(D) = D {Ruv[m]} . (1.31)

Proof. Since the signals u and v are wide-sense stationary, the Definition (1.30) may
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be expressed in the alternative form

Ruv[m] = lim
M→∞

1

2M + 1−m

∞∑
n=−∞

E[uH
M [n−m]vM [n]]

= lim
M→∞

1

2M + 1

∞∑
n=−∞

E[uH
M [n−m]vM [n]]. (1.32)

Taking the D-transform of Ruv[m], substituting the above equation and applying

Property 1.3 yields

∞∑
m=−∞

Ruv[m]Dm =
∞∑

m=−∞

{
lim

M→∞

1

2M + 1

∞∑
n=−∞

E[uH
M [n−m]vM [n]]

}
Dm

= lim
M→∞

1

2M + 1
E

[ ∞∑
n=−∞

{ ∞∑
m=−∞

uH
M [−(m− n)]Dm−n

}
vM [n]Dn

]

= lim
M→∞

1

2M + 1
E[uH

M (D−∗)vM(D)]

= Suv(D). (1.33)

�



Chapter 2

System Model

2.1 General Description and Assumptions

The main contributions of this chapter are the derivation of a simple discrete-time

vector model and the finding that frequency and antenna diversity are conceptu-

ally equivalent. The presented discrete-time model completely describes the mixed

discrete/continuous-time multiuser system. It integrates frequency and antenna di-

versity using a simple notation. Overall, the whole system, which includes a multitude

of components, is described by a vector model merely consisting of a channel, an input

and a noise signal.

In the description of the system model, the concepts of spread spectrum (frequency

diversity) and input (antenna) diversity are unified. It is shown that a system with

processing gain K and A receiver inputs provides effectively Udiv = AK parallel

diversity channels. The mathematical treatment shows that there is no conceptual

difference between frequency and antenna diversity. Both lead, in a similar manner,

to an increase in the number of diversity channels. These findings allow predictions

of the system capacity merely based on the introduced model.

The investigated system consists of the reverse link of a multiuser system with N

(N ∈ N) users and a single base station. Each user is equipped with one transmit

antenna and employs quadrature amplitude modulation (QAM) or phase shift keying

(PSK). The transmitted data symbols are considered to have statistically zero mean
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and may be correlated in an arbitrary fashion. The base station receives the signals

at A (A ∈ N) different antennas. It is assumed that the receive antennas are spaced

sufficiently apart to ensure distinct impulse responses between a certain user and dif-

ferent base antennas. Additive white Gaussian noise (AWGN) with zero mean distorts

the signals received at each antenna. The noise signals at different base antennas are

considered to be mutually uncorrelated. An additional assumption is that the trans-

mitted data signals and the noise signals are independent. The frequency selective,

quasi-stationary radio channels are assumed to be known. The multiuser system is, in

general, asynchronous unless the impulse responses of all individual channels start at

the same time (in which case the system is synchronous). Spread spectrum multiple

access (SSMA) is employed in order to support several users simultaneously. For this,

each user spreads the signal to K times the Nyquist bandwidth before transmission

(K ∈ N). In particular, if T denotes the symbol period of the data sequence, the

double-sided bandwidth of the transmitted signal will be K/T .

Figure 2.1 shows the physical structure of the system. Since the base station is

equipped with A receive antennas, there are exactly A different physical connections

(wireless channels) between each user and the base (Figure 2.2). The channel impulse

response between user i (i ∈ IN ) and the l-th (l ∈ IA) receive antenna is denoted

hCil(t).

The research in this thesis is centered around the data transfer from the users to

the base station, which is also called the reverse link. The reasoning behind this is the

fact that simultaneous or multiuser detection of all signals at a centralized station may

yield considerably better performance than conventional single user detection [30]. On

the other hand, for the forward link (data transmission from the base station to the

users), multiuser detection is either not possible or not practical [30].

Since the modulation scheme is QAM or PSK, the signals consist of inphase and

quadrature components. In order to circumvent a complicated notation and eliminate

the carrier modulation process in the mathematical analysis, the complex baseband

model is used [40]. As a consequence, all signals and impulse responses are in general

complex functions.

The system is expected to detect and process the data transmitted by several users.
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Figure 2.1: Multiuser system with N users and one base station.
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Figure 2.2: Radio links between user i and the base station.



2.1 General Description and Assumptions 57

In order to do this successfully, diversity is necessary in one form or another. The

system described derives the required diversity from two sources: the first is frequency

diversity introduced through spread spectrum modulation; the second is antenna

diversity by receiving the signals at several inputs. As will be shown subsequently,

the degree of frequency and antenna diversity is equal to K and A, respectively.

Moreover, the number of diversity channels in the system, Udiv, is given by the product

of frequency and antenna diversity: Udiv = AK. Finally, the effective degree of

diversity in the system is frequency dependent. It is equal to Udiv − N for a given

frequency provided that the N row vectors of the channel transfer matrix are linearly

independent at that frequency.

High data rates are considered. In particular, it is assumed that the multipath

delay spread is comparable to or larger than the symbol period. This leads to a

significant amount of intersymbol interference (ISI) and frequency selective channels,

i.e. the channel gain magnitude and phase shift vary over frequency. In addition,

the system model implicitly takes into account relative time delays among different

channels. The time delay of the channel between a certain user and a receive antenna

may be defined as the time of the first nonzero sample in the channel impulse response.

If these time delays are not the same for all channels, the system will be asynchronous.

The channel characteristics vary over time due to a changing environment or

alternating transmitter and receiver locations. A measure for the speed of these

variations is the coherence time [99]. If we consider a transfer protocol that transmits

blocks of data symbols (frames), changes in the channel impulse response (CIR)

between the beginning and the end of the frame determine the overall effect on the

performance. When the data rate becomes higher, the frame duration decreases

provided that the number of frame symbols stays constant. As a consequence, the

CIR’s are varying less between the start and the end of a frame and the system

is less affected by the time-variant channel. If the frame duration is significantly

shorter than the channel coherence time, varying CIR’s will hardly affect the system

performance and might be neglected. This situation is considered for the following

analysis. The CIR’s are thus assumed to be stationary within the duration of one

frame and the system is described as “quasi-stationary”.
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2.2 Conventional CDMA Multiuser Model

A special case of SSMA, direct sequence code-division multiple access (DS-CDMA)

enjoys by far the largest popularity in both research and commercial systems among

all spread spectrum schemes. It is very often combined with binary phase-shift keying

(BPSK) modulation. In order to clearly show the relationship and common properties

between the SSMA technique used throughout the remainder of this dissertation and

the ubiquitous CDMA/BPSK scheme, the latter is described in this section.

Let ai denote the data sequence of user i (i ∈ IN) to be transmitted to the base

station. Since BPSK is used as modulation scheme, each symbol of the data sequence

may assume either of the two values ‘-1’ or ‘+1’ (ai[n] ∈ {−1,+1}, ∀n ∈ Z). Each

user is assigned an individual signature waveform ϕCi(t) (i ∈ IN ), which is used to

modulate all transmitted symbols ai[n]. As a consequence, the transmitted analog

signal entering the radio channel is given by

sCi(t) =
∞∑

n=−∞
ai[n]ϕCi(t− nT ) (2.1)

where T is the symbol period. The transmitted signal sCi (i ∈ IN ) travels through
the radio channel with impulse response hCil(t) before it is received at the l-th base

antenna (l ∈ IA). In order to reduce adjacent channel interference (ACI) and noise

νCGl(t) added at each antenna front end, the received signals are processed by a

lowpass filter bC(t). Finally, the signals are sampled at the chip rate 1/Ts = K/T ,

where K is the processing gain (spreading factor). The sampler output sequences

yl constitute the inputs to the centralized detector, which produces estimates of the

original input data ai[n] ∀i ∈ IN , n ∈ Z.

The process of modulating the data symbols with a signature waveform can be

subdivided into two parts: multiplication with a code sequence and modulation. In

the first part, each symbol ai[n] is multiplied with a code qi consisting of M = K

samples (chips). The chips are usually chosen from the binary alphabet of plus/minus

one (qi[n] ∈ {−1,+1}, ∀n ∈ {0, 1, 2, . . . ,M −1}). It is customary to choose the code

duration to be equal to the symbol duration T , i.e. the chip period is Ts = T/M .



2.3 Practical SSMA System Model 59

h     (t)C11 Σ

h     (t)CN1 Σ ν     (t)CG1

h     (t)C1A Σ

h     (t)CNA Σ ν     (t)CGA

1a
K pC

(t)
1

q [n]

sT

Na
Ns

K N
q [n] pC

(t)

1s C1s

CNs

b  (t)C

b  (t)C

C1r

CAr
A

11

N

C1y

CAy

Ay

sT

1y

sT

Figure 2.3: Block diagram of the multiuser system.

After coding, each chip is modulated with a pulse waveform pC(t). The signature

waveform can thus be expressed as

ϕCi(t) =
M−1∑
m=0

qi[m]pC(t−mTs). (2.2)

It is easy to show that the multiplication of the data symbols with the code sequence

may equivalently be described by upsampling ai[n] K times and feeding the resulting

sequence into a discrete-time filter with impulse response qi[n]. The resulting system

model is shown in Figure 2.3.

2.3 Practical SSMA System Model

2.3.1 Introduction

This section describes the system model, on which the analysis in the remaining

chapters is based, from a practical point of view. The objective is to model each

system component realistically bearing a real implementation in mind. Nonetheless,

the complex baseband notation is still applied, enabling a clear and simple description

and eliminating the carrier frequency modulation/demodulation processes.

As shown subsequently, the described model is very similar to the CDMA system

outlined in Section 2.2. In fact, the arrangement of the system blocks and signals
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stays identical, only the discrete-time transmit filters and the input data signals

are generalized. Therefore, Figure 2.3 represents the system block diagram for this

section. The signals of the block diagram are defined in the following Section 2.3.2

and the system blocks are thoroughly described in Section 2.3.3. Section 2.3.4, finally,

summarizes the mathematical description of the combined discrete-time/continuous-

time system.

2.3.2 Definition of Signals and Quantities

2.3.2.1 Transmitted Signal

User i (i ∈ IN ) transmits the discrete-time, discrete-valued symbol sequence ai. The

individual symbols ai[n] are drawn from a finite alphabet of complex numbers, Ai

(ai[n] ∈ Ai). The contents of the alphabet Ai depend on the modulation scheme.

The ai are assumed to be wide-sense stationary, discrete-time stochastic processes

with zero mean. Thus, the individual data symbols ai[n] are random variables with

zero mean and cross-covariance

ca,ik[m] � E[a∗i [n−m]ak[n]] (2.3)

where i, k ∈ IN and n,m ∈ Z.

For some analyses, it is additionally assumed that the data signals of all users,

ai ∀i ∈ IN are mutually independent (Definition A.1) and temporally independent

(Definition A.2). In this case, the data signals satisfy Equations (A.9) and (A.10).

In the following chapters, the system analysis and performance evaluation is based

on two different criteria: The mean-square error (MSE) and the error probability. The

MSE analysis and results are valid for any linear modulation scheme, i.e. they are the

same for PAM, PSK or QAM. In contrast, the error probability of the system depends

critically on the modulation format. For this reason, the following paragraphs specify

the considered modulation schemes in more detail.

For the probability of error analysis, the modulation scheme will be restricted to

pulse amplitude modulation (PAM) or quadrature amplitude modulation (QAM). In
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the case of QAM, it is assumed that the inphase and quadrature signals are indepen-

dent and that the distance between adjacent constellation points is the same for all

points. This means that QAM is identical to independent PAM of the inphase and

quadrature signal components. The distance between adjacent modulation levels is

constant for both inphase and quadrature PAM, whereas the number of PAM levels

may be different for the inphase and quadrature signals.

The distance between constellation points is chosen such that the variance of the

transmitted data symbols is equal to unity:

E[|ai[n]|2] = 1, ∀i ∈ IN . (2.4)

This property ensures that the transmit power is constant while switching from one

modulation scheme to another (e.g. from 4-QAM to 16-QAM). Thus, a meaningful

performance comparison of modulation schemes with different alphabet sizes (capac-

ities) is possible.

Each QAM symbol may be expressed in terms of its real and imaginary part:

ai[n] = arei [n] + ja
im
i [n]. (2.5)

According to the above assumptions, both real and imaginary parts are independently

pulse amplitude modulated. Let us assume that Lre
i and Lim

i denote the number of

PAM levels for the inphase and quadrature signal, respectively. Both Lre
i and Lim

i

are constrained to be positive, even integer numbers. Thus, the number of QAM

constellation points is given by the product Lre
i L

im
i and the real and imaginary parts

of the data signal ai[n] belong to the sets

arei [n] ∈ Sre
i (2.6)

aimi [n] ∈ S im
i (2.7)
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where the sets are defined by

Sre
i �

{
±κi
2
,±3κi

2
,±5κi

2
, . . . ,±(Lre

i − 1)
κi
2

}
(2.8)

S im
i �

{
±κi
2
,±3κi

2
,±5κi

2
, . . . ,±(Lim

i − 1)
κi
2

}
(2.9)

and κi is the distance between adjacent constellation points. Under the assumption

that the data symbols assume all elements in the sets (2.8) and (2.9) with equal

probability, the variance of the inphase and quadrature PAM signals is

Ere
a,i � E[|arei [n]|2] =

κ2
i

12

[
(Lre

i )
2 − 1

]
(2.10)

E im
a,i � E[|aimi [n]|2] = κ2

i

12

[
(Lim

i )2 − 1
]
. (2.11)

In order to guarantee unit variance of the complex QAM data symbols ai[n] (Equa-

tion (2.4)), the value of the distance κi has to be chosen such that E[|ai[n]|2] =
Ere
a,i + E im

a,i = 1. This is satisfied for

κi =

√
12

(Lre
i )

2 + (Lim
i )2 − 2

. (2.12)

Note that for a given number of constellation points (Lre
i L

im
i ), the distance is maxi-

mized for Lre
i = Lim

i . Thus, square QAM constellations (4-, 16-, 36-QAM, etc.), which

have the same number of modulation levels for both inphase and quadrature signals,

obtain the largest distance and best performance among all other QAM schemes with

the same number of constellation points.

Not only QAM but also PAM of the transmitted data ai[n] can be described with

the above notation. For that, one has to set Lim
i = 1 and aimi [n] = 0, ∀n ∈ Z. With

this, all equations derived for QAM are also valid for PAM.

The modulation format described above will be used in the following chapters

whenever the error probability criterion is considered. It allows to choose freely the

number of PAM levels for both inphase and quadrature signal. Thus, the number

of bits/symbol can be varied while the variance of the transmitted data is constant.

This enables a fair performance comparison of QAM schemes with a different number
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of constellation points since the transmit power is kept constant. As a result, the

distance is constrained to the value in expression (2.12).

2.3.2.2 Noise

Noise is added to the received signals at the front end of each receiving antenna.

The noise signal at antenna l (l ∈ IA), νCGl, is a complex Gaussian distributed

random variable with zero mean. The noise signals νCGl and νCGm received at different

antennas (l �= m; l,m ∈ IA) are considered to be uncorrelated. Additionally, each

noise signal is assumed to be complex, stationary and white with a double-sided power

spectral density (PSD) of N0, i.e. the cross-covariance function of the noise process

is given by

cν,lm(t, τ ) = E[νCGl(t)ν
∗
CGm(t− τ )] =


 N0δ(τ ), for l = m

0, for l �= m
, ∀l,m ∈ IA. (2.13)

As stated in Section 2.1, the noise signals and the transmitted data signals are

independent. This results in

E[ai[n]νCGl(t)] = 0, ∀i ∈ IN , ∀l ∈ IA, ∀n ∈ Z, ∀t ∈ R. (2.14)

2.3.2.3 Quantities

Table 2.1 summarizes and defines the system quantities.

2.3.3 System Components

2.3.3.1 Transmitter

The transmitter of each user consists of three elements: upsampler, spreading filter,

and pulse generator. Figure 2.4 shows the symbol of the upsampler. Consider the

transmitter of the i-th user. The input signal to the upsampler is the data sequence
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Table 2.1: System quantities.

Symbol Meaning

T symbol period, T ∈ R+

N number of system users, N ∈ N

A number of receive antennas at the base station, A ∈ N

K processing gain, spreading factor, upsampling factor, K ∈ N

K3dB 3 dB normalized system bandwidth, K3dB ∈ R+

Ts modulation/sampling period of the transmitter/receiver, Ts = T/K

N0 double-sided power spectral density of the complex noise, N0 ∈ R+

Bs 3 dB double-sided signal bandwidth, Bs = K3dB/T

ai. According to Section B.1, the output signal is given by

si[Kn+m] =


 ai[n], for m = 0

0, for m ∈ {1, 2, 3, . . . , K − 1}
(2.15)

where the parameter m0 has been set for convenience, and without loss of generality,

to m0 = 0.

Each user may apply a different discrete-time spreading filter (Figure 2.5) to con-

volve the transmitted data with a unique code. The impulse response qi of the spread-

ing filter is a sequence consisting ofMi samples (qi[n] = 0, for n < 0 or n ≥Mi, Mi ∈ N).

In contrast to conventional CDMA (Section 2.2), there are no restrictions placed on

the sequence length Mi. It may be smaller or even larger than the processing gain

K. The samples of qi are chosen from the set of complex numbers (qi[n] ∈ C, ∀n ∈
{0, 1, 2, . . . ,Mi − 1}). This is also in contrast to the CDMA case where the qi[n]

were restricted to the binary alphabet {−1,+1}. The output signal of the linear

time-invariant spreading filter is

s̃i[n] = si[n] > qi[n]. (2.16)

The pulse generator (Figure 2.6) takes, at a period of Ts, the current sample s̃i[n]

of the input sequence and multiplies it with the pulse waveform pC(t) to form the
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Ka[n] s[n]

Figure 2.4: Block diagram of a K-times upsampler.

transmitted signal

sCi(t) =
∞∑

n=−∞
s̃i[n]pC(t− nTs). (2.17)

pC(t) has a lowpass characteristic in order to limit the bandwidth of the transmitted

signal.

2.3.3.2 Radio Channel

Theoretical Model The radio channel is characterized by the fact that multiple

copies of the transmitted signal arrive at the receiver, each with a different gain,

phase and time delay. This may be explained with the existence of different paths

(multipath) in the environment over which the signal travels. These paths are a result

of effects like scattering, diffraction and reflection that occur in the propagation of

electromagnetic waves [101].

In the most common model, the radio channel is described as a linear filter that

takes the above characteristics into account [101]. In general, the channel impulse

response (CIR) is time varying since the environment and the locations of trans-

mitter and receiver may change. In many applications, however, these changes are

relatively slow compared to the symbol period and data block duration (frame) of the

communications system. It is assumed throughout the following chapters that the

change of the CIR during one frame is negligible. In this case, the channel impulse

response between user i and receive antenna l can be expressed in complex baseband

representation as [101]

hCil(t) =
Lc−1∑
u=0

h
(u)
Cil δ(t− tu) (2.18)

where Lc ∈ N is the number of paths, h
(u)
Cil ∈ C is the complex gain, tu ∈ R is the time
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Figure 2.5: Block diagram of the discrete-time spreading filter.

delay of the u-th path, and δ(t) is the Dirac delta distribution (Table A.3). Thus, the

radio channel model is equivalent to a linear time-invariant and non-recursive filter

with complex coefficients.

Discrete Representation of the Radio Channel Measured channel impulse

responses are used for the numerical calculations in the following chapters. The

basis for these measurements is the multipath channel model (see above) which is

completely described by the CIR in Equation (2.18).

The real radio channel is a continuous-time system. In order to avoid errors, it

is generally necessary that the CIR be measured for a continuous time-range which

consists of an infinite number of points. This means that infinite information is

required to describe an arbitrary system accurately. In practice, however, it is possible

to exploit the properties of real systems for a reduction of the necessary information

to a finite amount of data.

Real systems are bandwidth limited. It can be shown that this property allows

it to completely describe the continuous-time impulse response by a discrete-time

sequence (sampling theorem). If the impulse response has most of its energy in a

limited time window, the system can be described for all practical purposes by a

finite number of samples.

For the following, it is assumed that

1. the channel is causal,

2. the channel is linear and can be completely described by its impulse response,

and

3. the CIR is truly bandwidth and practically time limited.

Let hCil(t) and HCil(f) denote the continuous-time CIR and CTF1, respectively.

1CTF is the abbreviation for channel transfer function.
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Figure 2.6: Block diagram of the pulse generator.

CIR and CTF are connected through the Fourier Transform HCil(f) = Fcc{hCil(t)}
(Table A.9). Define Bh and Th as the double-sided bandwidth and duration of the

CIR, respectively:

HCil(f) = 0, for |f | > Bh/2 (2.19)

hCil(t) ≈ 0, for t < 0 or t > Th. (2.20)

According to the Nyquist sampling theorem [87], no information will be lost if the

CIR is sampled at a rate 1/Tc with

Tc ≤
1

Bh
. (2.21)

It follows that the number of samples necessary to represent the CIR for all practical

purposes is

Lc =

⌈
Th
Tc

⌉
(2.22)

where $x% is the smallest integer greater than or equal to x (Table A.3). The frequency

step shall be defined as

∆f =
1

LcTc
. (2.23)

There are two objectives that have to be considered when defining the discrete-time

sequence hil representing the CIR:

• it must be possible to obtain the complete channel information from the se-

quence hil,

• the sequence hil shall be the discrete-time analogy of the continuous-time CIR.
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The first objective is achieved by applying the Nyquist sampling theorem. The second

means in other words that the output sequence of the channel, which fully represents

the continuous-time output of the real channel, is obtained by convolving the input

sequence, representing the continuous-time input signal, with hil. It can be shown

that this is the case if every sample of the continuous-time CIR, taken at a period of

Tc, is multiplied by the constant factor Tc [88]. Therefore, provided that the condition

in Equation (2.21) is fulfilled, the relationship between discrete- and continuous-time

channel impulse responses is

hil[n] =


 TchCil(nTc), for n = 0, 1, 2, . . . , Lc − 1

0, for n < 0 or n > Lc − 1
(2.24)

or equivalently

hil[n] = Tc

Lc−1∑
k=0

hCil(kTc) δK [n− k] (2.25)

where δK [n] denotes the Kronecker delta function (Table A.3). For all practical

purposes, the values of hil[n] have been set to zero for n < 0 and n > Lc − 1 since

the magnitude of hCil(t) is assumed to be negligibly small for t < 0 and t > Th.

More properties of the discrete-time CIR (2.25) are described in the following

discussion. Introduce for the discrete Fourier series (DFS) the transformation pair

Hil[k] = Fdd{hil[n]} and for the discrete-time Fourier transform (DTFT) the trans-

formation pair ȞCil(e
−j2πf̌c) = Fdc{hil[n]} (Table A.9), where f̌c is the normalized

frequency:

f̌c � fTc. (2.26)

It can then be shown that the CTF is given by

HCil(f) =


 ȞCil(e

−j2πfTc), for |f | ≤ 1/(2Tc)

0, for |f | > 1/(2Tc)
(2.27)
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Figure 2.7: Block diagrams of the receive lowpass filter and the sampler.

if and only if the conditions in Equations (2.19), (2.20) and (2.21) are fulfilled. In

this case, using the transform equations of the DFS and the DTFT in Table A.9 and

Equation (2.27) yields

HCil(k∆f) =


 Hil[k], for |f | ≤ 1/(2Tc)

0, for |f | > 1/(2Tc)
. (2.28)

Thus, the sequence Hil[k] represents the frequency-sampled CTF.

2.3.3.3 Receiver

The base station receiver contains A ∈ N identical branches. Each branch consists

of a receive antenna followed by a lowpass filter bC (Figure 2.7(a)) and a rate 1/Ts

sampler (Figure 2.7(b)).

Consider branch l ∈ IA. According to the system model in Figure 2.3, the received

signal can be expressed as

rCl(t) =
N∑
i=1

sCi(t) > hCil(t) + νCGl(t). (2.29)

After lowpass filtering, the signal becomes

yCl(t) = rCl(t) > bC(t). (2.30)

Finally, the signal is sampled at a period Ts and the output of the receiver front-end



2.3 Practical SSMA System Model 70

h     (t)C11 Σ

h     (t)CN1 Σ ν     (t)CG1

h     (t)C1A Σ

h     (t)CNA Σ ν     (t)CGA

1a
K pC

(t)
1

q [n]

sT

Na
Ns

K N
q [n] pC

(t)

1s C1s

CNs

b  (t)C

b  (t)C

C1r

CAr
A

11

N

C1y

CAy

Ay

sT

1y

sT

Figure 2.8: Block diagram of the multiuser system.

is

yl[n] = yCl(nTs). (2.31)

The sequences yl (∀l ∈ IA) serve as inputs to the centralized multiuser detector.

In the following simulations, a fifth-order Butterworth lowpass filter has been

chosen for bC. The characteristics of this filter have been identical to the transmitter

pulse pC . Refer to Appendix C.1 for a detailed description of BC(f) = Fcc{bC(t)}.

2.3.4 System Description

The current Section shall be concluded with a summary of the mathematical system

description. As shown in Figure 2.8, the system contains continuous-time as well as

discrete-time parts.

Starting at the transmitter, each user is assigned a signature waveform or code

ϕCi(t) =

Mi−1∑
m=0

qi[m]pC(t−mTs). (2.32)

Define the overall channel waveform between user i and the l-th base antenna as

ψCil(t) � ϕCi(t) > hCil(t). (2.33)
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The signal received at antenna l is then given by

rCl(t) =
N∑
i=1

∞∑
n=−∞

ai[n]ψCil(t− nT ) + νCGl(t). (2.34)

If we are interested in the input signal to the sampler, it is convenient to define

the combined channel

xCil(t) � ψCil(t) > bC(t) (2.35)

= ϕCi(t) > hCil(t) > bC(t). (2.36)

With that, the input to the sampler of receiver branch l may be expressed as

yCl(t) =
N∑
i=1

∞∑
n=−∞

ai[n]xCil(t− nT ) + νCl(t) (2.37)

where

νCl(t) = νCGl(t) > bC(t) (2.38)

is the colored Gaussian noise after lowpass filtering. Finally, the discrete-time output

of the l-th receiver branch is

yl[n] = yCl(nTs). (2.39)

2.4 Equivalent Discrete-Time Model

2.4.1 System

This section introduces a discrete-time model completely equivalent to the model

described previously. Three main properties characterize the new model, which sig-

nificantly simplify notation and complexity, and additionally provide precious insight

into understanding the important characteristics of the system. The first property is

that it is a completely discrete-time model. This simplifies representation by elim-
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Figure 2.9: Equivalent models for the connection between user i and receiver out-
put l.

inating the pulse generator and sampler elements. Secondly, a (1:K) demultiplexer

will be added to each branch of the receiver in order to obtain a model with AK

signal outputs instead of only A. It will be shown that this structure suits the gen-

eral behavior of the system and enables a deeper understanding of the performance

properties. Finally, vector notation will be introduced in order to describe the model

in a compact mathematical form.

Let us start by replacing the continuous-time system parts, impulse generators

and samplers by ordinary discrete-time filters. According to Equation (2.37), the

connection between user i’s data signal and the l-th receiver branch output may be

described by a pulse generator modulating the input sequence with the pulse xCil(t)

at a symbol rate of T followed by a sampler operating at a sample period of Ts = T/K

(Figure 2.9(a)). The overall branch output yl can be expressed in terms of the signals
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yli stemming from user i, ∀i ∈ IN , and noise, i.e.

yl[n] =
N∑
i=1

yli[n] + νl[n] (2.40)

where

νl[n] = νCl(nTs) (2.41)

is the sampled noise signal. A K-times upsampler may be added in front of the pulse

modulator without changing the system behavior (Figure 2.9(b)). For convenience,

the output of the upsampler shall be expressed in the form

si[Kn+m] =


 ai

[
n+ m

K

]
, for m = 0,±K,±2K, . . .

0, otherwise
(2.42)

which is equivalent to Equation (2.15). Note that the symbol rates of the pulse

generator and the sampler are now identical (1/Ts). This enables us, without changing

the input/output relationship, to replace pulse generator and sampler by a discrete-

time filter xil, which is given by

xil[n] = TsxCil(nTs) (2.43)

X̌Cil(e
−j2πfTs) =

∞∑
v=−∞

XCil

(
f − v

Ts

)
(2.44)

where X̌Cil(e
−j2πf̌ ) = Fdc{xil[n]} and XCil(f) = Fcc{xCil(t)} are the discrete-time

Fourier transform (DTFT) of xil and the Fourier transform (FT) of xCil, respectively

(see Appendix A.8). The final, completely discrete-time, model for the path connec-

tion is shown in Figure 2.9(c). It can be used in conjunction with Equation (2.42) to

arrive at the equivalent discrete-time system model shown in Figure 2.10. The output
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Figure 2.10: Equivalent discrete-time system model.

signal of the l-th receiver branch may now be written as

yl[n] =
N∑
i=1

si[n] > xil[n] + νl[n]. (2.45)

The input/output relationship of the system is therefore completely described by

Equations (2.42) and (2.45).

The following changes to the system representation are motivated by the objec-

tive to find a direct relationship between the rate 1/T input data ai and the receiver

output signals. The disadvantage of the system model shown in Figure 2.10 is the

expression of the upsampled signals si by Equation (2.42). A mathematically sig-

nificantly simplified model can be obtained by feeding each receiver output signal

yl[n] (∀l ∈ IA) into a (1:K) serial to parallel demultiplexer (Figure 2.11). The m-th

(m ∈ IK) output of the demultiplexer in branch l is then given by

yml [n] � yl[Kn+m− 1]. (2.46)

Figure 2.12 shows the equivalent discrete-time system with demultiplexers, which has

a total of AK output signals yml (l ∈ IA, m ∈ IK). Define the partitioned impulse
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Figure 2.11: Block diagram of (1:K) demultiplexer.

responses xmil and noise signals νml according to

xmil [n] � xil[Kn+m− 1] (2.47)

νml [n] � νl[Kn+m− 1]. (2.48)

It can then be shown that the final output signals are given by

yml [n] =
N∑
i=1

ai[n] > x
m
il [n] + ν

m
l [n]. (2.49)

Proof. Starting with Definition (2.46), substituting Equation (2.45), using the

definition of the discrete-time convolution operator ‘>’ (Table A.4), substituting Ex-

pression (2.42) for si[n], introducing the new variable w = (v+1−m)/K, and applying

the Definitions (2.47), (2.48) results in Equation (2.49) from

yml [n] = yl[Kn+m− 1]

(2.45)
=

N∑
i=1

∞∑
v=−∞

si[Kn+m− 1− v]xil[v] + νl[Kn+m− 1]

(2.42)
=

N∑
i=1

∞∑
w=−∞

ai[n−w]xil[Kw +m− 1] + νl[Kn+m− 1]

(2.47)

(2.48)
=

N∑
i=1

∞∑
w=−∞

ai[n−w]xmil [w] + νml [n]

=

N∑
i=1

ai[n] > x
m
il [n] + ν

m
l [n].

�
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Figure 2.12: Equivalent discrete-time system model with demultiplexers.

Based on Equation (2.49), the final equivalent discrete-time system model is easily

obtained. It is shown in Figure 2.13.

Let us now describe the system in vector form. The input signal vector is defined

as

a � [a1, a2, . . . , aN ]. (2.50)

The equalizer input and noise signal of receive antenna l are given by

yl � [y1l , y
2
l , . . . , y

K
l ] (2.51)

ν l � [ν1
l , ν

2
l , . . . , ν

K
l ]. (2.52)

The combined channel matrix for the l-th receiver input shall be defined as

X l �




x1
1l x2

1l . . . xK1l

x1
2l x2

2l . . . xK2l
...

...
. . .

...

x1
Nl x2

Nl . . . xKNl



. (2.53)

According to Equation (2.49) and the definition of matrix convolution in Table A.5,
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Figure 2.13: Equivalent discrete-time system model.

the output signal at the l-th receiver branch may be expressed as

yl[n] = a[n] >X l[n] + ν l[n]. (2.54)

Define the overall output signal, noise signal and channel matrix by

y � [y1,y2, . . . ,yA] (2.55)

ν � [ν1,ν2, . . . ,νA] (2.56)

X � [X1,X2, . . . ,XA], (2.57)

respectively. Thus, the overall received signal, consisting of AK scalar sequences yml
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(l ∈ IA, m ∈ IK) can be expressed as

y[n] = a[n] >X[n] + ν [n]. (2.58)

Figure 2.14 shows the corresponding system model.

The system behavior may also be expressed in theD-domain. Let theD-transform

of an arbitrary matrix or vector signal V be defined by V (D) =
∑∞

n=−∞ V [n]Dn (see

Section 1.7). The output signal of the l-th receiver branch is

yl(D) = a(D)X l(D) + ν l(D) (2.59)

where a(D) = D{a[n]}, ν l(D) = D{ν l[n]}, yl(D) = D{yl[n]}, and X l(D) =

D{X l[n]} are the D-transforms of the input signal vector, noise signal vector, output

signal vector of receiver branch l, and combined channel matrix for the l-th receiver

input, respectively. Finally, the overall received signal is

y(D) = a(D)X(D) + ν(D) (2.60)

where ν(D) = D{ν [n]}, y(D) = D{y[n]}, and X(D) = D{X [n]} are the D-

transforms of the overall noise signal vector, overall output signal vector, and overall

channel matrix, respectively.

2.4.2 Signals

As a result of the assumptions made in Section 2.1, the input signal vector and the

overall noise signal are zero mean random processes. Let us define their power spectra
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by

Sa(D) � EM [aH(D−∗)a(D)] (2.61)

Sν(D) � EM [νH(D−∗)ν(D)] (2.62)

where the expectation operator ‘EM ’ is defined in Equation (1.28).

Noise and input signals are considered to be uncorrelated. It follows from Equa-

tion (2.14) that

Saν(D) � EM [aH(D−∗)ν(D)] = ON×AK , ∀D ∈ C (2.63)

where ON×AK is the N × AK all zero matrix (Table A.7).

The corresponding quantities in the time-domain are the autocorrelation of the

input signal vector, Ra[m], the autocorrelation of the overall noise signal, Rν [m], and

the cross-correlation of the input and noise signals, Raν [m]:

Ra[m] � E[aH[n−m]a[n]] (2.64)

Rν[m] � E[νH [n−m]ν[n]] (2.65)

Raν[m] � E[aH[n−m]ν[n]] = ON×AK , ∀m ∈ Z (2.66)

where the last relation is a result of the fact that noise and input signals are uncor-

related. The time- and frequency-domain quantities are related by the D-transform:

Sa(D) = D {Ra[m]} (2.67)

Sν(D) = D {Rν [m]} (2.68)

Saν(D) = D {Raν [m]} . (2.69)

2.4.3 Noise

An expression for the power spectrum of the noise signal ν will be required in the

system analysis of the following chapters. The noise power spectrum is defined in

Equation (2.62). It is possible to divide the power spectrum Sν(D) into A
2 subma-
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trices

Sν,lm(D) � EM [νH
l (D

−∗)νm(D)] (2.70)

of size K ×K (l,m ∈ IA). Since the noise signals at different receiver branches are
uncorrelated with zero mean (Section 2.3.2.2), the cross-power spectrum between ν l

and νm is zero for l �= m:

Sν,lm(D) = OK×K , for l �= m, (2.71)

where OK×K denotes the K ×K all zero matrix (Table A.7). Only the submatrices

Sν,ll(D) (l ∈ IA) are nonzero. It can be shown that the (u, v)-th component of

Sν,ll(D), evaluated on the unit circle D = e−j2πfT , is given by

[
Sν,ll(e

−j2πfT )
]
uv

=
N0

T

∞∑
m=−∞

∣∣∣BC

(
f − m

T

)∣∣∣2 e−j 2π
K

(fT−m)(u−v) (2.72)

where BC(f) = Fcc{bC(t)} is the transfer function of the receive lowpass filter.

Proof. See Appendix E.

�

Considering Equation (2.71), the overall noise power spectrum may be expressed

as

Sν(D) = Diag〈Sν,ll(D)〉, l ∈ IA, (2.73)

where Diag〈Sν,ll(D)〉, l = 1, 2, . . . , A, is a diagonal hypermatrix with the matrix

Sν,ll(D) on the l-th diagonal position and zeros otherwise (see Table A.3). The

components of Sν,ll(D) are given in Equation (2.72).

If the receive filter has a double-sided bandwidth of at least 2/T , the summation

on the right hand side of Equation (2.72) includes at least two nonzero terms for each

frequency f . The magnitude of the sum will be equal to the sum of magnitudes of

each summation term if a main diagonal element (u = v) is calculated. For u �= v,
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the phases of the individual summation terms differ by 2πm(u − v)/K. Thus, the

magnitude of the sum is less than the sum of magnitudes of the individual terms.

In conclusion, the magnitude of the side diagonal elements of Sν,ll(D) will always

be smaller than that of the main diagonal elements if the receive filter bandwidth is

at least 2/T . Hence, both Sν,ll(D) and Sν(D) are regular. Equation (2.62) shows

that Sν(D) is positive semi-definite. Combined with the fact that it is regular, it

follows that Sν(D) is positive definite. In the special case when the receive filter has

an ideal rectangular shape and a double-sided bandwidth of K/T , the side diagonal

elements of Sν,ll(D) are zero. In this case, the overall noise spectrum matrix Sν(D) is

diagonal. Additional characteristics of the matrices Sν,ll(D) and Sν(D), which follow

from Equation (2.72), are that they are both Toeplitz and Hermitian.

2.5 Concluding Remarks – Diversity

Cancellation of cochannel and intersymbol interference (CCI, ISI) and detection re-

lies on a sufficient degree of diversity in the transmitted signals. This diversity is

introduced into the investigated system by a combination of antenna diversity and

frequency diversity. Antenna diversity is realized by receiving the signals at A > 1

antennas at the base station. Frequency diversity is obtained by spreading the trans-

mitted signals by a factor of K > 1. If the symbol period of the transmitted signals is

T , the minimum required double-sided bandwidth (Nyquist criterion) is BT = 1/T .

After spreading, the signal bandwidth is K/T . The number of diversity channels is

defined as the product of antenna and frequency diversity:

Udiv = AK. (2.74)

As long as no more than Udiv users are present, the system is referred to as well

populated. If the number of users N exceeds the number of diversity channels, we will

call the system overpopulated.

The basis of Definition (2.74) is the fact that the system may be viewed as one

with AK different channel outputs and detector inputs. Hence, there are exactly
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Udiv diversity channels in the system. This can be verified mathematically through

Equation (2.58): the input signal vector a has N components, one for each user. The

overall channel matrix X consists of N inputs and AK outputs. Thus, the overall

output signal vector y has AK components. Each component can be interpreted as

a separate diversity input signal to the detector.

The effective degree of diversity in the system depends on the number of diversity

channels and the number of users. Moreover, it also depends on the frequency.

Let the effective degree of diversity at the normalized frequency f̌ be defined as

Udiv minus the number of users in the system (N) if the rank of the channel matrix

X(D) evaluated at D = e−j2πf̌ is equal to N . On the other hand, if the rank of

X(D) is smaller than N , the system will be under-determined at this frequency and

it will not be possible to estimate the data input signal a(D) at D = e−j2πf̌ from the

observation y(D) with a linear detector. It follows from the above that each additional

user reduces the effective degree of diversity generally by one unless it causes the row

vectors of the channel matrix to become linearly dependent. In the latter case, the

system becomes singular at this particular frequency, which corresponds to a spectral

null in a single-input single-output system.

The above discussion implies that the data input signals a may be estimated from

the observation y with a linear detector as long as the number of users (N) is smaller

than or equal to the number of diversity channels (Udiv). This is a necessary but not

a sufficient condition for the feasibility of estimating a. A sufficient condition is that

the rank of the channel matrix X(D) is equal to N for all D on the unit circle.



Chapter 3

Calculation of the Error

Probability

3.1 Introduction

Consider a communications system which transmits periodically pulses chosen from

a finite set of waveforms. It is the objective of the detector to decide which waveform

has been sent. The quality of the detector is determined by the number of errors it

produces.

The detection process is impaired by two effects: noise and interference. Ran-

dom noise originates normally at the receiver front end. It is usually added to the

information signal. Its probability characteristic is very often modeled as a Gaussian

distribution, however certain processes may be described more accurately by other

distributions. The second impairment is interference and encompasses malicious in-

teraction among other communication signals with the signal of interest or between

the signal with itself. The former is often referred to as adjacent channel interfer-

ence (ACI) and cochannel interference (CCI). ACI occurs because of leaking from

communication signals sent over adjacent frequency bands. CCI is interference from

signals using the same frequency band as the desired signal. Other forms of interfer-

ence are narrow and broadband interferers from different communications systems or

devices generating electromagnetic waves. The signal of interest may also interfere
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with itself and cause intersymbol interference (ISI). This will happen if waveforms

sent at different times interact with and distort each other. Causes of that kind of

self-interference are bandwidth limitations of the communications system, imperfect

design of the transmitted signals and receive filters, distortion due to dispersive or

multipath channels, and nonideal sampling instants. If the interfering signals of adja-

cent and co-channels are uncorrelated with, and sent at the same symbol rate as, the

desired signal, the effect of ACI, CCI and ISI on the system will be comparable and

they can be described identically in mathematical terms. This is shown subsequently

for the case of a multiuser system, in which several users communicate simultaneously.

The error probability is the ultimate performance criterion of the described com-

munications system. However, it becomes very difficult to calculate the exact value

when interference is contained in the signal. An easy solution is to approximate the

interference term by a Gaussian distributed random variable with the same variance.

However, interference is in many cases described inaccurately by a Gaussian probabil-

ity distribution and leads under these circumstances to wrong results when the error

rate is determined. It is therefore necessary to take the specific statistical properties

of the interference into account.

Several methods have been proposed in the literature for the accurate calculation

or approximation of the error probability. It turns out that conceptual simple ap-

proaches are either inaccurate or computationally complex and inefficient. On the

other hand, more sophisticated methods have been developed that are both very

accurate and efficient.

In this chapter, the Saltzberg upper bound on the error probability is extended

to multiple-input multiple-output (MIMO) systems and equalizers. A new class of

error probability bounds and approximations, based on McGee’s approximation of

the Q-function [72], is derived and introduced. It consists of a first- and second-order

approximation. The first-order approximation results in an exact upper bound and an

energy upper bound solely based on the signal-to-interference-and-noise ratio (SINR)

and the interference-to-noise ratio (INR). The second-order approximation leads to

an approximate upper bound.

The new error probability approximations are efficient and very accurate. Nu-
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merical results obtained through extensive simulations yielded for the second-order

approximation relative errors1 below 0.1% in situations of most practical interest. In

the most extreme cases, the relative errors approached 100%. The corresponding rel-

ative errors for the exact first-order bound were 10% and below 1000%, respectively.

The first-order energy upper bound performed comparable to a Gaussian approxima-

tion2.

3.2 Model

The following analysis and results will be restricted to pulse amplitude modulation

(PAM) and rectangular quadrature amplitude modulation (QAM), which is essen-

tially PAM of both inphase and quadrature signals. The objective in the case of PAM

is basically to find the probability that a real random variable with one-dimensional

range exceeds a certain threshold. QAM may be reduced to two independent one-

dimensional random variables and can be solved in the same fashion. One basic

assumption for the QAM analysis is that the inphase and quadrature components of

the modulated signal are independent.

Consider a multiuser system consisting of N users and a single base station with

a receiver front end as described in Chapter 2. Each user transmits a data sequence

ai (i ∈ IN ), after spreading with a code of processing gain K, over a communication

channel. The signals are received at A different antennas and white Gaussian noise

is added to each element. The receiver filters, demodulates and samples the signals.

As shown in Figure 3.1, the system parts consisting of channel and receiver front

end can be described completely by a discrete-time complex baseband vector model

(Chapter 2), whose output signal is the vector sequence y with AK components.

1The relative error is defined as the difference between the approximation and the true probability
of error normalized by the smaller of these two values (see Equation (3.132)).

2For the Gaussian approximation, it is assumed that the interference is Gaussian distributed.
Although this is obviously not correct, the assumption is made in order to obtain a very simple
expression. The error caused by the assumption may or may not be small depending on the situation.
Note that the first-order energy upper bound always yields an estimate which is larger than the true
error probability while this is not necessarily the case for the Gaussian approximation.
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Figure 3.1: System block diagram including channel, equalizer and decision-feedback
loop.

Let us consider optional data processing by an equalizer3 with or without a decision-

feedback loop. The forward filter may be described by an AK × N matrix filter C,

whose elements clk define a discrete-time filter between input l and output k. Previous

decisions âk may be fed into a causal N × N feedback matrix filter B in order to

reconstruct and cancel remaining interference from the output signal of the forward

filter.

Let us describe the linear system part by the N ×N matrix filter

H [n] � X[n] >C[n]. (3.1)

The input signal to the decision element can then be written as

ã[n] = a[n] >H [n] + â[n] >B[n] + ζ[n] (3.2)

where ζ[n] = ν [n] >C[n] is a vector consisting of N colored Gaussian noise sequences

ζk � [ζ]k.

The quantized decisions âk[n] � [â[n]]k (k ∈ IN ) belong to the same alphabet

of complex numbers as the input data (ak[n], âk[n] ∈ Ak). The modulation scheme

is restricted to quadrature amplitude modulated (QAM) systems with rectangular

signal constellations (see Section 2.3.2.1). The inphase and the quadrature signals of

user k are then pulse amplitude modulated with an even number of signal levels Lre
k

and Lim
k , respectively4.

3The results obtained by the following analysis are valid for equalization as well as any other
kind of linear combination of the received signal.

4This includes the general case that different users may apply modulation schemes with a different
number of levels.
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The output signal shall be formulated by a simple expression. Let us start with

the system output which may be described equivalently by N scalar equations

ãk[n] =

N∑
i=1

∞∑
m=−∞

ai[n−m]hik[m] +

N∑
i=1

∞∑
m=−∞

âi[n−m]bik[m] + ζk[n], ∀k ∈ IN

(3.3)

where hik � [H]ik and bik � [B]ik are the (i, k)-th components of H and B, respec-

tively. The feedback filter impulse responses are causal, i.e. bik[n] = 0 for n ≤ 0, ∀i, k ∈
IN .

Let us, from this point on, make the fundamental assumption that all decisions

provided to the feedback filter are correct, i.e.

âi[n] = ai[n], ∀i ∈ IN , n ∈ Z. (3.4)

Formally, this assumption is wrong since the combination of interference and noise

will eventually cause erroneous decisions. However, in situations when the error

probability is low, the mistake caused by this assumption may be small or even

negligible. Thus, for the decision-feedback equalizer (DFE), the following results are

reasonable only when the effect of wrong decisions in the feedback loop is small.

On the other hand, the assumption turns out to be crucial for the mathematical

tractability of the DFE. Note that this problem does not arise for linear receivers.

Under the assumption of correct decisions (3.4), the input to the k-th decision

device (3.3) becomes

ãk[n] =
N∑
i=1

∞∑
m=−∞

ai[n−m] (hik[m] + bik[m]) + ζk[n], ∀k ∈ IN (3.5)

As a result of the modulation scheme and the complex baseband representation,

all quantities are in general complex. They may be expressed in terms of their real
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and imaginary parts

ai[n] � arei [n] + ja
im
i [n] (3.6)

ãk[n] � ãrek [n] + jã
im
k [n] (3.7)

hik[n] � hre
ik[n] + jh

im
ik [n] (3.8)

bik[n] � breik[n] + jb
im
ik [n]. (3.9)

ζk[n] � ζrek [n] + jζ
im
k [n] (3.10)

The real and imaginary parts of the input signal to the decision element are obtained

by substituting Equations (3.6) to (3.9) into (3.3):

ãrek [n] =
N∑
i=1

∞∑
m=−∞

{
arei [n−m] (hre

ik[m] + breik[m])

− aimi [n−m]
(
him
ik [m] + bimik [m]

)}
+ ζrek [n] (3.11)

ãimk [n] =
N∑
i=1

∞∑
m=−∞

{
aimi [n−m] (hre

ik[m] + breik[m])

+ arei [n−m]
(
him
ik [m] + bimik [m]

)}
+ ζ imk [n] (3.12)

According to the modulation format as described above and in Section 2.3.2.1, the

real and imaginary input data symbols belong to the sets Sre
i and S im

i , respectively:

arei [n] ∈ Sre
i (3.13)

aimi [n] ∈ S im
i (3.14)

where Sre
i and S im

i are defined in Equations (2.8) and (2.9).

The input signals to the decision devices ãrek [n] and ã
im
k [n], given by Equations (3.11)

and (3.12), consist of a noise component and a signal component. The signal compo-

nent of the inphase signal ãrek [n] is equal to a
re
k [n]h

re
kk[0]. Analogously, a

im
k [n]hre

kk[0] is

the signal component of the quadrature signal ãimk [n]. It can easily be shown that the

optimal slicing levels of the decision element are equal to the midpoints between two

adjacent signal components [34]. In the considered case, all possible signal compo-
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nents of the inphase component are given by the elements of the set Sre
i multiplied by

the bias coefficient hre
kk[0]. Analogously, all signal components of the quadrature com-

ponent are Sre
i h

re
kk[0]. Thus, the optimal slicing levels of the inphase and quadrature

signal of the k-th user are

0,±κkhre
kk[0],±2κkhre

kk[0], . . . ,±
(
Lre
k

2
− 1

)
κkh

re
kk[0] (3.15)

0,±κkhre
kk[0],±2κkhre

kk[0], . . . ,±
(
Lim
k

2
− 1

)
κkh

re
kk[0] (3.16)

For the inphase signal, the probability of exceeding the decision threshold in the

positive direction is

P re
ex,k = Prob

{
ãrek [n] >

(
arek [n] +

1

2
κk

)
hre
kk[0]

}
(3.17)

= Prob

{
N∑
i=1

∞∑
m=−∞

{
arei [n−m] (hre

ik[m] + breik[m])− aimi [n−m]
(
him
ik [m] + bimik [m]

)}

− arek [n]hre
kk[0] + ζ

re
k [n] >

1

2
κkh

re
kk[0]

}
(3.18)

Analogously for the quadrature signal, we get

P im
ex,k = Prob

{
ãimk [n] >

(
aimk [n] +

1

2
κk

)
hre
kk[0]

}
(3.19)

= Prob

{
N∑
i=1

∞∑
m=−∞

{
aimi [n−m] (hre

ik[m] + breik[m]) + arei [n−m]
(
him
ik [m] + bimik [m]

)}

− aimk [n]hre
kk[0] + ζ

im
k [n] >

1

2
κkh

re
kk[0]

}
(3.20)

Note that the probability density of the combined interference and noise is an even

function and the distance between the ideal signal level and either of the two adjacent

decision thresholds is the same. Therefore, the probabilities of exceeding the decision

threshold in the negative direction are also equal to P re
ex,k and P

im
ex,k, respectively.

Let the modulation scheme for the inphase or quadrature signal of the k-th user

be Lk-level PAM. There are (Lk − 2) inner levels for which an error occurs when the
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decision threshold is exceeded in either the positive or negative direction. Since the

probability of exceeding either threshold is Pex,k, the probability of a symbol error for

an inner level is 2Pex,k. For the two remaining outer levels, the threshold can only

be exceeded in one direction, leading to a symbol error probability of Pex,k. If we

consider in addition Gray coding, i.e. adjacent symbols differ in exactly one bit, and

assume that all symbols are equiprobable, the bit error rate (BER) for the inphase

or quadrature signal of user k is with very high accuracy5.

Pb,k = 2
Lk − 1

Lk

Pex,k. (3.21)

It is assumed that the data symbols are generated randomly and take on each

element of the set Sre
k (or S im

k ) with equal probability. The variance of the two

real pulse amplitude modulated signals arek [n] and a
im
k [n], denoted by Ere

a,k and E im
a,k,

respectively, is then given by Equations (2.10) and (2.11).

The noise signals, which are Gaussian distributed with zero mean and variance

Eζ,k, and the data sequences are assumed to be independent, i.e.

E
[
|ζk[n]|2

]
� Eζ,k (3.22)

E
[
|ζrek [n]|

2] � Ere
ζ,k =

1

2
Eζ,k (3.23)

E
[∣∣ζ imk [n]

∣∣2] � E im
ζ,k =

1

2
Eζ,k (3.24)

E [a∗i [n]ζk[m]] = 0, ∀i, k, n,m (3.25)

All data signals arei and aimi are considered to be mutually and temporally in-

dependent with zero mean. This implies the following relations (Equation (A.9),

5The assumption made is that a symbol error causes exactly one bit error. Using Gray coding,
symbols adjacent to each other differ in only one bit. Considering a sufficiently high SINR, the
majority of errors are caused by exceeding only the closest decision threshold, resulting in exactly
one bit error per symbol error. In this case, the probability for the decision variable to exceed more
than the adjacent threshold is very small and may be neglected. As a result, Equation (3.21) is an
excellent approximation to the BER provided that the SINR at the input to the decision device is
sufficiently high. In low SINR systems, the decision variable may exceed two or more consecutive
thresholds relatively often, resulting in a decision which differs by more than one bit from the correct
symbol. Under this circumstance, the exact BER may be significantly larger than the value provided
by Equation (3.21).
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(A.10))

E [arei [n]a
re
k [m]] = Ere

a,i δK[i− k]δK[n−m] (3.26)

E
[
aimi [n]aimk [m]

]
= E im

a,i δK [i− k]δK[n−m] (3.27)

E
[
arei [n]a

im
k [m]

]
= 0, ∀i, k, n,m (3.28)

where δK [n] is the Kronecker delta sequence (see Table A.3).

In order to simplify the notation, define the sequences

α̃(p)
n �


 ãrek [n], p = 2k − 2

ãimk [n], p = 2k − 1
(3.29)

α(l)
n �


 arei [n], l = 2i − 2

aimi [n], l = 2i − 1
(3.30)

h(l,p)
n �




hre
ik[n] + b

re
ik[n], p = 2k − 2 l = 2i− 2

−(him
ik [n] + b

im
ik [n]), p = 2k − 2 l = 2i− 1

him
ik [n] + b

im
ik [n], p = 2k − 1 l = 2i− 2

hre
ik[n] + b

re
ik[n], p = 2k − 1 l = 2i− 1

(3.31)

ζ(p)n �


 ζrek [n], p = 2k − 2

ζ imk [n], p = 2k − 1
(3.32)

where the subscript n denotes the time index. Note that the indices l and p take on

the values l, p ∈ {0, 1, 2, . . . , 2N − 1}. With the above definitions, the expressions

for the inphase (3.11) and quadrature parts (3.12) of the input signal to the decision

device may be combined into a single equation:

α̃(p)
n =

2N−1∑
l=0

∞∑
m=−∞

α
(l)
n−mh

(l,p)
m + ζ(p)n (3.33)

Consider that the parameters n and p are fixed. In order to simplify the notation

further, the substitution i = 2Nm + l − p is introduced and the following variables
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are defined:

α̃0 � α̃(p)
n (3.34)

αi = α2Nm+l−p � α
(l)
n−m (3.35)

hi = h2Nm+l−p � h(l,p)
m . (3.36)

ζ0 � ζ(p)n (3.37)

The desired symbol has the indices l = p and m = 0. This translates into i = 0.

Hence, the desired signal information is contained in the product of α
(p)
n = α0 and

h
(p,p)
0 = h0. Using the above notational transformation, the decision variable of the

quantizer is

α̃0 = α0h0 +
∞∑

i=−∞
i�=0

αihi + ζ0. (3.38)

The first term on the right hand side of the above equation constitutes the signal

component while the summation term is the interference part comprising ACI, CCI

and ISI. The third term is Gaussian noise.

Combining Definitions (3.30) and (3.32) with Equations (3.22) to (3.28) yields the

following expressions for the cross-correlations of data and noise

E [αiαl] = Eα,i δK [i− l], ∀i, l ∈ Z (3.39)

E [αiζ0] = 0, ∀i ∈ Z (3.40)

E
[
|ζ0|2

]
= Eζ . (3.41)

Using the optimal slicing levels as specified in Equation (3.15) or (3.16), the prob-
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ability of exceeding the decision threshold in the positive direction is given by

Pex = Prob

{
α̃0 >

(
α0 +

1

2
κ0

)
h0

}
(3.42)

= Prob




∞∑
i=−∞
i�=0

αihi + ζ0 >
1

2
κ0h0


 (3.43)

where κ0 is the distance between two adjacent modulation levels of the symbol α0.

The probability of exceeding the decision threshold in the negative direction is also

equal to Pex. If L is the number of PAM signal levels for the data symbol α0 and

Gray coding is applied, the bit error rate will be very well approximated by

Pb = 2
L − 1

L
Pex. (3.44)

Let us summarize the main results of this section. The relatively tedious ex-

pressions (3.11) and (3.12) for the input signals to the decision device have been

formulated in the equivalent but significantly simpler form (3.38). This shows that

ISI, CCI and interference from the quadrature signals can be described mathemati-

cally in the same fashion. In fact, the simple model (3.38) completely describes any

multiuser system that includes an arbitrary linear equalizer. It may also describe

a multiuser system using a decision-feedback equalizer provided that the effect of

fed-back decision errors can be neglected.

3.3 Saltzberg Bound for Multiple-Input Multiple-

Output Systems

The work of Saltzberg [103] is used in this section in order to find an upper bound

on the error probability which depends exclusively on the signal-to-interference-and-

noise ratio (SINR). Initially, rectangular QAM with possibly a different number of

modulation levels for inphase and quadrature components is considered. It is shown

for this case that the upper bounds are generally different for inphase and quadrature
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signals. After that, the special case of square QAM is investigated, for which the

number of inphase and quadrature modulation levels is the same. It turns out that,

in this situation, the upper error bounds for both inphase and quadrature signals

are identical. Moreover, it is shown that the error bound may be expressed in terms

of the SINR of the complex baseband output signal ãk. Since this SINR and the

MMSE of a linear or decision-feedback equalizer are connected through a unique

relationship (Section 4.4), the upper bound on the error probability can be expressed

in terms of the MMSE. This is an important result because it enables a performance

evaluation of equalizers using a simple expression, which depends only on the MMSE.

Let us start with rectangular QAM at the transmitters. The number of modulation

levels is Lre
k and Lim

k for the inphase and quadrature signal, respectively. The two real

input signals to the decision device, ãrek and ãimk , are given in Equations (3.11) and

(3.12), respectively. The final decision depends on both the signal component and the

distortion component, where the latter is responsible for possible errors. It is obvious

that the signal components of ãrek and ãimk are

χre
S,k[n] = arek [n]h

re
kk[0] (3.45)

χim
S,k[n] = aimk [n]hre

kk[0], (3.46)

respectively. All other remaining terms in ãrek and ãimk are either interference or noise

components. Together, they constitute the distortion components

χre
IN,k[n] = ãrek [n]− arek [n]hre

kk[0] (3.47)

χim
IN,k[n] = ãimk [n]− aimk [n]hre

kk[0]. (3.48)

The energy in the signal component determines the signal energy

Ere
S,k � E

[∣∣χre
S,k[n]

∣∣2] = Ere
a,k(h

re
kk[0])

2 (3.49)

E im
S,k � E

[∣∣χre
S,k[n]

∣∣2] = E im
a,k(h

re
kk[0])

2. (3.50)
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Analogously, the distortion energies are

Ere
IN,k � E

[∣∣χre
IN,k[n]

∣∣2]

=

N∑
i=1

∞∑
m=−∞

{
Ere
a,i (h

re
ik[m] + breik[m])2 + E im

a,i

(
him
ik [m] + bimik [m]

)2}

− Ere
a,k(h

re
kk[0])

2 + Ere
ζ,k (3.51)

E im
IN,k � E

[∣∣χim
IN,k[n]

∣∣2]

=

N∑
i=1

∞∑
m=−∞

{
Ere
a,i

(
him
ik [m] + bimik [m]

)2
+ E im

a,i (h
re
ik[m] + breik[m])

2
}

− E im
a,k(h

re
kk[0])

2 + E im
ζ,k (3.52)

where the final result is obtained by substituting Equations (3.11) and (3.12) for the

quantities in the expectations. The signal-to-interference-and-noise ratio is defined as

the ratio between signal and distortion energies. Thus, the inphase and quadrature

SINR of user k are

Φre
k �

Ere
S,k

Ere
IN,k

(3.53)

Φim
k �

E im
S,k

E im
IN,k

. (3.54)

The error rate is determined by the probability of exceeding the decision threshold,

which is formulated for inphase and quadrature signals of user k in Equations (3.18)

and (3.20), respectively. This probability can be upper bounded as described by

Saltzberg [103]. In particular, since the data symbols are mutually uncorrelated for
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all i ∈ Z, one may use the approximation [103]

P re
ex,k ≤ exp

{
−
(
1

2
κkh

re
kk[0]

)2

/

[
2

N∑
i=1

∞∑
m=−∞

{
Ere
a,i (h

re
ik[m] + breik[m])2

+ E im
a,i

(
him
ik [m] + bimik [m]

)2}− 2Ere
a,k(h

re
kk[0])

2 + 2Ere
ζ,k

]}
(3.55)

P im
ex,k ≤ exp

{
−
(
1

2
κkh

re
kk[0]

)2

/

[
2

N∑
i=1

∞∑
m=−∞

{
Ere
a,i

(
him
ik [m] + bimik [m]

)2

+ E im
a,i (h

re
ik[m] + breik[m])2

}
− 2E im

a,k(h
re
kk[0])

2 + 2E im
ζ,k

]}
(3.56)

Substituting Equations (3.49) to (3.54) into these bounds and considering (2.10),

(2.11) results in

P re
ex,k ≤ exp

{
− Φre

k

2ρ(Lre
k )

}
(3.57)

P im
ex,k ≤ exp

{
− Φim

k

2ρ(Lim
k )

}
(3.58)

where the function ρ(L) is defined by

ρ(L) � 1

3

[
L2 − 1

]
. (3.59)

Applying Equation (3.21), the bit error rates (BER) for the inphase and quadrature

signal of the k-th user are upper bounded by

P re
b,k ≤ 2

Lre
k − 1

Lre
k

exp

{
− Φre

k

2ρ(Lre
k )

}
(3.60)

P im
b,k ≤ 2

Lim
k − 1

Lim
k

exp

{
− Φim

k

2ρ(Lim
k )

}
. (3.61)

These equations are the final results for the rectangular QAM case. It can be seen

that the upper bound on the error probability depends only on the number of PAM

levels and on the SINR of the particular signal component at the input to the decision

device. Note that the signal energies of inphase and quadrature signals are in general
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not identical (Equations (3.49) and (3.50)). The same applies for the distortion

energies in Equations (3.51) and (3.52). Therefore, the error probabilities for the

inphase and quadrature component will be different unless the number of inphase

and quadrature modulation levels are identical for all users, i.e. Lre
i = Lim

i ∀i ∈ IN .

Special Case: Square QAM Let us now consider the special case of square QAM,

i.e.

Li = Lre
i = Lim

i , ∀i ∈ IN . (3.62)

The number of symbols in the QAM scheme (alphabet size) is equal to L2
i . Since

the variance of the complex data symbols ak[n] is normalized to unity, we obtain for

the variances of inphase and quadrature components the condition Ere
a,i + E im

a,i = 1.

In addition, the number of modulation levels and the distance between constellation

points is identical for both inphase and quadrature signals, resulting in identical

variances Ere
a,i = E im

a,i . Combining the last two conditions results in

Ere
a,i =

1

2
(3.63)

E im
a,i =

1

2
. (3.64)

The complex baseband signal at the input to the k-th decision device, ãk, is given by

Equation (3.3). The signal and distortion components of ãk are

χS,k[n] = ak[n]h
re
kk[0] (3.65)

χIN,k[n] = ãk[n]− ak[n]hre
kk[0]. (3.66)

With this, Equation (3.5) and the fact that the symbols ai[n] are zero mean, mutually

uncorrelated random variables with unit variance, the signal and distortion energies
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are found to be

ES,k � E
[
|χS,k[n]|2

]
= (hre

kk[0])
2 (3.67)

EIN,k � E
[
|χIN,k[n]|2

]
=

N∑
i=1

Ea,i
∞∑

m=−∞
|hik[m] + bik[m]|2 − (hre

kk[0])
2 + Eζ,k

=

N∑
i=1

Ea,i
∞∑

m=−∞

{
(hre

ik[m] + breik[m])
2
+
(
him
ik [m] + bimik [m]

)2} − (hre
kk[0])

2 + Eζ,k.

(3.68)

The total SINR at the input to the decision device is defined as the ratio of signal

and distortion energies, i.e.

Φk � ES,k

EIN,k
. (3.69)

Substituting Equations (3.23), (3.24), (3.63), (3.64) into (3.49), (3.50), (3.51), (3.52)

and comparing the result with Equations (3.67), (3.68) yields the following relation-

ships

ES,k = 2Ere
S,k = 2E im

S,k (3.70)

EIN,k = 2Ere
IN,k = 2E im

IN,k (3.71)

Φk = Φre
k = Φim

k . (3.72)

Substituting the last expression together with Equation (3.62) into Equations (3.57)

and (3.58), it is found that the probability of exceeding the decision threshold for the

inphase as well as the quadrature signal of user k is bounded by

Pex,k ≤ exp

{
− Φk

2ρ(Lk)

}
. (3.73)
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Finally, if Gray coding is used the total BER of the k-th signal will be upper bounded

by

Pb,k ≤ 2
Lk − 1

Lk
exp

{
− Φk

2ρ(Lk)

}
. (3.74)

This shows that an upper bound on the total BER can be found for square QAM

schemes if the SINR of the complex baseband signal at the input to the decision

device is known.

3.4 A Class of Error Probability Bounds and Ap-

proximations

A class of error probability bounds based on an approximation of the Gaussian prob-

ability distribution is presented and analyzed in this section. Given is a real signal

consisting of a signal component, interference and noise, and the objective is to find

the probability that the signal exceeds a certain threshold. Three crucial assumptions

are made: Firstly, the noise is a random variable with Gaussian (normal) probability

distribution and zero mean; secondly, the noise is independent of both signal compo-

nent and interference; and finally, the data symbols of the signal and interference are

mutually independent and zero mean.

The main idea is to approximate the natural logarithm of the Q-function, lnQ(x),

by a truncated version of its Taylor series. As a result, theQ-function can be expressed

as a finite product of exponential functions. In this form, it is possible to determine the

threshold probability in an elegant and efficient manner provided that the individual

components of the interference are mutually independent. This method and results

have been published in a paper [109].

In Section 3.4.2, the Taylor series of lnQ(x) is truncated after the linear term.

This results in an upper bound on the error probability and corresponds to a method

briefly outlined by McGee [72]. The general first-order approximation requires full

knowledge of the interference weights hi and leads to a tight upper bound. In certain

situations, only the energy of the total interference may be known, while the values
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of the hi are not available. For this case, a simpler albeit looser upper bound is

described in Section 3.4.2.1.

A very good approximation to the error probability is obtained by taking the

quadratic term of the Taylor series expansion into account (Section 3.4.3). It will be

shown that this approach leads to very accurate results. The main reason for this is

the fact that lnQ(x) may be approximated very well by a second order polynomial

in the vicinity of a point x0 ≥ 1. A disadvantage is that the result is not a strict

upper bound, but rather an approximation to the error probability. However, the

result will almost exclusively be larger than the true error probability. Therefore,

the second-order error probability approximation will be referred to as “approximate

upper bound”.

3.4.1 Problem Formulation

The decision variable at the input to the quantizer is according to Equation (3.38)

α̃0 = α0h0 +
∞∑

i=−∞
i�=0

αihi + ζ0. (3.75)

The data symbols αi are zero mean random variables drawn from a pulse amplitude

modulation (PAM) alphabet with Li levels (Li even) and distance κi. hi denotes the

i-th channel weight and ζ0 is a Gaussian distributed random variable with zero mean

and variance Eζ .
Let us, for reasons explained later, take the interference samples hi (i ∈ Z \ 0),

multiply them with one half of the distance of the corresponding signal alphabet

(κi/2), normalize the result by the standard deviation
√

Eζ of the Gaussian noise ζ0

and map them bijectively into a new sequence fk (k ∈ N) such that the magnitudes

of fk are nonincreasing. The corresponding data symbols αi are mapped into the
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sequence dk, so that

{hi|i ∈ Z \ 0} i
→k −→
{
fk =

κihi

2
√

Eζ

∣∣∣∣∣ f2
k ≥ f2

k+1, ∀k ∈ N

}
(3.76)

{αi|i ∈ Z \ 0} i
→k −→
{
dk =

2αi

κi

∣∣∣∣ k ∈ N

}
(3.77)

f0 =
κ0h0

2
√

Eζ
(3.78)

d0 =
2α0

κ0
. (3.79)

The normalized decision variable is then

α̃0√
Eζ

= d0f0 +

∞∑
k=1

dkfk + ζ̄0

= d0f0 + z + ζ̄0 (3.80)

where ζ̄0 � ζ0/
√

Eζ is the normalized Gaussian noise random variable with zero mean

and unit variance and the interference random variable is defined as

z �
∞∑
k=1

dkfk =
1√
Eζ

∞∑
i=−∞
i�=0

αihi. (3.81)

The individual data symbols dk are zero mean, mutually independent random vari-

ables. As a result of the transformation (3.77), (3.79), their possible values belong to

the set of odd integer numbers between −(Lk − 1) and Lk − 1:

dk ∈ {±1,±3,±5, . . . ,±(Lk − 1)}. (3.82)

It is assumed that the random variables are uniformly distributed, i.e. they assume

each value of the above set with equal probability. Therefore, the variance of dk is

E
[
|dk|2

]
= ρ(Lk), ∀k ∈ N0 (3.83)

where the function ρ(L) is defined in Equation (3.59).
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Using the optimal slicing levels as specified in Equation (3.15) or (3.16), the prob-

ability of exceeding the decision threshold in the positive direction is given by

Pex = Prob

{
α̃0√
Eζ
> (d0 + 1)f0

}

= Prob
{
ζ̄0 > f0 − z

}
=

∫ ∞

−∞
Q(f0 − z) pz(z) dz (3.84)

= E [Q (f0 − z)] (3.85)

where the expectation is taken over the interference random variable z, and the Q-

function as well as the expectation operator ‘E’ are defined in Table A.3. The problem

is that Equation (3.85) cannot be solved in this form. In general, it is not possible or

extremely difficult to determine the expectation taken over a nonlinear function of the

interference random variable. There are, however, some special nonlinear functions

for which it is feasible or for which a closed form expression exists. For example, it

is possible to determine the moments E[zn] (n ∈ N) with moderate computational

effort. An even simpler solution can be obtained for the exponential moment E[ez].

The problem might therefore be solved by replacing the Q-function in Equation (3.85)

with another nonlinear function for which the expectation can be determined. The

method described here approximates the Q-function by a product of exponentials

in z.

It follows from Equation (3.84) that Q(f0 − z) has to be approximated accurately

only in the interval in which pz(z) is supported, i.e. only for −D ≤ z ≤ D, where

D �
∑∞

k=1(Lk − 1)|fk| denotes the peak distortion of the interference. One may, for

example, approximate Q(f0 − z) reasonably well within the whole region of support

(ROS) |z| ≤ D (Legendre polynomial, Chebyshev polynomial, Fourier series). An-

other possibility is to use a locally optimal approximation around a point z0 such

that the approximation error vanishes for z = z0 and grows with increasing distance

from z (Taylor series). At first sight, a close approximation of Q(f0 − z) within the

whole ROS seem to be preferable. However, a locally optimal approximation may

yield superior results in this case since the point of development, z = z0, may be
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chosen favorably. Note in this context that pz(z) is even symmetrical around z = 0

and decreases, on average, strongly with increasing distance from the origin. On the

other hand, Q(f0 − z) increases strongly between z = 0 and z � f0. Assume that

the eye is open (D < f0) and that the product Q(f0 − z) pz(z) is maximal at or close

to z = z0. It can then be shown that, with growing distance from z = z0 into either

direction, the decreasing function will dominate over the increasing one such that

the product Q(f0 − z) pz(z) vanishes eventually. This behavior suggests to perform a

locally optimal approximation of Q(f0−z) around z0 since these values contribute by
far the most towards the integral (3.84). Conversely, less accuracy is necessary with

growing distance from z0 provided that the product of the approximation of Q(f0−z)
with pz(z) tends towards zero in this case. Thus, a locally optimal approximation of

Q(f0 − z) using a Taylor series approach is considered here.

Exponential Product Form of Q(x). The natural logarithm of theQ-function

may be expanded into a Taylor series:

lnQ(x) =
∞∑
n=0

1

n!

dn

dxn
lnQ(x)

∣∣∣∣
x=x0

(x− x0)
n (3.86)

where x0 ∈ R is arbitrary and n! is the factorial of n (see Table A.3). Taking the

exponent of the above equation yields

Q(x) = Q(x0)
∞∏
n=1

ecn(x−x0)n

(3.87)

where the coefficients cn are given by

cn =
1

n!

dn

dxn
lnQ(x)

∣∣∣∣
x=x0

. (3.88)

The product form of Q(x) serves as the starting point for the first- and second-order

approximations in Sections 3.4.2 and 3.4.3.

Exponential Moment of the Interference. The exponential moment E[eΛz]

of the interference random variable needs to be determined for later use. The param-
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eter Λ is in general a complex number, which can be expressed in terms of its real

and imaginary components:

Λ = λ+ jµ. (3.89)

Substituting Definition (3.81) into the exponential moment and using the fact that

the symbols dk are mutually independent random variables for all k ∈ N, we get

E
[
eΛz

]
= E

[
eΛ
P∞

k=1 dkfk

]

= E

[ ∞∏
k=1

eΛdkfk

]

=
∞∏
k=1

E
[
eΛdkfk

]
. (3.90)

Since the data symbols dk are uniformly distributed over the discrete set (3.82)),

the individual exponential moment becomes

E
[
eΛdkfk

]
=

1

Lk

Lk−1∑
i=0

e(2i−Lk+1)Λfk

=
1

Lk
e−(Lk−1)Λfk

Lk−1∑
i=0

(
e2Λfk

)i

=
1

Lk
e−(Lk−1)Λfk

(
e2Λfk

)Lk − 1

e2Λfk − 1

=
1

Lk

eLkΛfk − e−LkΛfk

eΛfk − e−Λfk

=
1

Lk

sinh (LkΛfk)

sinh (Λfk)
. (3.91)

Alternatively, the individual exponential moment can be bounded from above.

Saltzberg [103] has found an upper bound on the sum of hyperbolic cosines:

2

Lk

Lk/2∑
i=1

cosh[(2i− 1)λfk] < exp

(
1

2
ρ(Lk)λ

2f2
k

)
(3.92)

where λ ∈ R and the function ρ(L) is defined in Equation (3.59). Note that ρ(Lk)
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is the variance of the random data symbol dk. Using Saltzberg’s approximation, an

upper bound for the absolute value of the individual exponential moment is given by

∣∣E [
eΛdkfk

]∣∣ =
∣∣∣∣∣ 1Lk

Lk−1∑
i=0

e(2i−Lk+1)Λfk

∣∣∣∣∣
=

1

Lk

∣∣∣∣∣
Lk−1∑
i=0

e(2i−Lk+1)λfk ej(2i−Lk+1)µfk

∣∣∣∣∣
≤ 1

Lk

Lk−1∑
i=0

e(2i−Lk+1)λfk

=
2

Lk

Lk/2∑
i=1

cosh[(2i− 1)λfk]

< exp

(
1

2
ρ(Lk)λ

2f2
k

)
. (3.93)

3.4.2 First-Order Approximation

For the remainder of this section, only the term n = 1 in the product of Equa-

tion (3.87) is kept while all other terms are neglected. It can be shown, [72], that this

first-order approximation is a strict upper bound for the Q-function, i.e.

Q(x) ≤ Q(x0) e
c1(x−x0). (3.94)

Setting x = f0 − z, x0 = f0 − z0, c1 = −λ and substituting the above expression into

Equation (3.85) yields the probability

Pex < Q(f0 − z0) e−λz0 E
[
eλz

]
(3.95)

where

λ � −Q
′(f0 − z0)
Q(f0 − z0)

(3.96)

and Q′(f0 − z0) is the first derivative of Q(x) evaluated at the point x = f0 − z0. z0
is a parameter that can be chosen arbitrarily. It will be determined later such that
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the tightest bound is obtained.

Equation (3.95) contains the exponential moment of the interference. It can be

expressed as product of the individual exponential moments, as shown in Equa-

tion (3.90). An exact expression for the individual moments has been derived in

Equation (3.91). Generally, this relationship may be used for all interference compo-

nents. In some cases, however, the number of interference components is large, and

the computational effort required when considering all of them may be rather high.

It is often found that only a few components are large in magnitude while the re-

maining components fk are very small. A popular approach is to use only the strong

interference samples and neglect all weaker ones (truncated pulse train approxima-

tion). This may lead, however, to optimistic results since the neglected samples can

indeed contribute considerably to the overall error probability. Even if their individ-

ual magnitude is small, the combined energy of the neglected components may be

significant. This problem can be solved by upper bounding the contribution from the

small interference samples. A good choice is Saltzberg’s approximation (3.93), which

is rather loose if the exponent λdkfk is large. However, the smaller the magnitude of

the exponent becomes, the tighter the bound will be. For the required task of bound-

ing small components fk, it turns out to be an excellent approximation. Therefore,

the set of interference samples will be divided into two groups: One with relatively

large magnitudes and the other with small ones.

The reason for reorganizing the interference sequence in nonincreasing order (Trans-

formation (3.76)) becomes now obvious. Consider that there areM large interference

terms fk (k ∈ IM ). For these terms, the exact expression for the individual expo-

nential moment (3.91) will be used. The remaining interference contributions are

assumed to be sufficiently small such that their individual exponential moments are

very well approximated by the bound in Equation (3.93). Following Equation (3.90),

the exponential moment of the interference may be upper bounded by

E
[
eλz

]
< exp

(
1

2
Ez,Mλ2

) M∏
k=1

1

Lk

sinh (Lkλfk)

sinh (λfk)
(3.97)
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where Ez,M is the combined energy of the small interference components:

Ez,M �
∞∑

k=M+1

ρ(Lk)f
2
k . (3.98)

Substituting Equation (3.97) into (3.95) results in the general first-order upper

bound Pex < F1(z0), where

F1(z0) � Q(f0 − z0) exp
(
1

2
Ez,Mλ2 − λz0

) M∏
k=1

1

Lk

sinh (Lkλfk)

sinh (λfk)
. (3.99)

Note that this bound is valid for all values z0 ∈ R.

Tightest Upper Bound The tightest bound is obtained by minimizing the

upper bound F1(z0) with respect to z0. It is shown in Appendix F that the first

derivative of F1(z0) is given by

dF1(z0)

dz0
= F1(z0)

dλ

dz0
g(z0) (3.100)

where g(z0) is defined as

g(z0) � Ez,Mλ− z0 +
M∑
k=1

fk [Lk coth(Lkλfk)− coth(λfk)]. (3.101)

Lemma 3.1 (a) The function F1(z0) is always positive, i.e.

F1(z0) > 0, ∀z0 ∈ R. (3.102)

(b) λ is always positive, i.e.

λ > 0, ∀z0 ∈ R. (3.103)
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(c) The derivative dλ/dz0 is always negative, i.e.

dλ

dz0
< 0, ∀z0 ∈ R. (3.104)

(d) g(z0) is a strictly monotonically decreasing function in z0, i.e.

g(z0 + δz0) < g(z0), ∀δz0 > 0, z0 ∈ R. (3.105)

(e) g(z0) has exactly one root z̄0, i.e.

g(z0) = 0, if and only if z0 = z̄0. (3.106)

Proof. See Appendix F.

�

By applying the results of Lemma 3.1 to Equation (3.100), it follows that dF1(z0)/dz0 =

0 if and only if z0 = z̄0. Moreover, it is obvious that dF1(z0)/dz0 < 0 for z0 < z̄0

and dF1(z0)/dz0 > 0 for z0 > z̄0. Thus, the global minimum of the function F1(z0)

is located at the point z0 = z̄0. z̄0 is the solution of the transcendental equation

g(z̄0) = 0. The final result is stated in the following theorem.

Theorem 3.1 The tightest first-order upper bound for the threshold probability is

Pex < Q(f0 − z̄0) exp
(
1

2
Ez,M λ̄2 − λ̄z̄0

) M∏
k=1

1

Lk

sinh
(
Lkλ̄fk

)
sinh

(
λ̄fk

) (3.107)

where the optimal parameters λ̄ and z̄0 satisfy the conditions

λ̄ = −Q
′(f0 − z̄0)
Q(f0 − z̄0)

(3.108)

z̄0 = Ez,M λ̄+
M∑
k=1

fk
[
Lk coth(Lkλ̄fk)− coth(λ̄fk)

]
. (3.109)

Numerical Determination of the Optimal Parameter The solution of

g(z̄0) = 0 determines the optimal parameter z̄0. A closed form solution does not



3.4 A Class of Error Probability Bounds and Approximations 109

exist because it is a transcendental equation. However, this does not pose a problem

in practice since effective iterative algorithms are well known in order to find the solu-

tion for such expressions. One example is “Newton algorithm”. In the particular case

of the above equation, however, it was found that the algorithm diverges in certain

extreme situations. In order to guarantee convergence, other well known methods

can be applied. These algorithms enclose the solution between two values and nar-

row the region successively until the desired root is found with appropriate precision.

The most efficient methods are those by Dowell and Jarratt [25, 26], Anderson and

Björck [8] and King [59]. A very good description and comparison of these methods

is presented in the book of Engeln-Müllges and Reutter [32].

3.4.2.1 Energy Upper Bound

The general first-order bound of Theorem 3.1 becomes tighter the more individual

exponential moments are calculated by the exact expression in Equation (3.91), i.e.

the larger the value of M is chosen. This requires, on the other hand, explicit knowl-

edge of the interference weights fk for all k ∈ IM , which may not be available in

some situations. If only the respective energies of interference and Gaussian noise are

known, the special case M = 0 could be considered. Under this condition, the upper

bound of Theorem 3.1 reduces to

Pex < Q(f0 − z̄0) exp
(
− z̄20
2Ez,0

)
(3.110)

where the optimal parameter z̄0 is the solution of the transcendental equation

z̄0 = Ez,0
Q′(f0 − z̄0)
Q(f0 − z̄0)

. (3.111)
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Note that Ez,0 is the variance of the normalized interference, i.e.

Ez,0 =
∞∑
k=1

ρ(Lk)f
2
k

= E
[
|z|2

]
=

1

Eζ

∞∑
i=−∞
i�=0

Eα,ih2
i . (3.112)

The last expression shows that Ez,0 is equal to the interference-to-noise ratio (INR),

i.e. the ratio of interference energy to Gaussian noise energy.

The numerical algorithms described in the previous section may be used to find the

solution of Equation (3.111). These methods require starting values for the iteration.

One can use for example z̄0,0 = 0. Alternatively, an initial value may be obtained

from the following observations. For high signal to interference and noise ratios, the

argument f0 − z̄0 is considerably larger than 1. Under this condition, the approxi-

mation in Equation (F.19) and (F.2) may be substituted into Equation (3.111). This

yields

z̄0 � Ez,0
Ez,0 + 1

f0. (3.113)

The value on the right hand side of the above equation turns out to be a good choice

for the iteration start value z̄0,0 provided that the SINR is high.

3.4.2.2 Special Case: Binary Modulation

In the case of binary modulation there are only two modulation levels, i.e.

dk ∈ {−1, 1}

Lk = 2
∀k ∈ N0. (3.114)



3.4 A Class of Error Probability Bounds and Approximations 111

Using the hyperbolic trigonometric relationships [5]

sinh(2x) = 2 sinh(x) cosh(x)

cosh(2x) = cosh2(x) + sinh2(x), ∀x ∈ C,

it can easily be shown that

1

2

sinh(2x)

sinh(x)
= cosh(x) (3.115)

2 coth(2x)− coth(x) = tanh(x). (3.116)

These two expressions can be substituted into Equations (3.107) and (3.109). Pro-

vided that binary modulation is used, the tightest first-order bound for the threshold

probability is given by

Pex < Q(f0 − z̄0) exp
(
1

2
Ez,M λ̄2 − λ̄z̄0

) M∏
k=1

cosh(λ̄fk) (3.117)

where the optimal parameters λ̄ and z̄0 satisfy the conditions (3.108) and

z̄0 = Ez,M λ̄+
M∑
k=1

fk tanh(λ̄fk). (3.118)

3.4.3 Second-Order Approximation

The product form of Q(x) in Equation (3.87) shall now be truncated after the second

term. This yields the approximation

Q(x) ≈ Q(x0) e
c1(x−x0) ec2(x−x0)2 (3.119)

where the parameters c1 and c2 are determined by Equation (3.88). The major

problem with this expression is that a simple closed-form solution of the exponential

interference moment E[ez+z2 ] does not exist. This difficulty may be resolved by

approximating the exponential e−x2
with a more convenient expression. For example,

the general form of e−x2
is similar to the cosine function around x = 0. In particular,
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the exponential may be upper bounded by

e−x2 ≤ 1

3

[
2 + cos(

√
6x)

]
=

2

3
+
1

6
exp(j

√
6x) +

1

6
exp(−j

√
6x). (3.120)

The parameters of the cosine function have been chosen such that the best approxi-

mation around x = 0 is obtained. Expanding both e−x2
and the cosine function into

a Taylor series, it appears that the first three non-zero terms are identical. The series

become different only for sixth and higher orders in x.

The second-order approximation (3.119) and bound (3.120) are now used to de-

termine the threshold probability Pex. Using Equation (3.88) and the substitution

x0 = f0 − z0, the coefficients c1 and c2 are given by:

c1 =
d

dx
lnQ(x)

∣∣∣∣
x=x0

=
Q′(f0 − z0)
Q(f0 − z0)

(3.96)
= −λ (3.121)

c2 =
1

2

d2

dx2
lnQ(x)

∣∣∣∣
x=x0

=
1

2

Q′′(f0 − z0)
Q(f0 − z0)

− 1

2

[
Q′(f0 − z0)
Q(f0 − z0)

]2

(F.16)
=

1

2
λ(f0 − z0 − λ). (3.122)

Note that c2 < 0 since λ > 0 and λ − f0 + z0 > 0 according to Lemma 3.1(b) and

Equation (F.21), respectively. This guarantees that the second-order exponential is of

the form e−x2
with a negative exponent. Substituting Equations (3.119) and (3.120)

as well as the relationships x = f0 − z, x0 = f0 − z0, λ = −c1 and µ =
√
−6c2 into

(3.85) results in

Pex ≈ Q(f0 − z0)
{
2

3
e−λz0 E

[
eλz

]
+
1

6
e−Λz0 E

[
eΛz

]
+
1

6
e−Λ∗z0 E

[
eΛ

∗z
]}

(3.123)
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where Λ � λ + jµ according to Equation (3.89). The quantity λ is defined by

Equation (3.96), while µ is given by

µ �
√
−6c2

=
√
3λ(λ − f0 + z0). (3.124)

The exponential moments of the interference may be expressed as product of individ-

ual exponential exponents (3.90). Analog to Section 3.4.2, the exact expression for

the individual exponential moment (3.91) is used for the interference samples with

large magnitudes fk, ∀k ∈ IM , while the small interference samples (fk, ∀k > M) are

bounded by Expression (3.93). This results in the second-order approximation of the

threshold probability:

Pex ≈ Q(f0 − z̄0) exp
(
1

2
Ez,M λ̄2

) {
2

3
e−λ̄z̄0

M∏
k=1

1

Lk

sinh
(
Lkλ̄fk

)
sinh

(
λ̄fk

)
+
1

6
e−Λ̄z̄0

M∏
k=1

1

Lk

sinh
(
LkΛ̄fk

)
sinh

(
Λ̄fk

)
+
1

6
e−Λ̄∗z̄0

M∏
k=1

1

Lk

sinh
(
LkΛ̄

∗fk
)

sinh
(
Λ̄∗fk

)
}
. (3.125)

In order to get a good approximation, the value z0 = z̄0 has to be chosen carefully. It is

known from the previous section that the best first-order bound is obtained when the

parameter z̄0 satisfies condition (3.109). Obviously, the Taylor approximation (3.94)

of Q(f0−z) around this value leads to the best estimate of the error probability when

it is substituted into the expectation (3.85). It is therefore reasonable to assume that

the same point of development will also provide a good result for the second-order

approximation because it is based on the same Taylor series expansion. Furthermore,

the second-order product representation is a better approximation of Q(x) than the

first-order expansion (3.94). Thus, using the same value for z̄0 in expression (3.125)

will yield a better estimation of Pex than the respective first-order formula (3.107).

Consequently, the same optimization criterion is used as in the first-order case, and

the parameters λ̄ and z̄0 are chosen such that they satisfy the conditions (3.108) and
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(3.109), respectively. The parameter Λ̄ is then obtained through

Λ̄ = λ̄+ jµ̄ (3.126)

µ̄ =
√
3λ̄(λ̄− f0 + z̄0). (3.127)

3.4.3.1 Special Case: Binary Modulation

For binary modulation, Lk = 2 ∀k ∈ N0. The relation (3.115) may be substituted

into Equation (3.125) and the second-order approximation turns out to be

Pex ≈Q(f0 − z̄0) exp
(
1

2
Ez,M λ̄2

) {
2

3
e−λ̄z̄0

M∏
k=1

cosh(λ̄fk)

+
1

6
e−Λ̄z̄0

M∏
k=1

1

Lk
cosh(Λ̄fk) +

1

6
e−Λ̄∗ z̄0

M∏
k=1

1

Lk
cosh(Λ̄∗fk)

}
(3.128)

where Λ̄ = λ̄ + jµ̄. The parameters λ̄ and µ̄ have to be determined by finding

the solution z̄0 of the transcendental Equation (3.118) and substituting it into the

expressions (3.108) and (3.127).

3.5 Numerical Results and Comparison

This section is dedicated to the performance evaluation of the first- and second-order

error approximations derived previously. In addition, their performance is compared

to that of the following standard approximations:

• Gaussian approximation,

• Saltzberg energy upper bound,

• Prabhu’s upper bound [96], and

• Yue’s approximation [135].

In the Gaussian approximation, the interference is replaced by Gaussian noise with

the same energy. This leads readily to the following approximation of the threshold
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probability Pex

P̃Gauss = Q

(√
Φ

ρ(L0)

)
(3.129)

where ρ(L0) is defined in Equation (3.59) and the signal-to-interference-and-noise

ratio (SINR) Φ is given by

Φ =
ρ(L0)f

2
0

Ez,0 + 1
. (3.130)

Note that the interference samples fk, ∀k ∈ N0 are normalized by the standard devi-

ation of the (unnormalized) Gaussian noise ζ0 (Equation (3.76)) and the normalized

Gaussian noise ζ̄0 has unit variance.

A bound is usually preferred to an approximation because it provides a best or

worst case estimate. The Saltzberg upper energy bound requires, as the Gaussian

approximation, only information about the SINR at the input to the decision device.

According to Section 3.3, the threshold probability is upper bounded by

P̃Saltz = exp

{
− Φ

2ρ(L0)

}
. (3.131)

It can easily be shown that the Saltzberg energy bound is always larger than the

Gaussian approximation.

Compared to the above energy approximations, the estimates of Prabhu [96] and

Yue [135] require considerably more information. In particular, it is necessary to

explicitly know the values of the interference samples hi, ∀i ∈ Z and the Gaussian

noise variance Eζ (or, alternatively, the normalized interference samples fk, ∀k ∈ N0).

Both estimates also require a substantial higher number of computations. This is due

to the two main steps in the algorithms: firstly, the solution of a one-dimensional

transcendental equation has to be determined; secondly, an exponential moment or

a comparable quantity needs to be computed via a series expression, involving the

repeated application of logarithm and hyperbolic trigonometric functions.
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In terms of necessary information and computational complexity, the first-order

energy upper bound of Section 3.4.2.1 can be compared to the Gaussian and Saltz-

berg approximations. In addition to the SINR, knowledge of the interference-to-noise

ratio (INR) Ez,0 is explicitly needed, i.e. it is necessary to know how the distortion

energy is distributed between interference and Gaussian noise. The first-order energy

bound is also computationally more complex since the solution of the transcendental

Equation (3.111) has to be determined. However, it requires significantly less com-

putations than the algorithms of Prabhu, Yue and the exact first- and second-order

bounds because the transcendental equation has a simpler form and no exponential

moments have to be calculated.

As the methods of Prabhu and Yue, the exact first- and second-order approxima-

tions described in Sections 3.4.2 and 3.4.3 require the knowledge of all interference

samples hi (fk) as well as the variance of the Gaussian noise. They are also com-

parable to Prabhu’s and Yue’s estimates in terms of computational complexity. All

of those algorithms need to calculate the solution of a transcendental equation of

comparable complexity. Furthermore, the first-order bound has to calculate one ex-

ponential moment. Hence, it is computationally as complex as Prabhu’s algorithm.

The second-order bound requires an additional complex exponential moment, which

makes it slightly less efficient than the former bounds and comparable to Yue’s ap-

proximation. In practice, certain properties of the series expression in Yue’s algorithm

may be exploited to reduce the number of computations. This places it in terms of

computational efficiency between the exact first- and second-order approximations.

On a larger scale, the computational complexity of all four algorithms is approxi-

mately the same.

The performance of the above approximations is evaluated using the relative error

between the value P̃ex obtained from the approximation and the exact threshold

probability Pex:

ε � P̃ex − Pex

min
{
P̃ex;Pex

} . (3.132)
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The “minimum” normalization in this definition ensures that too large and too small

approximations are weighted equally. Consider for example Pex = 10−6, P̃ex,s = 10−9

and P̃ex,l = 10−3. Both approximations are inaccurate by the same factor 1000. The

relative errors according to Equation (3.132) are εs = −999 and εl = 999, respectively.

Since the calculation of the exact threshold probability according to the exhaustive

evaluation of all possible information sequences becomes unpractical for a moderate

and large number of interference samples, a reference algorithm is used to provide a

very good approximation of Pex. The method of Helstrom [47] has been chosen for this

purpose. This algorithm approximates a Laplace inversion integral along a contour in

the complex plane via numerical quadrature. By successively extending the numerical

integration limits and narrowing the step size, the exact threshold probability Pex can

be calculated with arbitrary accuracy. For given integration limits, an upper bound

of the relative error can be determined if the noise ζ0 is Gaussian distributed. This

allows to reduce the relative error due to truncation of the integration range below a

preselected accuracy. Additionally, the numerical integration step size may be reduced

until the desired accuracy is achieved. For the following results, the relative error of

Pex obtained by Helstrom’s algorithm was forced to be below 10−10. Obviously, the

feature of preselecting an arbitrary accuracy is highly desirable. It comes, however, at

the price of significantly increased computational complexity. For each interpolation

point of the integral in the upper complex plane, one exponential moment has to be

calculated. Depending on the desired accuracy, the interference and Gaussian noise

characteristics, the number of exponential moments to be computed may be very

large. Although extremely more efficient than the exhaustive method, Helstrom’s

algorithm requires distinctly more numerical calculations than the approximations

mentioned above.

Three Standard Pulses The threshold probability is determined by two factors:

the signal-to-(Gaussian)-noise ratio (SNR) and the amplitude distribution of the in-

terference at the input of the decision device. The latter depends on the received pulse

waveform and on the sampling instant if a simple communications system without

equalizer is considered.
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A good error approximation algorithm provides accurate results for all possible

parameter values (SNR, sampling instant) and pulse shapes. Therefore, the proposed

approximations have to be tested for a broad range of parameters and different pulses.

The most commonly used test waveforms have been adopted from the literature and

include three pulse shapes: the Gaussian pulse, the Chebyshev pulse and the ideal

bandlimited pulse (sinc pulse). These three waveforms cover to some extent the pos-

sible characteristics of interference, such as for example peak distortion, number of

significant interferers or the amount of magnitude decay between adjacent interfer-

ence samples. It is interesting to note that the performance evaluation of almost all

approximation algorithms described in the literature relies at most on only the three

mentioned waveforms. This seems, at first sight, to be not sufficient, however, good

performance of a certain approximation algorithm for all of the three pulses is a strong

indicator that it will perform well for other waveforms. This section investigates the

performance of the different algorithms for all three pulses mentioned and for a broad

range of SNR’s and sampling instants.

Consider a certain pulse waveform h(t). The interference samples hi, ∀i ∈ Z

(Equation (3.75)) are then obtained by sampling the pulse at the times t = t0 + iT ,

which yields hi = h(t0+iT ), where T is the symbol period. It is, for practical reasons,

desirable to restrict the number of non-zero interference samples to a finite number

(for example, computer simulations require that the amount of data be finite). Thus,

a finite set of Nh interference samples is chosen according to the rule

hi =


 h(t0 + iT ), −$Nh/2% ≤ i ≤ $Nh/2%

0, i < −$Nh/2% or i > $Nh/2%
(3.133)

where i ∈ Z and $x% is the smallest integer larger than or equal to x (Table A.3). t0/T

is called the sampling instant. Ideally, one would like to realize an optimal sampling

instant of t0/T = 0. An increasing deviation from the ideal sampling instant causes

usually an increase in the interference and a decrease in the received signal energy.

Both factors lead to a deterioration of the system performance. The SNR defines in

this section the ratio of the expected energy contained in the ideal reference sample
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α0h(0) and the Gaussian noise energy. The SNR is then defined as 6

SNR � Eα,0h2(0)

Eζ
(3.134)

where Eα,0 is the variance of the data symbol to be estimated (α0).

The three pulse waveforms used for performance evaluation correspond to different

characteristics of the interference. The Gaussian pulse is defined by the shape [67]

h(t) = exp

{
−
(
8t

5T

)2
}
. (3.135)

Two characteristics of this pulse shape are that the amplitude of consecutive interfer-

ence samples is decaying very strongly and that interference will always be present,

even if the sampling instant is ideal (t0/T = 0). The first property ensures that there

are only very few significant interference samples. The term ‘peak distortion’ defines

the worst case or maximal possible amplitude value that the combined interference

can assume. Generally, the peak distortion of the Gaussian pulse is relatively small

even for larger sampling instant deviations.

The second waveform considered is the Chebyshev pulse [67]

h(t) =
2∑

i=1

Ai cos

(
ωi

|t|
T

− φi
)
exp

(
−βi

|t|
T

)
(3.136)

with

A1 = 0.4032 ω1 = 2.839 φ1 = 0.7553 β1 = 0.4587

A2 = 0.7163 ω2 = 1.176 φ2 = 0.1602 β2 = 1.107.

The interference samples of this pulse are decaying more slowly. Thus, there will

be more interference samples with significant amplitude than for the Gaussian pulse.

6In other sections of this dissertation, the term ‘SNR’ refers to the received signal-to-noise ratio
which is defined by the ratio of the total energy contained in the waveform h(t) and power spectral
density of the white Gaussian noise (N0), i.e. SNR � Eα,0/N0

∫∞
−∞ |h(t)|2 dt. The definition of the

SNR according to Equation (3.134) is used here in order to conform with the literature.
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This causes a larger peak distortion for non-ideal sampling instants. Additionally,

interference will be present for all sampling instants.

Finally, the ideal bandwidth limited pulse is considered. It has the shape of a sinc

function:

h(t) =
sin(πt/T )

πt/T
. (3.137)

In this case, the interference samples decay relatively slowly since their amplitude

is inversely proportional to the time t. There will be no interference if the sampling

instant is ideal (t0/T = 0). However, deviations from the ideal sampling instant cause

a strong increase in interference. An interesting characteristic of this pulse is that the

peak distortion will be infinitely large for any non-ideal sampling instant if an infinite

number of interference samples is considered (Nh → ∞).

Quantities Describing the Interference The above method to define interfer-

ence uses three different parameters: SNR, sampling instant and pulse shape. These

parameters are oriented towards practical situations occurring in basic communica-

tions systems. For more sophisticated receivers including, for example, equalizers, the

sampling instant loses its significance and a more valuable parameter than the SNR

at the receiver input is the SINR at the input to the decision device. Moreover, the

‘parameter’ signal shape is more of qualitative nature and cannot easily be quantified.

More meaningful and quantifiable parameters that are also intuitively applicable

to sophisticated receivers are the signal-to-interference-and-noise ratio (SINR), the

interference-to-noise ratio (INR) and the relative peak distortion (D). It should,

however, be noted that these three parameters are not able to describe the interference

completely. The SINR defines the ratio of expected signal energy available at the

decision device input and the combined energy of interference and noise. For the signal

defined in Equation (3.80), the SINR is given by the expression in Equation (3.130).

Accordingly, the INR is defined by the ratio of interference energy to (Gaussian) noise

energy at the input to the decision device. For the normalized signal7, the INR is

7The normalized input signal to the decision device is α̃0/
√

Eζ = d0f0+
∑∞

k=1 dkfk+ζ̄0, as defined
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Figure 3.2: Contour plots of the SINR (in dB) versus SNR and the sampling instant
t0/T for (a) the Gaussian pulse, (b) the Chebyshev pulse, and (c) the ideal bandlimited
pulse.

identical to the combined, expected energy Ez,0 of all interference samples. Finally,

the relative peak distortion is the peak distortion normalized by the magnitude of the

signal sample, i.e. for the normalized signal

D =

∑∞
k=1(Lk − 1)|fk|

|f0|
. (3.138)

It indicates whether the ‘eye’ of the communications system is open (D < 1) or closed

(D ≥ 1).

The following graphs illustrate how the SINR, INR and normalized peak distortion

in Equation (3.80). The data symbols dk are assumed to be amplitude modulated with an even
number of Lk levels, each level being one of the odd integers ±1,±3, . . . ,±(Lk−1) (Equation (3.82)).
The slicing levels of the decision device are 0,±2f0,±4f0, . . . ,±(L0 − 2)f0.
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depend on the SNR and the sampling instant for the Gaussian, Chebyshev and sinc

pulses for Nh = 1000 nonzero interference samples (Equation (3.133)). Figure 3.2

shows, for each pulse, a contour plot of the SINR. Each contour line represents a

region of constant SINR, whose value in dB is printed on the line. For the Gaussian

and Chebyshev pulses, it can be seen that the SINR is always lower than the SNR,

even if t0/T = 0. This is a direct consequence of the fact that, no matter what the

sampling instant is, interference is always present. Note that the decline in SINR

with increasing t0/T is strongest for the sinc pulse, slightly less for the Chebyshev

pulse, and weakest for the Gaussian pulse. Hence, the energy in the interference

depends stronger on the sampling instant for the sinc and Chebyshev pulses than

for the Gaussian pulse. Contour plots of INR versus SNR and t0/T are shown in

Figure 3.3.

The peak distortion is only a function of the sampling instant and independent on

the SNR. The plot in Figure 3.4 shows this relationship for all three pulses. It is clear

that D grows most strongly with increasing t0/T for the sinc pulse. The dependency

is in this case almost linear and the eye will become closed if t0/T exceeds 0.07. D

is least sensitive with respect to the sampling instant for the Gaussian pulse. This

pulse has a closed eye for practically all values of the sampling instant.

Numerical Results The performance of the different approximation algorithms

shall now be investigated. Results are obtained for the Gaussian, Chebyshev and

ideal bandlimited pulses. The maximum number of non-zero interference pulses has

been set to Nh = 1000 (Equation (3.133)). For simplicity, BPSK modulation (Lk =

2, ∀k ∈ N0) has been considered for the simulations. The SNR and sampling instant

ranges have been chosen to cover a wide range including the cases of most practical

interest, in particular −10 dB ≤ SNR ≤ 30 dB and 0 ≤ t0/T ≤ 0.5.

Helstrom’s reference algorithm provides threshold probabilities Pex with relative

errors of less than 10−10. The results of the other approximation algorithms, denoted

P̃ex are then compared with the reference values by calculating the relative errors

according to Equation (3.132). For all following contour plots, the convention is used

that increasing levels of darkness correspond to larger values. The ratio between two
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Figure 3.3: Contour plots of the INR (in dB) versus SNR and the sampling instant
t0/T for (a) the Gaussian pulse, (b) the Chebyshev pulse, and (c) the ideal bandlimited
pulse.

consecutive contour lines is always a factor of ten. The values printed on the lines

represent the logarithm of the respective value to the base 10, i.e. a contour line

with the value ‘−2’ shows the region of constant values Pex = 10−2 or |ε| = 10−2,

respectively.

Figure 3.5 shows four contour plots for the Gaussian pulse. The first plot in the

upper left corner represents the values of the exact threshold probability Pex. The

other three plots display, in clockwise order, the magnitude of the relative errors

(|ε|) for the Gaussian approximation, the energy first-order bound and the Salzberg

bound.

The threshold probability (Figure 3.5(a)) starts to decrease strongly when the

SNR exceeds 10 dB. This is valid for a broad range of sampling instants. Only if t0/T
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Figure 3.4: Relative peak distortion versus sampling instant for the sinc, Chebyshev
and Gaussian pulses.

assumes large values greater than 0.35, the SNR needs to be increased significantly

for low error probabilities.

The contour plots of the relative errors show that all three “energy” approxima-

tions perform unsatisfactorily when the exact threshold probability is very low, i.e.

for high SNR’s and t0/T < 0.45. In this region, the estimates of the approximation

algorithms are by several orders of magnitude too large, and the results are overly

pessimistic.

Although providing poor results for high SNR’s, the Gaussian approximation per-

forms very well when the SNR is below 15 dB. This behavior can be anticipated

since the Gaussian noise contributes more and more to the overall distortion energy

when the SNR shrinks. As a result, the random variable consisting of interference

and noise will have a probability distribution that increasingly resembles a Gaussian

distribution.

The Saltzberg bound performs as badly as the Gaussian approximation for SNR’s
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Figure 3.5: Contour plots for the Gaussian pulse showing (a) the exact threshold
probability log10 Pex, and the relative errors log10 |ε| for (b) the Gaussian approxima-
tion, (c) the Saltzberg bound, and (d) the energy first-order bound.

larger than 18 dB. Unlike the latter, its results are also relatively poor for low SNR’s.

The relative error never fell below 100% for the SNR and sampling instant ranges

shown in Figure 3.5(c). Depending on the individual situation, the results of the

Saltzberg bound are between two times and many orders of magnitude too pessimistic.

The results of the energy first-order bound are comparable to those of the Gaussian

approximation. While providing good estimates in the low SNR range, the algorithm

performs poorly when the noise is low. Overall, the relative errors of the energy

first-order bound are slightly larger than those of the Gaussian approximation.

Unlike the energy estimates, the algorithms of Prabhu, Yue and the exact first- and

second-order approximations require explicit knowledge of all interference samples hi

(fk). The relative errors of these methods obtained for the Gaussian pulse are shown in
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Figure 3.6: Contour plots for the Gaussian pulse showing the relative errors log10 |ε|
for (a) the exact first-order bound, (b) the second-order approximation, (c) Prabhu’s
bound, and (d) Yue’s approximation.

Figure 3.6. All four algorithms perform good to excellent for all values of the SNR and

sampling instant considered here. Particularly for high SNR’s and low to moderate

sampling instants, i.e. in the region where the energy approximations completely fail,

the more complex algorithms provide astonishingly small relative errors. Especially

the second-order and Yue’s approximation achieve practically error-free results in this

area.

Of the four methods considered, Prabhu’s bound performs worst. It produces

comparatively high relative errors exceeding 100% in low SNR scenarios. However,

the results become increasingly good for growing SNR’s and smaller sampling instants.

The other three algorithms provide generally very good results. The best performance

is obtained with the second-order bound and Yue’s method. The second-order bound



3.5 Numerical Results and Comparison 127

−10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5
(b) rel. error of Gaussian approx.

SNR [dB]

t 0 / 
T

−7

−6
−5

−4

−3

−3

−2

−1
−1

0

1

−1

2

−10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5
(c) rel. error of Saltzberg bound

SNR [dB]

t 0 / 
T

1

2

3

−10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5
(d) rel. error of energy 1st−order bound

SNR [dB]

t 0 / 
T

−3 −2

−1

0

1
2

−10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5
(a) exact threshold probability

SNR [dB]

t 0 / 
T

−3

−2

−1

−1

Figure 3.7: Contour plots for the Chebyshev pulse showing (a) the exact threshold
probability log10 Pex, and the relative errors log10 |ε| for (b) the Gaussian approxima-
tion, (c) the Saltzberg bound, and (d) the energy first-order bound.

is slightly superior with relative errors always below 10%.

The next two Figures show the results for the Chebyshev pulse. Figure 3.7 displays

contour plots of the exact threshold probability (a), and relative errors for the three

energy bounds. The relative errors caused by the more complex methods are plotted

in Figure 3.8.

An increase in the sampling instant has a stronger impact on the exact threshold

probability for the Chebyshev pulse compared to the Gaussian pulse. In particular,

the threshold probability becomes relatively high for sampling instants exceeding 0.25

even if the SNR is large.

The general performance of the energy approximations shows comparable behavior

for both the Chebyshev and the Gaussian pulse. In the regions, where the exact
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Figure 3.8: Contour plots for the Chebyshev pulse showing the relative errors
log10 |ε| for (a) the exact first-order bound, (b) the second-order approximation, (c)
Prabhu’s bound, and (d) Yue’s approximation.

threshold probability is low, the energy bounds fail to provide acceptable results.

Depending on the required accuracy, the results of the Gaussian approximation and

the energy first-order bound will be satisfactory to good if the SNR is below 15 dB.

The Saltzberg energy bound may only be recommended if a 2 to 10 times too large

estimate is acceptable and the SNR is moderate to small.

Although their results are worse compared the Gaussian pulse case, the more

accurate methods also perform well for the Chebyshev pulse (Figure 3.8). Even in the

most extreme situations of high SNR’s and large sampling instants, the relative error

never exceeded 100% for both the second-order and Yue’s approximation. The results

of the first-order and Prabhu’s bound are worse, but still very good to acceptable in

most regions.



3.5 Numerical Results and Comparison 129

−10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5
(a) exact threshold probability

SNR [dB]

t 0 / 
T

−3
−2

−1

−1

−10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5
(d) rel. error of energy 1st−order bound

SNR [dB]

t 0 / 
T

−3

−2

−1

0

1

−10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5
(c) rel. error of Saltzberg bound

SNR [dB]

t 0 / 
T

1
2

−10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5
(b) rel. error of Gaussian approx.

SNR [dB]

t 0 / 
T

−7 −6
−5

−4

−3
−3

−2

−2

−1

0

−1

1

2

2 

Figure 3.9: Contour plots for the sinc pulse showing (a) the exact threshold prob-
ability log10 Pex, and the relative errors log10 |ε| for (b) the Gaussian approximation,
(c) the Saltzberg bound, and (d) the energy first-order bound.

Finally, results for the ideal bandwidth limited pulse are shown in Figures 3.9 and

3.10. The sinc pulse is most sensitive to an increase in the sampling instant, resulting

in a relatively large amount of interference and high peak distortion. In general, the

qualitative results for the energy and more complex approximations are the same as

for the Gaussian and Chebyshev pulses. The relative errors of Yue’s algorithm are in

this case slightly better than those of the second-order bound if the SNR’s are high.

These two methods outperform the other algorithms.

Summary All three energy bounds produce large errors when the exact threshold

probability is low, i.e. for high SNR’s and small to moderate sampling instants. Con-

sidering the relative error, the Gaussian approximation yields the best results among
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Figure 3.10: Contour plots for the sinc pulse showing the relative errors log10 |ε|
for (a) the exact first-order bound, (b) the second-order approximation, (c) Prabhu’s
bound, and (d) Yue’s approximation.

the energy based methods. A disadvantage is that its estimate is an approximation

which can be larger or smaller than the exact threshold probability. The results of

the energy first-order bound are slightly worse, however, they are always larger than

the exact values (upper bound). It provides therefore a strict worst case approxima-

tion, which may be desirable for certain applications. The Saltzberg bound yielded

the worst performance of the three energy approximations, deviating by at least two

times from the exact value.

Despite their limited performance, there is no alternative to the energy approx-

imations if information is available about only the energy of interference and noise.

When an approximation to the threshold probability is sufficient and the SNR is be-

low 15 dB, the Gaussian approximation can be recommended. If, on the other hand,
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a worst case estimate is desirable, the energy first-order bound should be applied.

In general, neither energy bound can be recommended in situations when the SNR

is larger than 15 dB or when the threshold probability falls below 10−6. In these

cases, all investigated energy methods produce large errors. It seems that approx-

imations solely based on the variance of noise and interference fail when the SNR

becomes large. In this situation, more information about the interference appears to

be necessary in order to obtain good estimates.

Whenever explicit knowledge about all interference samples is available, one of

the more complex algorithms should be used. Especially the second-order and Yue’s

approximation provided excellent estimates for all SNR’s and sampling instants. The

results shown indicate that their performance should also be very good for other pulse

shapes and interference distributions. If the number of computations is at a premium

and accurate results are required, the first-order bound may be considered. Prabhu’s

algorithm is not recommended because it performed always worse then the first-order

bound while requiring approximately the same amount of operations.

3.6 Conclusion

New strict and approximate upper bounds on the error probability have been intro-

duced which are computationally efficient. The approximations include an arbitrary

parameter that is optimized in order to achieve the tightest bound. The resulting

exponential moments of the interference can be computed easily [96]. For the calcu-

lation of the approximations, it is simply required to find numerically the root of a

transcendental equation and to evaluate exponential moments. An additional feature

is that small interference components can be tightly upper bounded by an expression

involving only their combined variance.

Terminating the Taylor series of lnQ(x) after the linear term results in the first-

order upper bound. A special case of it, the energy upper bound, requires knowledge

about only the variance (energy) of the interference and the variance of the Gaussian

noise. This bound provides reasonable accuracy for low to moderate SNR’s. However,

its results are extremely pessimistic when the true error probability is very small
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(< 10−3).

The general first-order upper bound requires explicit knowledge about the strong

interference samples. As a consequence, it provides significantly better results espe-

cially in situations where the energy bound fails. For the three pulses investigated

(Gaussian, Chebyshev, sinc pulse) and an open eye, the relative errors between the

first-order bound and the exact error probability did not exceed 20 %. This number

increased to a maximum of 171 % when the eye was closed.

The second-order approximation considers in addition the quadratic term of the

Taylor series and replaces the resulting factor e−x2
with a cosine function. It is the

most accurate albeit most complex of the derived algorithms. For the three pulses

investigated here, the relative errors were always below 1 % (open eye) and 120 %

(closed eye). Note that these values are the absolute worst case numbers that are

highly pessimistic. The price to be paid for the high accuracy is an increased amount

of necessary operations. Instead of none (energy bound) or one real exponential

moment (first-order bound), it requires the evaluation of one real and one complex

exponential moment. This is comparable to the complexity of Yue’s approxima-

tion [135]. In addition, the proposed and Yue’s method yield comparable accuracies.

The difference is that Yue’s results turn out to be below the true error probability in

most cases while we derived strict and approximate upper bounds.

The presented bounds are significantly more efficient than the more accurate ap-

proximations of Helstrom [47] and Beaulieu [11]. Helstrom’s algorithm, for example,

performs the calculation of an inverse Laplace transformation by numerical quadra-

ture and requires the evaluation of one complex exponential moment at each inte-

gration point. Depending on the system parameters and the desired accuracy, the

number of necessary integration points can vary between ten and several hundred.

Beaulieu’s approximation has a similar degree of computational complexity.



Chapter 4

Equalizers for Spread Spectrum

Multiuser Systems

4.1 Introduction

This chapter analyzes and discusses different multiple-input multiple-output (MIMO)

equalizer structures that can be used for the joint detection of multiple signals. In

addition, the effect of diversity and number of users on the performance is discussed

and quantified for the considered equalizers when they are employed in a wireless

multiuser system as described in Chapter 2.

The different types of MIMO equalizers analyzed include the linear equalizer (LE)

and the decision-feedback equalizer (DFE), whose structure is considered in both

the conventional (C-DFE) and the noise-predictive (NP-DFE) form. Considering

stationary or quasi-stationary environments, the analysis, based on a MMSE or ZF

criterion, may be carried out in either time- or frequency domain. Both approaches

are described and compared with respect to the number of necessary operations to

calculate the optimal equalizer filters1.

A new frequency-domain formulation of the optimal MMSE LE is derived, which

can be interpreted as a generalization of the noncausal Wiener filter [89]. This solu-

1Unless otherwise mentioned, the term “optimal” refers to “optimal with respect to the MMSE
(or ZF) criterion”.
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tion does not require information about the communication channels or the system

noise, which is necessary for the calculation of the well-known optimal LE structure

in the frequency domain [57, 51, 27]. The only quantities required are relatively easy

to determine or directly accessible.

Results and conclusions are obtained for the considered equalizer structures from

numerous investigations concerning the dependency of the detector performance on

the number of users, number of receive antennas and processing gain. Special atten-

tion is dedicated to a comparison between LE and DFE in terms of error probability,

outage probability and capacity. A new lower bound on the average MMSE of the

LE is derived. Finally, a formal proof is given that the direct relationship between

SINR and MMSE for the single-input single-output LE and DFE also holds for both

the MIMO LE and DFE. This enables the application of Foschini et al.’s [34] and

Saltzberg’s [103] upper error probability bound to MIMO equalizers.

Consider the system described in Chapter 2. The reverse link is investigated for

a system with N users and a single base station. The base station receives the asyn-

chronous signals at A different antennas. In addition to antenna diversity, frequency

diversity is used by transmitting signals with larger than Nyquist bandwidth. The

receiver consists of a multiple-input multiple-output (MIMO) linear (LE) or decision-

feedback equalizer (DFE). The quasi-stationary, frequency selective radio channels

between all users and the base station are assumed to be known at the receiver. This

describes the reverse link of a spectrally efficient, high data rate multiuser system that

combines the concepts of both frequency and antenna diversity in order to increase the

capacity and enable the system to support several users simultaneously. Frequency

diversity is introduced by spreading the bandwidth of all system users to K-times

the Nyquist bandwidth. The multiple access scheme associated with this method

is spread-spectrum multiple access (SSMA). Receiving the signals at A sufficiently

spaced antennas provides antenna diversity.

Several different receiver types have been developed in the past to suppress the

interfering signals and to allow for a reliable detection of all users. Among them are

the conventional matched filter receiver, maximum likelihood (MLSE) detector [122],

multistage detectors [120], successive and parallel interference cancelers [125, 50], and
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equalizer/combiner structures [131, 27]. Considering the number of publications, the

latter have proven to be highly attractive as they constitute an excellent compro-

mise between low complexity, low performance detectors (conventional matched filter

receiver) and high complexity, high performance receivers (MLSE detector). In ad-

dition, these receivers may offer a very high spectral efficiency, which is shown in

subsequent sections.

In general, equalizers may be categorized according to the following criteria:

• Employment of past decisions. The linear equalizer (LE) utilizes no past de-

cisons in the estimation process, while the decision-feedback equalizer (DFE)

does.

• Feedback structure. This criterion applies only to DFE’s and distinguishes

between the conventional DFE and the noise-predictive DFE (NP-DFE).

• Optimization criterion: minimum mean-square error (MMSE) or zero-forcing

(ZF).

• Optimization domain: frequency or time.

There are two main types of equalizers: the linear equalizer (LE) and the decision-

feedback equalizer. The former structure performs only linear operations on the

received signals before the decision device. In contrast, the DFE uses past decisions

in order to estimate and cancel interference and possibly noise in the present data

symbol. The use of former decisions, obtained through a nonlinear quantization

operation, causes the input of the decision device to be a nonlinear estimate.

The conventional DFE uses former decisions directly as inputs to the feedback

filter. Belfiore [13, 14] first described a feedback structure which calculates a sequence

of estimation errors2 by taking the difference between the decisions and the output

of the forward filter. Some past estimation errors are used as inputs to a linear

prediction filter which extrapolates and cancels the present estimation errors at the

output of the forward filter.

2Under the assumption that all decisions are correct.
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Most equalizers are optimized with respect to the minimum mean-square error

(MMSE) criterion, which minimizes the combined energy of both interference and

noise in the final, unquantized estimate. The main reason for this is two-fold: On one

hand, the MMSE criterion leads to a tractable and relatively simple mathematical

formulation, which may readily be solved. On the other hand, the mean-square error

(MSE) is a good indicator of the system performance because it strongly influences

the symbol error probability3. Additionally, the MMSE criterion lends itself to an

adaptive implementation of the equalizer parameters (tap weights) and leads generally

to a better performance than the zero-forcing (ZF) rule. The ZF criterion completely

nulls out all interference components in the final, unquantized estimate. This causes,

however, a more or less strong amplification of the Gaussian noise component such

that the overall distortion energy in the estimate is always higher than that of an

MMSE equalizer. Another disadvantage of the ZF rule is that it cannot as easily

be implemented for adaptive equalizers. In terms of mathematical tractability, con-

ceptional and computational complexity, both MMSE and ZF criteria are practically

identical.

The error probability is hardly used as a criterion for equalizer optimization since

it is extremely difficult, if not impossible [117], to determine the detector parameters

which minimize the probability of error.

It is generally possible to describe the system and its signals in either time- or

frequency-domain notation. Both approaches, which lead to different formulations of

the optimal equalizers, are described in the following sections. The different equalizer

formulations have advantages and disadvantages, which are discussed in more or less

detail. Overall, the particular application and the system properties determine which

solution is the better choice.

3In particular, it will be shown later in this chapter that a certain upper bound on the error
probability (Saltzberg bound) is a strictly monotonically increasing function of the MSE. Minimizing
the MSE therefore also minimizes this upper bound.
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Figure 4.1: System including MIMO linear or decision-feedback equalizer.

4.1.1 General Notation and Mean-Square Error

The general notation and signal definition used throughout the current chapter will

be introduced in the following paragraphs. Figure 4.1 shows the most general system

structure which is suitable for both linear and decision-feedback MIMO equalizers.

The signals and system blocks are described in Table 4.1.

The signals ĕ and e describe the estimation error signals at the output of the

forward filter and the input to the decision device, respectively:

ĕ � ă− a (4.1)

e � ã− a (4.2)

where the k-th components of ĕ and e shall be denoted by ĕk and ek, respectively:

ek � [e]k (4.3)

ĕk � [ĕ]k . (4.4)

If a decision-feedback structure is used in the equalizer, the signal ẽ will represent

an estimate of the error signal ĕ. The error estimate at time n, ẽ[n], is based on

previous decisions â[m] for m < n. On the other hand, if the detector consists of a

MIMO linear equalizer, there will be no error estimate from a feedback structure and

therefore ẽ[n] = 0N , ∀n ∈ Z, where 0N is the all zero row vector with N components

(Table A.7).

The mean-square errors (MSE’s) at the input to the decision device may be calcu-

lated in either the time- or the frequency-domain. Define the autocorrelation matrix
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Table 4.1: Description of system blocks and signals.

Variable Description Form

X overall channel matrix N × AK matrix filter

C forward filter of the MIMO equalizer AK ×N matrix filter

a transmitted data signal 1×N row vector signal

ν colored, correlated noise signal 1× AK row vector signal

y input signal to the equalizer 1× AK row vector signal

ă linear estimate at the output of the 1×N row vector signal

MIMO forward filter

ĕ estimation error at the output of the 1×N row vector signal

MIMO forward filter

ẽ feedback estimate of the error signal ĕ 1×N row vector signal

ã continuous-valued estimate at the 1×N row vector signal

input to the decision device

e estimation error at the input to the 1×N row vector signal

decision device

â final quantized estimate of the 1×N row vector signal

transmitted data signal a

of the estimation error e by

Re[m] � E
[
eH [n−m]e[n]

]
. (4.5)

Correspondingly, the power spectrum of the estimation error signal is

Se(D) � EM

[
eH(D−∗)e(D)

]
. (4.6)

Autocorrelation matrix and power spectrum are related through the D-transform:

Re[m]
D←→ Se(D). (4.7)

Furthermore, the power spectrum evaluated on the unit circleD = e−j2πf̌ , Se(e
−j2πf̌ ),

is the discrete-time Fourier transform (DTFT) of the estimation error autocorrelation:

Se(e
−j2πf̌ ) = Fdc{Re[m]}. (4.8)
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According to the derivation of the equivalent discrete-time model in Section 2.4, all

discrete-time signals used here may be obtained by sampling the respective continuous-

time signals at a period of T [s]. The normalized frequency f̌ can thus be interpreted

as

f̌ � fT (4.9)

where f is the physical frequency in Hertz (Hz).

The k-th mean-square error Jk is defined as the expectation over the squared differ-

ence between the estimate at the input to the decision device, ãk, and the transmitted

data of user k, ak,

Jk � E
[
|ek[n]|2

]
(4.10)

Note that Jk is equal to the k-th main diagonal element of the estimation error

autocorrelation matrix Re[m] at lag m = 0:

Jk = [Re[0]]kk , ∀k ∈ IN . (4.11)

Alternatively, the MSE Jk may be calculated by integrating the power spectrum of

the error estimate over the unit circle.

Jk =

∫ 1

0

[
Se(e

−j2πf̌)
]
kk
df̌ , ∀k ∈ IN . (4.12)

This is a direct consequence of the fact that Se(e
−j2πf̌ ) is the DTFT of Re[m].

4.2 MIMO Linear Equalizer

The linear equalizer (LE) combines the received signals linearly. According to Sec-

tion 2.3, the received analog signals have been lowpass filtered and sampled before

they enter the detector. A MIMO LE withM inputs and P outputs can then be fully

described by aM×P discrete-time matrix filterC [n]. A block diagram of the MIMO
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Figure 4.2: Structure of the multiple-input multiple-output (MIMO) linear equalizer
(LE).

LE detector is shown in Figure 4.2. The (m, p)-th element (m ∈ IM , p ∈ IP ) of the
matrix C[n] is a scalar sequence cmp[n] which represents the impulse response of a

linear time-invariant discrete-time filter between the m-th input and the p-th output

of the equalizer. The output signals of all M individual filters cmp (∀m ∈ IM , p fixed)
are added at the p-th matrix filter output and form the linear estimate ãp of the

input data sequence ap of user p. Finally, the decision device performs a nonlinear

quantization operation on the linear estimate which maps it to the closest number in

the finite, discrete set of possible data symbols.

The system model including the receiver front end has been introduced in Chap-

ter 2. Combining this (Figure 2.14) with the detector model for the MIMO LE

(Figure 4.2) results in the complete system model shown in Figure 4.3. There are N

users or system input signals. They are represented by the data vector a, which has N

components ai, one for each user i ∈ IN . The transmitted signals travel through AK

diversity channels, described by the N ×AK overall channel matrix filterX , and are

additively distorted by correlated, colored Gaussian noise signals νvl (l ∈ IA, v ∈ IK)
before they enter the MIMO detector. The input signal to the detector is described

by the vector y, which consists of AK components. This determines that the matrix

filter C of the MIMO LE be of size AK × N , corresponding to AK detector input
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Figure 4.3: Complete multiuser system model including MIMO LE.

signals and N output signals ãk (k ∈ IN ). The final decision âk on user k’s transmit-

ted data is a nonlinear estimate. It constitutes the k-th component of the final 1×N
decision vector â.

Let us describe the signals of the system in the D-domain. It follows then imme-

diately from Figure 4.3 that

y(D) = a(D)X(D) + ν(D) (4.13)

ã(D) = y(D)C(D). (4.14)

4.2.1 Minimum Mean-Square Error Linear Equalizer

The coefficients of the MMSE MIMO LE are defined by the requirement that the

mean-square errors (MSE’s) Jk � E[|ek[n]|2] be minimal for all k ∈ IN .

4.2.1.1 Frequency-Domain Approach

This section describes the MMSE MIMO LE in the frequency domain. The solution

for the optimum equalizer is well known in the literature. In the following, the known

results are adapted to the notation and the assumptions of the introduced system

model.

To my knowledge, the first work describing the general structure of the MMSE

MIMO LE was published by Kaye and George [57]. Assuming white Gaussian noise

signals and a continuous-time system, it was shown that the MMSE MIMO LE con-

sists of three parts: a bank of filters matched to the combined channels; N symbol-rate

samplers4; and finally a N×N discrete-time matrix filter. The bank of matched filters

4N is the number of users or multiplexed signals.
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can be described by a AK×N continuous-time matrix filterXH
C (−t) matched to the

overall channel matrix XC(t)
5.

It has been shown by van Etten [117] that this result can be easily extended to

correlated, colored Gaussian noise signals by including a noise-whitening matrix filter

at the detector front end. This linear transformation makes sure that the resulting

signals include only white noise and the result of Kaye and George may be applied.

Thus, an additional matrix filter matched to the noise-whitening matrix filter is re-

quired, followed by the previous structure consisting of a channel matched matrix

filter, samplers and a discrete-time matrix filter. Van Etten has shown that the

transfer function for the cascade of noise-whitening filter and the filter matched to it

is equal to the inverse of the noise power spectral density function. The same result

holds for the multidimensional matrix case, i.e. the transfer matrix for the cascade

of noise-whitening matrix filter and the matrix filter matched to it is equal to the

inverse of the noise power spectrum.

Under very mild conditions (Nyquist theorem), the sets of discrete-time signals

and bandwidth-limited continuous-time signals are related to each other by a bijec-

tive transformation, i.e. each discrete-time signal corresponds to one and only one

bandwidth-limited continuous-time signal. Thus, the above results for the optimal

equalizer structure may be applied to discrete-time systems. In conclusion, the struc-

ture of the MMSE MIMO LE for the discrete-time system described in Chapter 2

may be realized with the following elements:

• cascade of noise-whitening matrix filter and matrix filter matched to it. The

transfer function of these two elements is equal to S−1
ν (D), which is the inverse

of the noise power spectrum defined in Equation (2.62);

• matrix filter XH(D−∗), which is matched to the overall channel matrix X(D);

• N ×N matrix filter Lle,mmse(D).

5AK is the number of separately received signals.
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The forward matrix filter of the MMSE MIMO LE is then given by

C le,mmse,1(D) = S−1
ν (D)XH(D−∗)Lle,mmse(D). (4.15)

Combining the overall channel X(D) and the detector front-end consisting of

S−1
ν (D) andXH(D−∗) results in a discrete-time model with special properties: it can

be described by a N -input N -output equivalent channel Sx with

Sx(D) � X(D)S−1
ν (D)XH(D−∗), (4.16)

where the power spectrum of the noise signals in the new model is also equal to Sx.

This system was the basis for a publication by Duel-Hallen, [27], in which she showed

that the last element of the MMSE MIMO LE can be determined by

Lle,mmse(D) = Q−1(D) (4.17)

where Q(D) is defined as

Q(D) � Sx(D) + S−1
a (D) (4.18)

and Sa(D) is the power spectrum of the input data (Equation (2.61)). Sa(D) may

alternatively be calculated by taking the D-transform of the input data autocorrela-

tion:

Sa(D) = D {Ra[m]} (4.19)

Ra[m] � E[aH [n−m]a[n]]. (4.20)

Let us now determine the performance of the equalizer in terms of the minimum

mean-square error (MMSE). This can be done by integrating the power spectrum of

the estimation error, Se(D), over the unit circle (Equation (4.12)). The estimation
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error may be obtained by substituting Equations (4.14) and (4.13) into (4.2)

e(D) = a(D) [Sx(D)Lle,mmse(D) − IN ] + ν(D)S−1
ν (D)XH(D−∗)Lle,mmse(D).

(4.21)

The power spectrum of the estimation error can then be calculated by performing

the following steps: at first, the above equation for e(D) is substituted into Defini-

tion (4.6); the resulting expression is expanded and the occurring expectations are

replaced by the terms in Equations (2.61), (2.62) and (2.63); certain terms are re-

placed by Sx(D) and L(D) according to Equations (4.16) and (4.17); the expression is

manipulated using the fact that Sx(D) = SH
x (D

−∗) and Lle,mmse(D) = LH
le,mmse(D

−∗);

and finally, the term is expanded and simplified, which results in the simple relation-

ship

Se(D) = Lle,mmse(D). (4.22)

Applying Equation (4.12), the MMSE for the k-th user of the MMSE MIMO LE is

Jk,le,mmse =

∫ 1

0

[
Lle,mmse(e

−j2πf̌ )
]
kk
df̌ , ∀k ∈ IN . (4.23)

The frequency-domain description of the MMSE MIMO LE according to Equa-

tions (4.15) and (4.17) is formally and mathematically correct. However, it may not

be obvious how to calculate the equalizer parameters (tap weights) in practice from

these formulas, especially because it may be tedious to calculate inverses and express

the channel transfer function in the D-domain and perform an inverse D-transform.

A practical and computationally simple method is to evaluate the D-transform equa-

tions on the unit circle,D = e−j2πf̌ , and replace the D-transform with the appropriate

Fourier transform. In particular, we may calculate the transfer function of the overall

channel matrix by applying the discrete-time Fourier transform (Table A.9) on the
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matrix sequence X[n]:

X(e−j2πf̌ ) =

∞∑
n=−∞

X[n] e−j2πf̌n. (4.24)

Note that the result is equal to X(D) evaluated on the unit circle. The inverse

of a matrix transfer function Y (e−j2πf̌ ) is calculated by determining, for each fixed

frequency f̌ , the inverse of the resulting matrix. Finally, the relatively simple inverse

discrete-time Fourier transform replaces the more complicated inverse D-transform.

The described method of calculating the equalizer by evaluating the D-transform

quantities on the unit circle corresponds to approximating a pole/zero IIR filter by

an all-zero transversal filter. As a positive side-effect, this averts instability problems

of the resulting matrix filters.

For an implementation of the above method on a digital computer, the discrete

Fourier series should be applied instead. This brings the advantage that both time and

frequency signals may be described as finite discrete-domain sequences. For example,

the inverse of a matrix transfer function can then be calculated by computing only a

finite number of matrix inversions; in particular one matrix inversion at each discrete

frequency f̌ = k/L, where L is the length of the finite time- and frequency-domain

sequences. L has to be chosen of appropriate length in order to allow only negligible

time-domain aliasing and to minimize errors caused by this form of spectral inversion6.

The MMSE MIMO LE has also been derived by Salz [105] for a N -input N -output

continuous-time system and the case of uncorrelated data and white noise. His anal-

ysis has been based on a time-domain approach. Later, Honig et al. [51] derived the

solution for the MMSE MIMO LE in a continuous-time system with arbitrarily cor-

related data and noise signals. They used an approach different from Salz’, applying

properties of the z-transform and using a variational method to minimize the MSE.

The result is practically identical to Equations (4.15) and (4.17).

6In most cases, the inverse of a matrix filter Y (e−j2πf̌ ), Y −1(e−j2πf̌), corresponds to a time
domain matrix impulse response which is longer than the original matrix sequence Y [n]. The effect
is similar to the convolution operation, where the length of the output sequence is equal to the sum
of the lengths of input sequence and filter impulse response. However, such a general relation for
the required length is not known for the operation of frequency-domain inversion.
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In the following, the optimal MMSE MIMO LE matrix filter is derived differently.

This method will lead to a new expression for the optimal MMSE MIMO LE. In

addition, it will demonstrate the simplicity of the D-transform notation and its suit-

ability to the current problem. The method is somewhat similar to but simpler and

more elegant than Honig et al.’s method [51]. It can be viewed as an application of

Duel-Hallen’s approach [27] to the more general system model considered here.

The new expression shows that the frequency-domain representation of the optimal

MMSE MIMO LE matrix filter is equal to the inverse of the received signal’s power

spectrum multiplied by the cross-power spectrum of the received signal and the desired

data. Note that this is an important result since the received signal is known and some

information about the desired data is usually available (e.g. from a training sequence).

The new expression represents an extension to the noncausal Wiener filter [89], a

well-known result from estimation theory which expresses the optimal mean-square

estimator of a scalar random process in the frequency-domain. In particular, the

noncausal Wiener filter is a special case of the derived MIMO expression for the

single-input single-output (SISO) scenario.

Let us start with a necessary and sufficient condition for the equalizer to attain

the minimum MSE. One such condition is the orthogonality principle, which states

that an equalizer produces the minimal achievable MSE if and only if each estimation

error ek[n] (∀k ∈ IN) is orthogonal to all samples yq[n − m] (∀q ∈ IAK , ∀m ∈ Z)

of each input signal that enters the detector [46]. Mathematically, the orthogonality

principle can be formulated as

E[yH[n−m]e[n]] = OAK×N , ∀m ∈ Z (4.25)

where OAK×N is the AK ×N null matrix (Table A.7). It may as well be expressed

in the D-domain. Taking the D-transform of Equation (4.25) results, according to

Lemma 1.2, in the following equivalent formulation of the orthogonality principle:

EM [yH(D−∗)e(D)] = OAK×N , ∀D ∈ C. (4.26)

Let us define the power spectrum of the equalizer input signal, Sy(D), and the cross-
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power spectrum between the equalizer input signal and the transmitted data, Sya(D):

Sy(D) � EM [yH(D−∗)y(D)]

=XH(D−∗)Sa(D)X(D) + Sν(D) (4.27)

Sya(D) � EM [yH(D−∗)a(D)]

=XH(D−∗)Sa(D) (4.28)

where the last expressions are obtained by substituting Equations (4.13), (2.61), (2.62)

into the definitions. It is easy to show with the last two equations that the power

spectrum Sy(D) may alternatively be expressed in the form

Sy(D) = Sya(D)S
−1
a (D)SH

ya(D
−∗) + Sν(D). (4.29)

Expanding the orthogonality principle (4.26) using Equations (4.2), (4.14) and

substituting Equations (2.61), (2.62) and (2.63) yields the condition

Sy(D)C(D) − Sya(D) = OAK×N , ∀D ∈ C. (4.30)

This equation will be fulfilled if C(D) is given by either of the two following expres-

sions:

C le,mmse,1(D) = S−1
ν (D)Sya(D)

[
SH

ya(D
−∗)S−1

ν (D)Sya(D) + Sa(D)
]−1

Sa(D)

(4.31)

C le,mmse,2(D) = S−1
y (D)Sya(D). (4.32)

Note that the structure of both solutions is different. The second expression is ob-

tained simply by solving Equation (4.30) directly for C(D). On the other hand, the

first expression is identical with Equation (4.15), which can be shown immediately by

substituting Equation (4.28) into (4.31). The first solution may be found by applying

the matrix inversion lemma [46] to Equation (4.29), substituting this expression into

Equation (4.32) and simplifying the resulting term. A simpler proof is to substitute

solution (4.31) directly into Equation (4.30), which shows after some manipulation
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that the condition for the MMSE MIMO LE is satisfied.

It has been chosen to express the two solutions for the MMSE MIMO LE in terms

of the power spectra Sy and Sya since these quantities may be directly calculated

from a known training sequence and the input signal to the equalizer. Thus, both

solutions are directly expressed in terms of “available” quantities7.

A closed-form expression for the MMSE, which depends only on the directly avail-

able spectra Sy and Sya, shall now be derived. Considering the second form of the

MMSE MIMO LE (Equation (4.32)), the estimation error at the input to the decision

device is

e(D) = y(D)S−1
y (D)Sya(D)− a(D). (4.33)

Substituting this expression into the definition for the error power spectrum Se(D),

Equation (4.6), expanding the resulting term and applying the definitions (2.61),

(4.27), (4.28) yields

Se(D) = Sa(D) − SH
ya(D

−∗)S−1
y (D)Sya(D). (4.34)

This relationship can then directly be used in Equation (4.12) in order to calculate

the MMSE’s Jk,le,mmse.

The above results show that the MMSEMIMOLEmay be realized by two different

structures. The first one, C le,mmse,1(D), is identical to the well known cascade of three

elements: firstly a noise-whitening matched matrix filter S−1
ν (D); secondly a channel

matched matrix filter XH(D−∗); and finally a N ×N matrix filter Lle,mmse(D).

The second structure is different. It may be described by an AK × AK matrix

filter whose transfer function is identical to the inverse of the equalizer input signal

power spectrum Sy(D). This is followed by a matrix filter whose transfer function

is equal to the cross-correlation Sya(D) between the equalizer input signal y and the

input data a.

7Equation (4.15) expresses the first solution for the MMSE MIMO LE in terms of the channel
transfer function X(D). Although this quantity cannot be measured directly, it does not pose a
practical problem since X(D) may be obtained from the quantity Sya(D) with Equation (4.28).
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The second structure may also be interpreted in a different way: The input signal

to the equalizer y can be viewed as a wide sense stationary random process with

spectrum Sy(D). It is possible to factor this spectrum according to

Sy(D) = Υ
H(D−∗)Υ(D). (4.35)

There is an infinite number of factorsΥ(D) which satisfy the above equation, however,

one of them is usually of special interest: there exists one stable and causal matrix

filterΥ(D), which has a causal inverse [126, 127]. In this caseΥ−1(D) is the whitening

filter or the linear prediction-error filter of the process y. The MMSE MIMO LE can

now be expressed in the form

C le,mmse,2(D) = Υ
−1(D)Υ−H(D−∗)XH(D−∗)Sa(D) (4.36)

where the superscripts are defined in Table A.3. This leads to the following statement:

The MMSE MIMO LE may be realized by a cascade of three elements:

1. a matrix filter Υ−1(D) which whitens the input signal to the equalizer;

2. a matrix filter Υ−H(D−∗)XH(D−∗) matched to the transfer function between

the transmitted data and the whitened equalizer input signals;

3. a matrix filter whose transfer function is equal to the power spectrum Sa(D) of

the transmitted data.

4.2.1.2 Time-Domain Approach

This section briefly presents expressions, obtained from a time-domain analysis, for

the optimal forward filter and the MMSE of the finite-length MMSE MIMO LE. A

detailed derivation and discussion is presented in Appendix G.1.

Consider a finite-length forward matrix filter C[n], which is restricted to MC

non-zero matrix samples C[0],C[1],C[2], . . . ,C[MC − 1]. Let us define the extended
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equalizer coefficient matrix

C̄ �




C[MC − 1]

C[MC − 2]

C[MC − 3]
...

C[0]



. (4.37)

This matrix contains all parameters of the equalizer that have to be chosen such that

the mean-squared error (MSE) is minimized. It is shown in Appendix G.1 that the

optimal coefficients and the MMSE of the k-th signal are given by

C̄ le,mmse = R−1
ȳ Rȳa (4.38)

Jk,le,mmse =
[
Ra[0]−RH

ȳaR
−1
ȳ Rȳa

]
kk
, ∀k ∈ IN (4.39)

where Ra[0] is the autocorrelation matrix of the input data a at time-lag m = 0

(Equation (2.64)). The matrices Rȳ and Rȳa are defined in Appendix G.1. Rȳ is

positive semidefinite, Hermitian and block Toeplitz. Its size isMCAK×MCAK. Rȳa

is of size MCAK × AK.

4.2.1.3 Comparison: Frequency- and Time-Domain Solutions

Three structurally different solutions for the MMSE MIMO LE have been obtained

in the previous sections. The first two expressions (4.31) and (4.32) are the result

of a frequency-domain approach while the third solution (4.38) has been found using

time-domain analysis. This section will provide a brief discussion of the different

equalizer expressions based on a simplified operation count and other properties.

Let us start with the assumptions being made for the operation count:

• the frequency-domain solutions are used to calculate a truncated approximation

of the optimal infinite-length MMSE MIMO LE;

• the length of all truncated equalizer structures is MC samples;
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• all of the matrix sequences Sya(e
−j2πm/MC ), Rya[m], Sy(e

−j2πm/MC ), Ry[m],

S−1
ν (e−j2πm/MC ) are readily available and it is assumed that the numerical effort

to obtain them is the same for each one;

• possible sparsity of the matrices S−1
ν (e−j2πm/MC ), which might reduce the num-

ber of necessary operations, is not considered;

• the transmitted data signals are assumed to be stationary discrete-time stochas-

tic processes which are mutually and temporally independent with zero mean

and unit variance, i.e., Sa(D) = IN ;

• the computational effort needed to transform the frequency-domain solutions

C(e−j2πm/MC ) back into the time domain is not considered.

Generally, the frequency-domain solutions (4.31) and (4.32) describe the infinite-

length MMSE MIMO LE while the time-domain expression represents the optimal

finite-length equalizer. For practical purposes, the infinite-length solutions have to

be truncated. Truncated versions of the frequency-domain solutions are obtained by

evaluating the expressions for the equalizer, C(D), on the unit circle D = e−j2πf̌

and sampling the normalized frequency f̌ at MC equidistant points f̌m = m/MC ,

where m = 0, 1, 2, . . . ,MC − 1 and MC will be the length of the resulting truncated

equalizer impulse responses. In order to simplify the comparison, the lengths of all

three equalizer structures are chosen to be MC samples.

The number of operations necessary to transform discrete-domain frequency spec-

tra into correlation functions and vice versa is determined by the number of compu-

tations that a (inverse) fast Fourier transform (IFFT/FFT) requires. The number

of these operations may add to the overall computations needed to determine the

equalizer. This factor is, however, not considered in the following since whether or

not a IFFT/FFT is necessary depends on the implementation and technical details

of the equalizer.

For simplicity, it is assumed that the determination of the inverse noise spectrum

S−1
ν (e−j2πm/MC ) requires approximately the same numerical effort as the computation

of Sya(e
−j2πm/MC ),Rya[m], Sy(e

−j2πm/MC ) orRy[m]. This may not be true in practice
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and depends mainly on the individual situation.

The matrices S−1
ν (e−j2πm/MC ) may or may not be sparse, i.e. contain a large num-

ber of elements that are zero. If this is the case, the number of operations that

an inversion or matrix multiplication requires might be significantly reduced. For

example, if the noise consists only of random Gaussian processes that are mutually

independent at different receiver inputs (antennas), the inverse noise spectrum will

contain many zeros (Section 2.4.3). On the other hand, if the noise signals con-

tain cyclostationary interference (originating, for example, from jammers or adjacent

channel signals), there will be no or only few zeros in the noise spectrum. The latter

case is considered in the following.

The transmitted data sequences ak (k ∈ IN ) are in general mutually independent

for a multiuser system in which the data signals originate from spatially separated

users. Furthermore, the assumption that a certain data symbol ak[n] is independent

with any other symbol ak[m] (for all n �= m) is quite common for digital systems.

An equalizer is typically realized in a time-domain tapped delay-line structure.

For this, the frequency-domain solutions would have to be transformed to the time-

domain via IFFT. The number of operations required for this task is not considered

in the following.

The number of approximate operations (op) will be determined for each of the

three equalizer expressions. One operation is defined as the common execution of

one complex multiplication and one complex addition. In general, the multiplication

of a N × M- and a M × K-matrix requires NMK op (operations). The matrices

to be inverted are exclusively Hermitian. Thus, the matrix multiplication A−1B

is most efficiently solved by Cholesky factorization of A and backsubstitution with

each column of B [97]. If the matrices A and B are of the sizes N × N and N ×
M , respectively, the matrix multiplicationA−1B will require approximately N3/6 +

N2M op (operations).

Let us start with the first solution

C le,mmse,1(D) = S−1
ν (D)Sya(D)

[
SH

ya(D
−∗)S−1

ν (D)Sya(D) + IN
]−1
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where D = e−j2πm/MC , ∀m = 1, 2, 3, . . . ,MC − 1. Note that, for a fixed frequency

sample m, the matrices S−1
ν (e−j2πm/MC ) and Sya(e

−j2πm/MC ) are of size AK × AK

and AK×N , respectively. Matrix multiplication or inversion has to be performed at

each frequency sample separately, which means that the number of operations grows

linearly with the equalizer lengthMC . The calculation of the equalizer can be broken

down into three steps which require the following numbers of computations:

1. G1(D) = S−1
ν (D)Sya(D): MC(AK)2N op;

2. G2(D) = SH
ya(D

−∗)G1(D): MCAKN
2 op;

3. C le,mmse,1(D) = G1(D) [G2(D) + IN ]
−1
: MC [N

3/6 + AKN2] op.

The second frequency-domain solution for the MMSE MIMO LE is

C le,mmse,2(D) = S−1
y (D)Sya(D).

Again, this expression has to be evaluated atMC discrete frequencies D = e−j2πm/MC

(m = 1, 2, 3, . . . ,MC−1). S−1
y (e−j2πm/MC ) is a AK×AK matrix whileSya(e

−j2πm/MC )

is of size AK × N (m fixed). The combined execution of matrix inversion and mul-

tiplication, which results in C le,mmse,2(e
−j2πm/MC ), ∀m = 1, 2, 3, . . . ,MC − 1, requires

thus MC [(AK)3/6 + (AK)2N ] op.

Finally, the time-domain solution is according to Equation (4.38)

C̄ le,mmse = R−1
ȳ Rȳa

where the matrices Rȳ and Rȳa are of size MCAK × MCAK and MCAK × N ,

respectively. Hence, for the calculation of C̄ le,mmse, approximately (MCAK)3/6 +

(MCAK)2N op have to be executed. This estimate does not take into account that the

block-Toeplitz structure of Rȳ (Equation (G.15)) may be exploited in order to reduce

the number of computations. However, a reduction in the order of that promised

by the standard Levinson-Durbin algorithm cannot be expected since it may not be

applied to the inversion of Rȳ, which is merely block-Toeplitz.

Table 4.2 summarizes the approximate number of operations required for each of

the three MMSE MIMO LE expressions. It can be seen that the number of operations
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Table 4.2: Approximate number of operations required for the parameter calculation
of different MMSE MIMO LE implementations.

LE Implementation Eqn. Number of Operations

C le,mmse,1(e
−j2πm/MC ) (4.31) MC

[
(AK)2N + 2AKN2 + 1

6
N3

]
C le,mmse,2(e

−j2πm/MC ) (4.32) MC

[
(AK)2N + 1

6
(AK)3

]
C̄ le,mmse (4.38) M2

C(AK)2N + 1
6
M3

C(AK)3

grows linearly with the equalizer length MC for the two frequency-domain solutions

C le,mmse,1(e
−j2πm/MC ) and C le,mmse,2(e

−j2πm/MC ). For long equalizers, this is signif-

icantly more efficient than the time-domain solution C̄ le,mmse whose computational

load increases proportional to M3
C . Moreover, a problem of the time-domain solution

has been encountered in simulations: the matrix Rȳ has a tendency to become poorly

conditioned if its size and the SNR increase. On the other hand, this problem has not

occurred in the frequency-domain approach under exactly the same conditions. The

matrices to be inverted in the frequency-domain turned out to be well conditioned

for practically all simulations.

Another aspect for the comparison of the different solutions is the optimality of

the resulting equalizer. The time-domain solution yields the optimal finite-length

MMSE MIMO LE. In other words, the equalizer achieves the minimal MSE for a

preselected matrix filter length MC . On the other hand, evaluating the frequency-

domain expressions (4.31) and (4.32) on the unit circle D = e−j2πf̌ results in the op-

timal infinite-length MMSE MIMO LE after an inverse DTFT (discrete-time Fourier

transform) has been performed. The finite-length equalizer obtained by sampling the

normalized frequency f̌ at MC points can be viewed as approximation to the optimal

infinite-length equalizer. This approximation is not necessarily optimal for the given

equalizer length (number of tap weights). Therefore, the finite-length equalizers ob-

tained from the frequency-domain expressions have a theoretical performance that

is worse than that of time-domain optimized equalizers. However, if the equalizer

length MC is sufficiently high, the performance difference will become negligible.

The choice about which frequency-domain solution is preferable depends mainly on

the number of required operations. This, on the other hand, is strongly determined by
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the individual situation. For the assumptions made at the beginning of this section,

namely that the inverse noise spectrum, S−1
ν (D), is readily available and that the

transmitted symbols are mutually uncorrelated (Sa(D) = IN), the application of the

first solution C le,mmse,1(D) might be more efficient if N < AK. However, if these

conditions do not apply, the second expression C le,mmse,2(D) will normally require

less operations.

4.2.1.4 Lower Bound for the Average Minimum Mean-Square Error

In the following, a lower bound for the average MMSE of the linear equalizer will

be derived for situations when the number of system users exceeds the number of

diversity channels (N > AK). Consider that the transmitted signals ak (k ∈ IN ) of
different users are mutually independent. Additionally, the samples of the sequence

transmitted by user k are assumed to be independent with zero mean and unit vari-

ance. Thus,

E [a∗k[n]ai[m]] = δK [k − i]δK[n−m], ∀k, i ∈ IN ; ∀n,m ∈ Z (4.40)

where δK [k] is the Kronecker delta sequence (Table A.3). In this case, the spectrum

of the input signal is equal to the N ×N identity matrix and does not depend on D:

Sa = IN (4.41)

The MMSE of user k can be obtained by substituting Equations (4.22), (4.17) and

(4.18) into (4.12)

Jk =

[∫ 1

0

[
Sx(e

−j2πf̌ ) + IN
]−1

df̌

]
kk

. (4.42)

Consider now the singular value decomposition (SVD)

Sx(e
−j2πf̌ ) =Θ(e−j2πf̌ )Λ(e−j2πf̌ )ΘH(e−j2πf̌ ) (4.43)
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where Θ(e−j2πf̌ ) is a unitary N × N matrix8 for all f̌ ∈ [0, 1), and Λ(e−j2πf̌ ) is a

N ×N diagonal matrix containing the eigenvalues

λk(e
−j2πf̌ ) � [Λ(e−j2πf̌ )]kk (4.44)

The MMSE of user k may now be written as

Jk =

[∫ 1

0

Θ(e−j2πf̌ )
[
Λ(e−j2πf̌ ) + IN

]−1

ΘH(e−j2πf̌ ) df̌

]
kk

. (4.45)

Sx(e
−j2πf̌ ) is positive semidefinite9 for all f̌ ∈ [0, 1). Hence, its eigenvalues are

greater than or equal to zero. The number of “zero” eigenvalues is equal to the

nullity (rank deficiency) of Sx(e
−j2πf̌ ), which is defined in Equation (4.16). It has

been shown in Section 2.4.3 that Sν(e
−j2πf̌ ) and thus S−1

ν (e−j2πf̌ ) are positive definite

for all frequencies. The rank of Sx(e
−j2πf̌ ) depends therefore completely on the

combined channel matrixX(e−j2πf̌ ), which has N rows and AK columns. IfN ≤ AK,

X(e−j2πf̌ ) may be of full row rank and Sx may be regular. On the other hand, if

N > AK the rank of X(e−j2πf̌ ) is at most AK. In this case, the N × N matrix

Sx(e
−j2πf̌ ) is singular. Its rank is smaller than or equal to AK and its nullity (rank

deficiency) is greater than or equal to the overpopulation number [136, p.164–67]

ξ � N −AK. (4.46)

This means that at least ξ of the N eigenvalues λk(e
−j2πf̌ ) are equal to zero for all

frequencies f̌ ∈ [0, 1).

Let the average MMSE over all N users be

J̄ � 1

N

N∑
k=1

Jk. (4.47)

8This means that Θ−1(e−j2πf̌ ) = ΘH(e−j2πf̌).
9The positive semidefiniteness of Sx(e−j2πf̌) follows from Definition (4.16) and the fact that

Sν(e−j2πf̌) is positive definite for all f̌ ∈ [0, 1) (see Section 2.4.3).
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Substituting Equation (4.45) into this expression yields

J̄ =
1

N
tr

{∫ 1

0

Θ(e−j2πf̌ )
[
Λ(e−j2πf̌ ) + IN

]−1

ΘH(e−j2πf̌ ) df̌

}

=
1

N

∫ 1

0

tr

{[
Λ(e−j2πf̌ ) + IN

]−1
}
df̌

=
1

N

∫ 1

0

N∑
k=1

[
λk(e

−j2πf̌ ) + 1
]−1

df̌ (4.48)

where tr{. . . } denotes the trace of the matrix enclosed by the curly brackets (see

Table A.3). It is now possible to find a lower bound for the average MMSE in over-

populated systems. It has been shown above that if N > AK, at least ξ eigenvalues

λi(f̌) are equal to zero for each frequency f̌ ∈ [0, 1). Consider now only these singular

eigenvalues for the lower bound while the other non-zero eigenvalues are neglected.

It follows then from Equation (4.48) that the average MMSE is lower bounded by

J̄ >
1

N

∫ 1

0

[
ξ∑

i=1

1

]
df̌ =

ξ

N
. (4.49)

Substituting Equation (4.46) into (4.49) yields the sought after lower bound for the

average MMSE J̄ in overpopulated systems

J̄ > 1− AK

N
, N > AK. (4.50)

4.2.2 Zero-Forcing Linear Equalizer

The frequency-domain solution for the infinite-length zero-forcing multiple-inputmultiple-

output linear equalizer (ZF MIMO LE) is described in this section. The zero-forcing

linear equalizer, also known as decorrelating detector or decorrelator, is the linear re-

ceiver which achieves the minimal MSE under the constraint that all interference from

the K intracell users (ISI and CCI) be completely eliminated. The output of the ZF

MIMO LE will thus be distorted only by Gaussian noise if no external interference

(intercell interference, jammers) is present. In general, the performance of the ZF

detector is worse than that of the MMSE equalizer since the constraint of completely
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nulling out all interference leads to a stronger amplification of the noise component

such that the variance of the error signal at the input to the decision device is always

larger for the ZF equalizer. This and other disadvantages discussed later make the ZF

detector less attractive than the MMSE LE for an implementation in real systems.

However, the fact that the error signal of the ZF LE is Gaussian distributed is one of

the reasons for the considerable attention this detector received in the literature: due

to this property, a compact closed-form expression for the error probability of the ZF

LE can easily be found. Conversely, a closed-form expression does not exist for the

MMSE LE, which leads to a significantly more complicated calculation of the error

probability.

The ZF decorrelating detector has been derived and discussed extensively in the

literature for a wide variety of situations, systems and assumptions. This section

is limited to the assumptions of Section 2.1, i.e. most importantly the MIMO case,

frequency-selective, quasi-stationary channels and a discrete-time model that implic-

itly contains an arbitrary continuous-time channel. It seems that the necessary and

sufficient frequency-domain condition for the ZF MIMO LE has been derived and

mentioned at first by van Etten [117]. He also found that the ZF MIMO LE and

the MMSE MIMO LE have the same structure, i.e. they both consist of a noise-

whitening matched filter followed by a channel matched filter and a N × N linear

transformation. Later, several papers stated explicitly the frequency-domain expres-

sion of the ZF MIMO LE [69, 51, 119, 29, 42]. Except for partly different system

assumptions and notations, all these expressions are basically identical. Considering

the system and notation used in this dissertation, the matrix filter of the ZF MIMO

LE is described by

C le,zf(D) = S−1
ν (D)XH(D−∗)Lle,zf(D) (4.51)

Lle,zf(D) = S−1
x (D) (4.52)

where the equivalent channel Sx(D) is defined by Equation (4.16). Noting that the

estimation error e at the input to the decision device contains only Gaussian noise,
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the spectrum of the estimation error is easily found to be

Se(D) = Lle,zf(D). (4.53)

A comparison of the expressions for the ZF and MMSE MIMO LE reveals that the

front-end is identical (S−1
ν (D)XH(D−∗)) and that the N ×N matrix filters Lle,zf(D)

and Lle,mmse(D) differ only slightly: Lle,zf(D) is equal to the inverse of the equiva-

lent channel Sx(D) while Lle,mmse(D) is equal to the inverse of the sum of Sx(D)

and the transmitted data spectrum Sa(D). This small difference has some practical

implications:

• the individual MSE’s of the MMSE MIMO LE are always smaller than those of

the ZF MIMO LE;

• the ZF MIMO LE does not exist if the system is overpopulated, i.e., when the

number of users is larger than the number of diversity channels (N > AK);

• the MMSE MIMO LE does always exist.

The first attribute follows from the fact that the spectrum Sa(D) is positive definite

on the unit circle D = e−j2πf̌ . Hence, the main diagonal elements of the MMSE

MIMO LE error spectrum Se(e
−j2πf̌ ) are smaller than that of the ZF MIMO LE,

which causes smaller MSE’s according to Equation (4.12).

If the number of users is larger than the number of diversity channels, the equiva-

lent channel Sx(D) will be singular on the unit circle. The singularity is caused by the

N ×AK matrix X(D) which is a part of the definition of Sx(D) (4.16): If N > AK,

X(D) has more columns than rows and the product (4.16) becomes singular.

Even if Sx(D) is singular, the sum Sx(D) + Sa(D) will always be regular since

Sa(D) is positive definite. Hence, the MMSE MIMO LE filter Lle,mmse(D) (Equa-

tion (4.17)) does always exist for any values of N and AK.

As in Section 4.2.1.1, the equalizer can be expressed in terms of the spectra

Sya(D), S
−1
ν (D) and Sa(D):

C le,zf(D) = S−1
ν (D)Sya(D)

[
SH

ya(D
−∗)S−1

ν (D)Sya(D)
]−1

Sa(D). (4.54)
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This expression may be preferable if the inverse of the noise spectrum can easily be

obtained.

On the other hand, an expression equivalent to Equation (4.32) does not exist

for the ZF MIMO LE. Thus, the ZF detector may be more difficult to implement in

practice than the MMSEMIMO LE since the latter requires knowledge only about the

power and crosscorrelation spectra of the signals y and a. These signals are directly

available at the receiver when an a priori known training sequence is transmitted.

The above expressions describe the infinite-length ZF MIMO LE in the frequency-

domain. The optimal finite-length ZF MIMO LE has been derived by van Etten [117]

using a time-domain approach. The resulting equations resemble in some respects

those stated in Section 4.2.1.2 for the MMSE equalizer.

4.3 MIMO Decision-Feedback Equalizer

Historically, equalizers in general and decision-feedback equalizers (DFE) in particular

have been considered initially only for single-input single-output (SISO) and single

user systems. The first description of the decision-feedback principle seems to be

given in an article by Aein and Hancock in 1963 [6]. Since then, a wide variety of

DFE’s have been analyzed. Of particular interest to this work are multiple-input

multiple-output (MIMO) DFE’s [55, 27], which are a multidimensional extension to

the basic SISO structure.

The vast majority of articles is concerned with the conventional DFE structure in

which the decisions are directly fed into a linear feedback filter. Belfiore and Park [14]

described an alternative DFE structure, termed the noise-predictive DFE, which cal-

culates at first the difference between the decisions and the output of the DFE forward

filter and then uses this signal as input to the feedback filter. A multidimensional ex-

tension, the multiple-input multiple-output noise-predictive decision-feedback equalizer

(MIMO NP-DFE) has been described in a patent by Eleftheriou and Petersen [31].

Analytically and performance-wise, both the conventional and noise-predictive DFE’s

are identical. There are, however, practical and implementational differences. In ad-

dition, both structures complement each other from a pedagogical point of view since
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their operation can be interpreted in different ways.

The decision-feedback equalizer (DFE) may be viewed as an extension to the

linear equalizer (LE). In particular, the DFE structure (Figure 4.1) is obtained by

adding a linear feedback filter to the structure of the LE (Figure 4.3). The input

signals to the feedback filter are a function of the nonlinear, quantized estimates

â of the transmitted symbols. Since the fed-back estimates â are obtained by a

nonlinear operation in the decision device, the continuous-valued estimate ã depends

nonlinearly on the transmitted data a. Therefore, the DFE has been classified as a

nonlinear detector.

Despite the DFE being a nonlinear detector, its mathematical analysis performed

in the following sections uses a crucial assumption under which the DFE becomes

a linear detector. In particular, it is assumed that all decisions fed into the linear

feedback filter are correct, i.e.

â = a. (4.55)

Strictly speaking, this assumption is not entirely true. It is, however, justified in

situations when the error probability is relatively low (< 10−3). Under these cir-

cumstances, the error incurred by the (wrong) assumption becomes small or even

negligible. The primary driving force behind this strategy is the fact that the anal-

ysis of the DFE will become mathematically intractable if the nonlinear dependency

of the estimate ã on a is taken into account.

There are two different implementations of the DFE: the conventional DFE (C-

DFE) and the noise-predictive DFE (NP-DFE). For the C-DFE, the input signals to

the feedback filter are identical to the previous decisions â. On the other hand, the

NP-DFE approximates the negative estimation error −ĕ at the output of the forward
filter by taking the difference a− ă, which constitutes the input to the feedback filter.

The optimization criteria considered are again the minimum mean-square error

(MMSE) and the zero-forcing (ZF) conditions. For the MMSE criterion, the objective

is to determine the optimal forward and feedback matrix filters Cmmse and Bmmse,

respectively, which minimize the mean-square errors (MSE) Jk � E[|ek[n]|2] for all
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k ∈ IN under the assumption that all decisions are correct (â = a):

Jk(Cmmse,Bmmse) = min
C ,B

Jk(C,B), ∀k ∈ IN . (4.56)

For the zero-forcing (ZF) condition, it is also required to minimize all MSE’s under

the additional constraint that all interference components in the residual error be

zero.

The following sections describe both the conventional and the noise-predictive

DFE for the MMSE and ZF criteria. Description and derivation of the DFE matrix

filters are done in the frequency-domain. In addition, a time-domain analysis is

provided for the MMSE MIMO C-DFE. The performance of the different structures

is expressed in terms of the mean-square error (MSE).

4.3.1 Minimum Mean-Square Error Conventional Decision-

Feedback Equalizer

The structure of the multiple-input multiple-output conventional decision-feedback

equalizer (MIMO C-DFE) consists of three main elements: a AK ×N linear forward

matrix filter Cc; a N ×N linear feedback matrix filter Bc; and a nonlinear decision

device. Figure 4.4 shows the block diagram of the MIMO C-DFE. The corresponding

vector model including the remaining system (Chapter 2) is given in Figure 4.5.

4.3.1.1 Frequency-Domain Approach

It appears that the first frequency-domain description of the MMSE MIMO C-DFE

was formulated by Duel-Hallen [27]. She implicitly assumed that the receiver struc-

ture consists of a matched matrix filter (and possibly noise-whitening matched matrix

filter) front-end, without explicitly showing that this structure is optimal. The com-

bination of channel and receiver front-end results in a N×N equivalent discrete-time

channel, for which she derived the MMSE MIMO C-DFE forward and feedback ma-

trix filters in the frequency- or D-domain. The resulting equations depend on the

channel transfer function and the noise characteristics, which have to be known in
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Figure 4.4: Block diagram of the MIMO C-DFE detector.

order to determine the equalizer filters.

Vandendorpe et al. finally proved under the assumption of white noise that the

channel matched receiver front-end, XH(D−∗), is indeed the optimal structure [118].

They also calculated the remaining forward and feedback matrix filters of the MMSE

MIMO C-DFE which are identical to those derived by Duel-Hallen [27].

For non-white, correlated noise, the final step may be made by applying van Et-

ten’s result [117] which shows that the non-white noise case can easily be transformed

into the white noise case by including a noise-whitening filter as first equalizer ele-

ment. The structure described by Vandendorpe et al. therefore has to be extended

only by a noise-whitening matched filter whose transfer function is equal to the inverse

of the noise power spectrum, S−1
ν (D).

Applying the results of Vandendorpe et al. and van Etten, the forward filter of

the C-DFE may be described by a cascade of three elements

Cc,mmse(D) = S−1
ν (D)XH(D−∗)Lc,mmse(D) (4.57)

where S−1
ν (D) is the noise-whitening matched filter,XH(D−∗) is the channel matched

filter and Lc,mmse(D) is a N ×N matrix filter. Considering the system block diagram
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Figure 4.5: Vector block diagram of the system model followed by the MIMOC-DFE
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in Figure 4.5, the channel and the first two elements of the equalizer forward filter

can be combined to the equivalent channel (Equation (4.16))

Sx(D) � X(D)S−1
ν (D)XH(D−∗).

With these definitions, the system model (Figure 4.5) is represented equivalently by

the block diagram shown in Figure 4.6. The signal z represents here the Gaussian

noise at the output of the channel matched filter:

z(D) � ν(D)S−1
ν (D)XH(D−∗). (4.58)

The power spectrum of this noise signal is

Sz(D) � EM

[
zH(D−∗)z(D)

]
(4.59)

(4.58)
= X(D)S−1

ν (D)EM

[
νH(D−∗)ν(D)

]
S−1

ν (D)XH(D−∗)

(2.62)
= Sx(D). (4.60)

The optimal forward and feedback filters of the MMSE MIMO C-DFE have been

derived by Duel-Hallen [27] for the equivalent system model shown in Figure (4.6).

The results are based on the spectrum Q(D) defined in Equation (4.18). This spec-

trum may be factored into [126]

Q(D) = Ψ(D)G−1ΨH(D−∗) (4.61)

where Ψ(D) is a causal and stable matrix with Ψ(D) =
∑∞

n=0Ψ[n]D
n. Ψ[0] is con-
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strained to be an upper triangular matrix with ones on the main diagonal. G−1 is a

diagonal matrix independent on D.

For the calculation of the optimal equalizer, it is necessary to perform the spectral

factorization (4.61) on the given matrix function Q(D) and to determine the purely

causal part Ψ(D) as well as the diagonal matrix G. One algorithm is described by

Wiener and Masani [127], however, their iterative method converges very slowly and

cannot be recommended in practice. Harris and Davis derived a very fast converging

algorithm [43] which requires usually less than 10 iterations. Nonetheless, the method

is computationally very intensive. Appendix I describes the algorithm and discusses

practical issues for performing a matrix spectral factorization.

The forward and feedback filters of the MMSE MIMO C-DFE are given by [27]

Lc,mmse(D) = Ψ
−H(D−∗)G (4.62)

Bc,mmse(D) = IN −Ψ(D). (4.63)

Using the above expressions it can easily be shown that the spectrum of the estimation

error e is

Se(D) = G. (4.64)

This shows that the estimation error at the input to the decision device is completely

uncorrelated and white since its spectrum is constant (it does not depend on D) and

all off-diagonal elements are equal to zero. In fact, the continuous-valued estimates

ã are optimal unless additional a priori information about the transmitted data is

exploited (in particular the knowledge that the transmitted data symbols belong to
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a known discrete alphabet).

The individual MMSE values may now easily be determined by applying Equa-

tion (4.12). The result is simply

Jk,c,mmse = [G]kk . (4.65)

In general, it is necessary to perform a matrix spectral factorization in order to

determine the individual MMSE’s Jk. However, a special case exists for the geometric

average of the individual MMSE’s

J̄Π � N

√√√√ N∏
k=1

Jk. (4.66)

Duel-Hallen has shown [27] that J̄Π can be calculated for the MMSE MIMO C-DFE

with the closed-form expression

J̄Π = exp

{
− 1

N

∫ 1

0

ln
(
det

[
Q(e−j2πf̌ )

])
df̌

}
. (4.67)

Note that this is the multiuser generalization of Salz’ closed-form expression for the

MMSE of the single-input single-output DFE [104, Eqn.(13)]. For N = 1, the indi-

vidual MMSE and the geometrical average MMSE is identical and the matrix Q(D)

reduces to a scalar function. Salz’ formula results then directly from Equation (4.67).

It may be more convenient in practice to express the forward and feedback filters

in terms of available or easily measurable quantities. In analogy to Section 4.2.1.1,

the results are presented with respect to the power spectrum Sy(D) of the received

signal y (Equation (4.27)) and the cross-power spectrum Sya(D) between the received

signal and the transmitted data signal a. (Equation (4.28)). Let us start with the

observation that Q−1(D) may be expressed in the form

Q−1(D) = Sa(D) −SH
ya(D

−∗)S−1
y (D)Sya(D). (4.68)

This follows directly from substitution of Equations (4.22) and (4.34) into (4.17).
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Considering Equations (4.15), (4.17) and (4.61), it occurs that the forward matrix

filter of the MMSE MIMO LE may be written as

C le,mmse(D) = S−1
ν (D)XH(D−∗)Ψ−H(D−∗)GΨ−1(D). (4.69)

Comparing this expression with Equations (4.57) and (4.62) describing the forward

filter of the MMSE MIMO C-DFE it follows that

C le,mmse(D) = Cc,mmse(D)Ψ
−1(D). (4.70)

Applying this relationship to Equation (4.32) yields for the forward matrix filter of

the MMSE MIMO C-DFE the final expression

Cc,mmse(D) = S−1
y (D)Sya(D)Ψ(D). (4.71)

The feedback matrix filter may still be calculated using Equation (4.63).

Consider now the practical implementation of the equalizers via approximation

of the forward filters by FIR filters. It can be observed from Equation (4.70) that

the forward filter (FF) of the MMSE MIMO LE is identical to the MMSE MIMO

C-DFE FF Cc,mmse(D) followed by the purely causal matrix filter Ψ−1(D). Thus,

for a comparable truncation error, the FIR approximation of the LE FF requires

longer delay lines (i.e. more tap weights) than that of C-DFE FF. In other words, the

forward filter of the MMSE MIMO C-DFE is shorter than the forward filter of the

MIMO LE.

4.3.1.2 Time-Domain Approach

Expressions for the MMSE and the optimal matrix filters of the MMSE MIMO C-

DFE are provided. A detailed time-domain analysis of this equalizer is given in

Appendix G.2.

The MIMO C-DFE is described by linear forward and feedback filter matrices

C[n] and B[n]. Let us assume that the time-lengths of these filters are given by

the integer numbers MC and MB, respectively. Hence, the equalizer is fully de-
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scribed by the matrices C[0],C[1],C[2], . . . ,C[MC − 1] for the forward part and

B[0],B[1],B[2], . . . ,B[MB − 1] for the feedback part.

Let us define the extended equalizer coefficient matrix

P �




C[MC − 1]

C[MC − 2]

C[MC − 3]
...

C[0]

B[MB − 1]

B[MB − 2]

B[MB − 3]
...

B[0]




(4.72)

which contains all equalizer coefficients to be optimized.

Due to causality reasons, the zeroth feedback sample matrix B[0] is constrained

to be zero on the main diagonal and half of its side-diagonal elements must be zero

as well. Without loss of generality, B[0] is chosen to be an upper triangular matrix

with zeros on the main diagonal. Hence, the extended equalizer coefficient matrix P

may be represented in the form

P =


 pH

1 pH
2 pH

3 . . . pH
N

0HN 0HN−1 0HN−2 . . . 0H1


 (4.73)

where 0Hi is an i-dimensional column vector in which each element is equal to zero

(Table A.7) and the column vector pH
k is defined by

pH
k � [P ][1(1)Lk],k

. (4.74)

The matrix function [. . . ][f(s)l],c is defined in Tables A.3, A.7 and Equation (A.8).
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Consequently, the column vector pH
k is obtained by taking the first Lk elements in

the k-th column of the matrix P (or, equivalently, by taking all elements in the k-th

column of P except for the last N − k + 1 components). Lk is a positive integer

number defining the lengths of the above vectors:

Lk =MCAK +MBN −N + k − 1. (4.75)

It is shown in Appendix G.2 that the optimal equalizer parameters with respect

to the MMSE criterion can be calculated with the expression

pH
k,c,mmse = R−1

u,kr
H
au,k. (4.76)

In addition, the MMSE of the k-user is

Jk = 1− rau,kR
−1
u,kr

H
au,k (4.77)

where the Lk × 1 column vector rHau,k and the Lk × Lk matrix Ru,k are defined in

Appendix G.2.

4.3.2 MinimumMean-Square Error Noise-Predictive Decision-

Feedback Equalizer

Belfiore [13, 14] described an alternative structure to the conventional DFE. This

structure is referred to as noise-predictive decision-feedback equalizer (NP-DFE). It

differs from the conventional DFE (C-DFE) by the input signal to the feedback block.

While the C-DFE puts the decisions directly into the feedback filter, the NP-DFE

uses instead the difference between the decisions and the output signal of the DFE

forward filter.

Eleftheriou and Petersen [31] developed a multiple-input multiple-output (MIMO)

extension to the basic single-input single-output (SISO) NP-DFE of Belfiore and Park

(Figure 4.7). In the MIMO case, vector-valued signals and matrix filters replace the

scalar-valued signals and regular filters of the SISO NP-DFE. Figure 4.8 shows the
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Figure 4.7: Block diagram of the MIMO MMSE NP-DFE.

multiuser system model containing implicitly the transmitters of several users, the

radio channels and a multi-element receiver including a MIMO NP-DFE. It can be

seen that the input signal to the feedback filter matrix is the negative approximation

−ê of the estimation error ĕ. Provided that all decisions are correct (â = a), the

estimated and real error signals at the forward filter output are identical, i.e.

ê = ĕ. (4.78)

The past and some present symbols of the signal −ê are used in the purely causal

feedback matrix filter in order to predict or extrapolate the current value of the

negative error −ĕ. Hence, the feedback block can be interpreted as a MIMO linear

prediction filter. This opens the powerful prediction theory of multivariate stochastic

processes developed by Wiener and Masani [126, 127] for the analysis of the MIMO

NP-DFE.

The MMSE criterion and a frequency-domain approach is used in this section to

analyze the MIMO NP-DFE. The optimal forward and feedback matrix filters are

derived for the general system described in Chapter 2. It is shown that the forward

matrix filters of both the MMSE MIMO NP-DFE and the MMSE MIMO C-DFE
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Figure 4.8: Vector block diagram including the system model and the MIMOMMSE
NP-DFE detector.

consist at the front-end of a noise-whitening matched filter followed by a channel

matched filter and a N × N symbol-rate filter. This is the same result as obtained

by Vandendorpe et al. [118], except that the derivation is different. The expressions

for the forward and feedback filters are identical to those derived by Eleftheriou and

Petersen [31]. However, their results have been obtained for the less general case

of asynchronous CDMA over flat fading (frequency non-selective) channels. Further-

more, a receiver front-end consisting of matched filters was implicitly assumed without

proving the optimality of this configuration.

Let us now start with the frequency-domain analysis of the MMSE MIMO NP-

DFE. Consider the system shown in Figure 4.8. The discrete-time sequences ai[n]

(i ∈ IN ), transmitted from N users, define the signal vector a = [a1, a2, . . . , aN ].

This signal is transmitted through the combined channel matrix filter X, which has

N inputs and AK outputs. The NP-DFE receiver consists of a forward matrix filter

C with AK inputs and N outputs and a N ×N feedback matrix filter B. The input

signal to the receiver, y, is the superposition of the channel output signal and additive

noise ν (Section 2.4). Each component of the final output signal â = [â1, â2, . . . , âN ]

represents the quantized estimate of the corresponding transmitted sequence in a.

The input and noise signals are assumed to be uncorrelated. Sa(D), Sν(D) and

Saν(D) are the auto- and cross-correlation spectra of these signals. Their definitions

are given by Equations (2.61), (2.62) and (2.63).
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Define the following internal receiver signals (Figure 4.8):

ă(D) = y(D)C(D) (4.79)

ĕ = ă− a (4.80)

ê = ă− â (4.81)

ẽ(D) = ê(D)B(D) (4.82)

ã = ă− ẽ (4.83)

e = ã− a

= ĕ− ẽ. (4.84)

ă is the output of the forward matrix filter. The difference between ă and the

transmitted signal defines the error signal ĕ. Assuming that all previous decisions are

correct (i.e. â = a), the input signal to the feedback filter is identical to the negative

value of the error ĕ (Equation (4.78)). Thus, the causal feedback filter B tries to

predict the negative value of the present error vector, −ĕ[n], from the past and some

present samples of −ê = −ĕ. After that, the input signal to the quantizers, ã, is

obtained by adding the negative predicted error −ẽ to the forward filter output ă. e

is the error in the continuous-valued signal estimate ã to be quantized.

Consider that the decisions in the quantizer are made in the same order as in

previous sections: At time n, the first component of ã[n], ã1[n], is quantized first,

followed by the second component ã2[n] and so on, until finally a decision is made on

ãN [n]. After that, the quantization proceeds in the same fashion for the next input

vector ã[n+1]. Note that at the time when āi[n] is to be quantized, not only all past

decisions â[n−m] (m > 0) are available to the feedback filter but also some present

decisions âk[n] (k < i) may be used. Other decisions have not been made yet and are

not available to the causal feedback filter B.

The linear filter matrices C and B which satisfy the MMSE criterion (4.56) may

be obtained by applying the orthogonality principle [46]. In particular, the error in

the final continuous-valued estimate ã has to be statistically orthogonal to all input

symbols of both forward and feedback filters. If ek and ĕi are the k-th and i-th
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component of e and ĕ, respectively, the orthogonality principle can be formulated for

the MMSE MIMO NP-DFE in three equations:

E[y∗l [n−m]ek[n]] = 0, ∀m ∈ Z; l ∈ IAK , k ∈ IN (4.85)

E[ĕ∗i [n−m]ek[n]] = 0, ∀m > 0 (m ∈ N); i, k ∈ IN (4.86)

E[ĕ∗i [n]ek[n]] = 0, ∀k > i; i, k ∈ IN (4.87)

where Z is the set of all positive and negative integer numbers, while N contains only

all positive integers (see Table A.7). yl is the l-th component of y.

Let us define the cross-correlation functions

Rye[m] � E[yH [n−m]e[n]] (4.88)

Rĕe[m] � E[ĕH [n−m]e[n]]. (4.89)

The orthogonality principle expressed in Equations (4.85) to (4.87) can then alterna-

tively be formulated as

Rye[m] = OAK×N , ∀m ∈ Z (4.90)

Rĕe[m] = ON×N , ∀m > 0 (4.91)

Rĕe[0] is a lower triangular matrix. (4.92)

The last two equations reflect the fact that the feedback filter can only utilize decisions

already made. This ensures the causality of B.

The cross spectra

Sye(D) � EM

[
yH(D−∗)e(D)

]
(4.93)

S ĕe(D) � EM

[
ĕH(D−∗)e(D)

]
(4.94)

are the D-transforms of the cross-correlation functions Rye and Rĕe, respectively.
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Transforming the orthogonality relations (4.90) to (4.92) into the D-domain yields

Sye(D) = OAK×N (4.95)

{S ĕe(D)}+ = ON×N (4.96)

where {F (D)}+ denotes the purely causal part of the matrix-valued function F (D) =∑∞
m=−∞ F [m]Dm. The purely causal part contains only the positive time samples and

the upper triangular part of the zeroth time sample. Thus, the purely causal part of

F (D) is defined by

{F (D)}+ � F J[0] +
∞∑

m=1

F [m]Dm (4.97)

where FJ[0] is the upper triangular part of F [0] with zeros on and below the main

diagonal.

An expression for Sye(D) can be obtained by expanding EM [yH(D−∗)e(D)] with

Equations (4.84), (4.82), (4.78), (4.80) and (4.79):

Sye(D) = {Sy(D)C(D) − Sya(D)}[IN −B(D)] (4.98)

where the spectra Sy(D) = EM [yH(D−∗)y(D)] and Sya(D) = EM [yH(D−∗)a(D)] are

the power spectrum of the equalizer input signal and the cross-power spectrum be-

tween the equalizer input and the transmitted data, respectively. Sy(D) and Sya(D)

can be calculated according to Equations (4.27) and (4.28).

Applying Equations (4.80), (4.79) to EM [ĕH(D−∗)e(D)], noting that Sye(D) =

OAK×N , and substituting Equations (4.78) and (4.79) through (4.84) into the remain-

ing term yields

S ĕe(D) = [Sa(D) −SH
ya(D

−∗)C(D)][IN −B(D)]. (4.99)

Comparing Equations (4.95), (4.98) and (4.96), (4.99), it follows that the orthog-
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onality principle may be equivalently formulated as

{Sy(D)C(D) − Sya(D)}[IN −B(D)] = OAK×N (4.100){
[Sa(D)− SH

ya(D
−∗)C(D)][IN −B(D)]

}+
= ON×N . (4.101)

Equation (4.100) can be solved by requiring that the term in the curly brackets be

equal to the AK×N null matrix. This leads to the same optimality condition as that

for the forward filter of the MMSE MIMO linear equalizer (Equation (4.30)). Thus,

the forward matrix filters of the MMSE MIMO LE and the MMSE MIMO NP-DFE

are identical. In particular, we may calculate the optimal forward filter by either of

the following two expressions:

Cnp,mmse,1(D) = S−1
ν (D)XH(D−∗)Lnp,mmse(D). (4.102)

Cnp,mmse,2(D) = S−1
y (D)Sya(D) (4.103)

where

Lnp,mmse(D) =
[
Sx(D) + S−1

a (D)
]−1

. (4.104)

With knowledge of the forward filter (4.103), the feedback filter can immediately

be obtained by fulfilling the second orthogonality condition (4.101). Combining both

expressions yields

{
[Sa(D) −SH

ya(D
−∗)S−1

y (D)Sya(D)][IN −B(D)]
}+

= ON×N . (4.105)

Note that the term inside the first rectangular brackets is equal to the inverse ofQ(D)

(Equation (4.68)), which has been defined in Equation (4.18):

Q−1(D) = Sa(D) −SH
ya(D

−∗)S−1
y (D)Sya(D).
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It is possible to factorize Q(D) spectrally according to Equation (4.61) into

Q(D) = Ψ(D)G−1ΨH(D−∗)

where Ψ(D) is a causal and stable matrix withΨ(D) =Ψ[0]+Ψ[1]D+Ψ[2]D2+ . . . .

The zeroth sample matrix Ψ[0] is constrained to be an upper triangular matrix with

ones on the main diagonal. G−1 is a diagonal matrix which does not depend on

D. With this it can easily be shown that the optimum feedback filter, which solves

Equation (4.105), is

Bnp,mmse(D) = IN −Ψ(D). (4.106)

The expression in Equation (4.102) shows that the optimal forward matrix filter

of the MMSE MIMO NP-DFE may be realized by a cascade consisting of a noise-

whitening matched filter S−1
ν (D) followed by a channel matched filter XH(D−∗) and

a N × N matrix filter Lnp,mmse(D). The optimal structure of the MMSE MIMO

C-DFE can also be realized in this form since NP-DFE and conventional DFE are

equivalent. This can be shown most easily with the block diagrams in Figure 4.9. The

first block diagram (a) represents the NP-DFE redrawn such that both the output of

the forward filter, ă, and the decisions â pass separately through the same feedback

filter B. Figure 4.9 (b) displays the conventional DFE. Comparing both figures, it

is obvious that there exists a one to one relationship between the two different DFE

structures. In particular, the feedback filters of both the NP-DFE and the C-DFE are

identical (see also Equations (4.63) and (4.106)). For the forward filters, the unique

relationship is

Cc(D) = Cnp(D)[IN −B(D)]. (4.107)

Note that the expressions in Equation (4.71) and (4.103), (4.106) satisfy this condi-

tion. This completes the proof for the optimal structures of the C-DFE and NP-DFE

forward filter matrices.
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(a) equivalent block diagram for the NP-DFE

(b) conventional DFE

a
X +

ν
B

+

+

–
+

B

a^
Cnp

a
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ν

+

B

Cc

a^

Figure 4.9: System block diagram for (a) the MIMO NP-DFE and (b) the conven-
tional DFE.

4.3.3 Zero-Forcing Decision-Feedback Equalizers

The zero-forcing decision-feedback equalizers (ZF DFE) minimize the mean-square

error (MSE) under the constraint that the residual interference in the input signal to

the decision device be completely nulled out. The ZF DFE structure may be realized

in conventional (Figure 4.5) or noise-predictive form (Figure 4.8). The following

results assume explicitly a receiver front-end structure consisting of a noise-whitening

matched filter, S−1
ν (D), and a channel matched filter XH(D−∗). The optimality of

this configuration will not be proven, i.e. it is not shown that the minimumMSE under

a ZF constraint can be achieved with this particular front-end structure. Given the

aforementioned configuration, however, the following filters are optimal. The optimal,

infinite-length matrix filters are described in the frequency domain.

The results are based on the N × N equivalent channel Sx which is defined in

Equation (4.16). Since Sx(D) is non-negative definite and Hermitian on the unit

circle, it may be factored into [126, Theorem 7.13]

Sx(D) = Ψx(D)G
−1
zf Ψ

H
x (D

−∗) (4.108)

where Ψx(D) is a causal and stable matrix with Ψx(D) =
∑∞

n=0Ψx[n]D
n. Ψx[0] is
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constrained to be an upper triangular matrix with ones on the main diagonal. G−1
zf

is a non-negative definite diagonal matrix independent on D.

Let us start with the ZF MIMO C-DFE shown in Figure 4.5. Adapting the

results of Duel-Hallen [29] to the system model of Section 2.4 results in the following

expressions for the optimal forward and feedback filters:

Cc,zf(D) = S−1
ν (D)XH(D−∗)Lc,zf(D) (4.109)

Lc,zf(D) = Ψ
−H
x (D−∗)Gzf (4.110)

Bc,zf(D) = IN −Ψx(D). (4.111)

It has been shown before that the noise-predictive and conventional DFE struc-

tures are equivalent: the feedback filters are identical and the forward filters are

related through Equation (4.107). As a result, the optimum filters of the ZF MIMO

NP-DFE (Figure 4.8) are given by

Cnp,zf(D) = S−1
ν (D)XH(D−∗)Lnp,zf(D) (4.112)

Lnp,zf(D) = S−1
x (D) (4.113)

Bnp,zf(D) = IN −Ψx(D). (4.114)

Comparing Equations (4.52) and (4.113) shows that the ZF MIMO linear and noise-

predictive equalizer have identical forward matrix filters. Hence, the ZF MIMO LE

may be extended by a noise-predictive feedback part without changing the forward

filter.

The performance of both ZF MIMO DFE structures is identical. It can easily

be shown that the power spectrum of the error signal is Se(D) = Gzf. Since Gzf

is a diagonal matrix independent on D, the error signal e is white and different

components of e are uncorrelated. According to Equation (4.12), the minimummean-

square errors Jk,dfe,zf (k ∈ IN ) are

Jk,dfe,zf = [Gzf]kk (4.115)
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where the function [. . . ]kk is defined in Table A.3.

4.4 Relationship between SINR and MMSE

The Saltzberg upper bound (Section 3.3) may be applied in order to obtain an es-

timate of the error probability of a multiuser system with MIMO equalizer. The

expression for the error probability bound (3.73) is expressed in terms of the signal-to-

interference-and-noise ratio (SINR), Φk, at the equalizer output. On the other hand,

the measure of performance for the equalizers has been the minimum mean-square

error (MMSE) Jk (4.10) in previous sections. In the following, a relationship between

SINR and MMSE is derived for the MMSE and ZF equalizers. This SINR/MMSE

relationship is valid under the crucial assumption that the data signals ai (i ∈ IN )
are wide-sense stationary stochastic processes which are mutually and temporally

uncorrelated with zero mean (see Section A.6).

The availability of a SINR/MMSE expression leads to simple bounds or approxi-

mations for the error probability, which are solely based on the MMSE. The MMSE,

on the other hand, can be determined for each equalizer with the equations given in

previous sections.

It is well known that there exists a unique relationship between SINR and MMSE

for the single-input single-output (SISO) MMSE linear and decision-feedback equal-

izer [99]. The following analysis provides a proof that the same relationship holds also

for both the MMSE MIMO LE and DFE10. This includes in particular the derivation

of an expression linking the MMSE and the bias coefficient for both MIMO equalizers.

The ZF equalizers cancel out all interference. Hence, the SINR is equal to the

SNR at the equalizer output. In the SISO case, the SNR is simply the inverse of the

MMSE [99]. It is briefly shown in the following that the same is also true for the ZF

MIMO LE and DFE.

According to the multiuser system model including a MIMO LE or DFE (Fig-

10For the DFE, the SINR/MMSE expression is formally correct only under the assumption that
all decisions used in the feedback filter are correct.
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ure 4.1), the output signal of the equalizer is

ã(D) = a(D)H(D) + â(D)B(D) + ζ(D) (4.116)

where B(D) is an optional feedback filter and

H(D) � X(D)C(D) (4.117)

ζ(D) � ν(D)C(D) (4.118)

are the total transfer function from the data input to the equalizer output and the

noise signal at the equalizer output, respectively. Let H [n], B[n] and ζ[n] be the

inverse D-transforms of H(D), B(D) and ζ(D), respectively. With

hik � [H ]ik (4.119)

bik � [B]ik (4.120)

ζk � [ζ]k, i, k ∈ IN (4.121)

the input to the k-th decision element may be expressed as

ãk[n] =
N∑
i=1

∞∑
m=−∞

ai[n−m]hik[m] +
N∑
i=1

∞∑
m=0

âi[n−m]bik[m] + ζk[n], ∀k ∈ IN .

(4.122)

Since the feedback filter is constrained to be purely causal, some of the zero lag

feedback coefficients must be zero: bik[0] = 0, ∀i ≥ k.

The signal component at the input to the decision element is identical to the part

on the left hand side in the above expression which contains the desired symbol ak[n]

with undistorted phase. Thus, ak[n]h
re
kk[0] is the signal component, where the bias

coefficient hre
kk[0] is the real part of the sample hkk[0]. In general, each sample hik[n]

of the impulse response can be expressed in terms of a real and an imaginary part

hik[n] = hre
ik[n] + jh

im
ik [n]. (4.123)
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The average signal energy ES,k is defined as the expected energy in the signal

component:

ES,k � E
[
|ak[n]hre

kk[0]|
2]

= (hre
kk[0])

2 (4.124)

where property (2.4) was used for the last expression. Conversely, the average noise

energy is the expected energy of the remaining noise and interference terms:

EIN,k � E
[
|ãk[n]− ak[n]hre

kk[0]|
2] . (4.125)

This equation may be expanded into

EIN,k = E
[
|ãk[n]− ak[n] + ak[n](1− hre

kk[0])|
2]

= E
[
|ãk[n]− ak[n]|2

]
+ (1− hre

kk[0])
2E

[
|ak[n]|2

]
+ (1− hre

kk[0])
{
E [ã∗k[n]ak[n]] + E [a∗k[n]ãk[n]]− 2E

[
|ak[n]|2

]}
. (4.126)

Assume that the data signals ak (k ∈ IN ) are mutually and temporally uncorre-

lated with zero mean and unit variance (Equations (A.9), (A.10)). Furthermore, the

data signals are uncorrelated with the noise (Equation 2.14). Considering that only

correct decisions are provided to the feedback filter (âk[n] = ak[n], ∀k ∈ IN , n ∈ Z),

it is easy to show that

E [a∗k[n]ãk[n]] = hkk[0]. (4.127)

Furthermore, the expectationE[|ãk[n]−ak[n]|2] is equal to the MMSE Jk and E[|ak[n]|2] = 1.

Substituting these expression into Equation (4.126) yields

EIN,k = Jk − (1− hre
kk[0])

2. (4.128)

It is proven in Appendix H for both the MMSE MIMO LE and the DFE that the
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MMSE Jk,mmse and the bias coefficient hre
kk[0] are related through

hre
kk[0] = 1− Jk,mmse, ∀k ∈ IN . (4.129)

Substituting this result into Equations (4.124) and (4.128) yields for the MMSE

MIMO equalizers the sought after relationship between SINR Φk,mmse = ES,k/EIN,k

and MMSE Jk,mmse:

Φk,mmse =
1− Jk,mmse

Jk,mmse

. (4.130)

For the ZF MIMO LE and DFE, it is shown in Appendix H.3 that the bias

coefficient hre
kk[0] is equal to unity. Substituting this into Equations (4.124) and (4.128)

results immediately in

Φk,zf =
1

Jk,zf
. (4.131)

Thus, the k-th output SNR of the ZF MIMO equalizers is equal to the inverse of the

MMSE for user k.

4.5 Error Probability and Capacity

This section describes several estimates for the error probability and a derivation of

a lower bound on the system capacity.

With the expressions for the channelX and the equalizer filtersC,B, it is possible

to calculate all interference terms of the MMSE equalizers. Additional knowledge of

the input noise spectrum Sν(D) makes it possible to apply the accurate methods de-

scribed in Chapter 3 in order to estimate the error probability. However, those meth-

ods require considerable computational workload. For situations in which a rough

estimate is sufficient, significantly simpler expressions may be used. For example,

the Saltzberg upper bound on the error probability and the Gaussian approximation

depend only on the mean-square error.

Consider a multiuser system with a MMSE MIMO equalizer. All users employ
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independent square QAM as modulation scheme and each modulation symbol occurs

with the same probability. In addition, the transmitted data signals are assumed to

be mutually and temporally independent stationary stochastic processes with zero

mean and unit variance (see Section A.6). The Saltzberg bound, P̃
(Saltz)
ex,k , provides

an estimate which is always larger than the probability of exceeding the decision

threshold, Pex,k,mmse. Substituting Equation (4.130) into the Saltzberg bound (3.73)

results in

P̃
(Saltz)
ex,k = exp

{
− 1− Jk,mmse

2Jk,mmseρ(Lk)

}
(4.132)

where Jk,mmse is the MMSE of user k and ρ(Lk) = [L2
k − 1]/3 (Equation (3.59)). Note

that this bound will apply to decision-feedback equalizers in a strict sense only if it

is assumed that all decisions used in the feedback filter are correct.

Another estimate approximates the interference component by a normal distributed

random variable with the same variance. This yields the Gaussian approximation (3.129).

Using Equation (4.130), the Gaussian approximation may be expressed as

P̃
(Gauss)
ex,k = Q

(√
1− Jk,mmse

Jk,mmseρ(Lk)

)
. (4.133)

An interesting property of the zero-forcing equalizers is that their error probability

can easily be determined. The distortion in the equalizer output signal contains only

normal distributed noise and no interference. Hence, the error probability can be

calculated exactly with a Gaussian model. In particular, the probability of exceeding

the decision threshold when using a ZF MIMO equalizer is equal to

Pex,k,zf = Q

(√
1

Jk,zfρ(Lk)

)
. (4.134)

This equation is valid for decision-feedback structures under the assumption that all

decisions provided to the feedback filter are correct.

The capacity of a system is another performance measure. Assuming fixed trans-

mitter properties (transmit powers, filters) and channels, it depends only on the
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receiver. An upper bound on the capacity of MMSE MIMO equalizers will be de-

rived.

Let us start with a definition of capacity for the reverse link of a multiuser system:

Definition 4.1 The capacity of a multiuser system is equal to the total number of

bits per second conveyable by all users, normalized by the number of diversity chan-

nels, Udiv = AK, with each detected bit having a bit error probability of less than a

preselected value Pb.

C � 1

AK

N∑
k=1

bk (4.135)

where C is the capacity in bits per diversity unit, N is the number of system users

and bk denotes the maximum number of bits that user k can transmit while still

maintaining a bit error rate (BER) of less than a given value Pb.

Note that the capacity depends on the channel characteristics, the modulation

scheme, the number of diversity channels (Udiv), the number of users (N), and the

desired worst case bit error probability (Pb).

Consider the same multiuser system as in the previous sections. The modulation

scheme is assumed to be an independent square QAM, in which both the inphase

and the quadrature component are independently pulse amplitude modulated. The

PAM schemes of inphase and quadrature signal are identical and they have Lk levels

each (for the k-th user). All symbols of the modulation scheme occur with the same

probability. In addition, the data signals are mutually and temporally independent

with zero mean and unit variance. Using Gray coding, the BER of the k-th signal,

Pb,k, is smaller than the Saltzberg bound (3.74):

Pb,k ≤ 2
Lk − 1

Lk
exp

{
− Φk

2ρ(Lk)

}
.

Note that the signal-to-interference-and-noise ratio (SINR) Φk can be calculated di-

rectly from the MMSE. The relationships for the MMSE and ZF MIMO equalizers

are given by Equations (4.130) and (4.131), respectively.
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The above expression is simplified by further loosening the bound according to

(Lk − 1)/Lk < 1

Pb,k < 2 exp

{
− Φk

2ρ(Lk)

}
. (4.136)

Applying ρ(Lk) = (L2
k − 1)/3, one can solve for the alphabet size of the square QAM

scheme, L2
k:

L2
k >

Φk

2
3
ln
(

2
Pb,k

) + 1. (4.137)

If bk denotes the number of information bits coded into each QAM symbol, it readily

occurs that 2bk = L2
k. Substituting this relationship into the last equation and solving

for bk yields

bk > log2


 Φk

2
3
ln
(

2
Pb,k

) + 1


 . (4.138)

It has to be pointed out that, so far, no restrictions have been imposed upon Lk. In

practice, the number of PAM levels for the inphase and quadrature signals has to

be an even integer number. The asymptotic capacity, Cas, shall now be defined as

the system capacity excluding the practical constraint for the number of PAM levels.

Thus, Cas constitutes an upper bound on the practically achievable system capacity

C . Substituting expression (4.138) into definition (4.135) and requiring that the BER

for all users be less than or equal to Pb, the asymptotic capacity may be estimated

with

Cas >
1

AK

N∑
k=1

log2


 Φk

2
3
ln
(

2
Pb

) + 1


. (4.139)

Following Equation (4.137) and taking into account that Lk has to be an even
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integer, one gets

Lk > 2

1
2

√√√√ Φk

2
3
ln
(

2
Pb,k

) + 1

 (4.140)

where "x# is the largest integer smaller than or equal to x (Table A.3). This result

may be converted to the number of bits transmitted using the relationship L2
k = 2bk :

bk > max


0; 2 log2


2

1
2

√√√√ Φk

2
3
ln
(

2
Pb,k

) + 1





 (4.141)

where the “maximum” expression ensures that the number of information bits is not

negative. Substituting the last equation into definition (4.135) yields a lower bound

for the system capacity:

C >
1

AK

N∑
k=1

max


0; 2 log2


2

1
2

√√√√ Φk

2
3
ln
(

2
Pb

) + 1





. (4.142)

4.6 Summary: Performance Bounds and Expres-

sions

The theoretical part of this chapter will be completed by summarizing the expressions

for the optimal filters and the performance of different multiple-input multiple-output

(MIMO) equalizers.

Results are presented only for the frequency-domain approach. While the frequency-

domain analysis is in general computationally more efficient and leads to optimal

infinite-length filters, the time-domain method provides the optimal filters for a spec-

ified, finite filter length.

As before, the equalizers are categorized according to the optimization criterion

and the type. The optimization criteria considered were the minimummean-square er-

ror (MMSE) and the zero-forcing (ZF) conditions. Additionally, three different MIMO
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equalizer types were investigated, namely the linear equalizer (LE), the conventional

decision-feedback equalizer (C-DFE) and the noise-predictive decision-feedback equal-

izer (NP-DFE). Block diagrams of the multiuser system and the three different equal-

izer types are shown in Figure 4.3 (LE), Figure 4.5 (C-DFE) and Figure 4.8 (NP-

DFE).

It has been shown in Sections 4.2.1.1, 4.3.1.1 and 4.3.2 that the optimal forward

filter of all MMSE equalizer types may be calculated and implemented by either a

direct realization (DR) or a matched filter realization (MFR).

Using the DR method, one calculates C(D) directly and the forward filter struc-

ture consists of a single element. The initial quantities needed in the forward filter

calculation are the power spectrum Sy(D) and the cross-power spectrum Sya(D):

Sy(D) � EM [yH(D−∗)y(D)]

Sya(D) � EM [yH(D−∗)a(D)]

where y is the input signal to the equalizer and a is the transmitted data. y is

directly available at the receiver. Information about a may be obtained from training

sequences transmitted by all desired users.

According to the MFR method, the forward filter is realized by a cascade of

three elements: a noise-whitening matched filter S−1
ν (D), a channel matched filter

XH(D−∗) and a N ×N symbol-rate matrix filter L(D), i.e.

C(D) = S−1
ν (D)XH(D−∗)L(D).

The individual elements may be determined from the channel transfer matrix X(D),

the noise spectrum Sν(D) and the input data spectrum Sa(D):

Sν(D) � EM [νH(D−∗)ν(D)]

Sa(D) � EM [aH(D−∗)a(D)]

where ν is the noise component in the equalizer input signal y. WhileSa(D) is usually

known,X(D) and Sν(D) may be estimated based on knowledge of the equalizer input
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signal and a training sequence.

Important quantities required for the calculation of the equalizer filters are the

N ×N equivalent channel Sx(D) and the spectrum Q(D):

Sx(D) � X(D)S−1
ν (D)XH(D−∗)

Q(D) � Sx(D) + S−1
a (D).

According to Section 4.3.1.1, the inverse of the latter spectrum may alternatively be

obtained by

Q−1(D) = Sa(D) −SH
ya(D

−∗)S−1
y (D)Sya(D).

Since Sx(D) and Q(D) are positive semidefinite and Hermitian on the unit circle,

they may be factored into a purely causal and a purely anticausal part:

Sx(D) = Ψx(D)G
−1
zf Ψ

H
x (D

−∗)

Q(D) = Ψ(D)G−1ΨH(D−∗)

BothΨx(D) andΨ(D) are purely causal and stable matrices, i.e.Ψx(D) =
∑∞

n=0Ψx[n]D
n

and Ψ(D) =
∑∞

n=0Ψ[n]D
n. In addition, Ψx[0] and Ψ[0] are constrained to be upper

triangular matrices with ones on the main diagonal. G−1
zf and G−1 are non-negative

definite diagonal matrices that are independent on D.

The optimal infinite-length forward and feedback filters of all three equalizer types

are listed in Table 4.3 for both the MMSE and the ZF criterion.

Table 4.4 contains expressions of the equalizer performance in terms of the MMSE

and the error probability. Note that the expressions for the MMSE are exact for the

linear equalizers. They would be exact for the decision-feedback equalizers if all

decisions provided to the feedback filter were correct. In practice, however, wrong

decisions cause a larger MMSE than the displayed MMSE for DFE structures. The

difference depends mainly on the error probability and can be neglected in many

cases.
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Table 4.3: Frequency-domain expressions for the optimal infinite-length forward and
feedback filters of MIMO equalizers

Forward Filter

Optimization MIMO direct matched filter Feedback Filter

Criterion Equalizer realization realization

C(D) L(D) B(D)

MMSE

LE
S−1

y (D)Sya(D) Q−1(D)
—

NP-DFE
IN −Ψ(D)

C-DFE S−1
y (D)Sya(D)Ψ(D) Ψ−H(D−∗)G

ZF

LE

—
S−1

x (D)
—

NP-DFE
IN −Ψx(D)

C-DFE Ψ−H
x (D−∗)Gzf

Table 4.4: Performance expressions of infinite-length MIMO equalizers

Optimiz. MIMO MMSE Error Probability

Criterion Equal. Saltzberg bound Gaussian estimate

Jk P̃
(Saltz)
ex,k P̃

(Gauss)
ex,k

MMSE
LE

∫ 1

0

[
Q−1(e−j2πf̌ )

]
kk
df̌

exp

{
− 1− Jk
2Jkρ(Lk)

}
Q

(√
1− Jk
Jkρ(Lk)

)
DFE [G]kk

ZF
LE

∫ 1

0

[
S−1

x (e−j2πf̌ )
]
kk
df̌

— Q

(√
1

Jkρ(Lk)

)
†

DFE [Gzf]kk

† For the ZF LE, the Gaussian estimate is equal to the correct error probability, i.e.

Pex,k,zf = P̃
(Gauss)
ex,k,zf . This is, in a strict sense, not the case for the ZF DFE since

some decisions used in the feedback filter are wrong. However, the effect of error

propagation may be neglected under certain circumstances.

The error probability results are valid for mutually and temporally independent

stationary data sequences whose individual symbols have zero mean and unit variance

and assume all constellation points of independent square QAM with equal probabil-
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ity. The function ρ(L) occurring in the expressions of Table 4.4 is defined by

ρ(L) � 1

3

[
L2 − 1

]
.

Note that the bit error rate (BER) might be calculated from the probability of ex-

ceeding the decision threshold with Equation (3.21) if Gray coding is applied.

While the expression for the ZF equalizers is equal to the exact error probability11,

all of the given formulas for the MMSE equalizers are approximations. The Saltzberg

bound is a true upper bound for the MMSE MIMO LE, while this may not be true for

the MMSE MIMO DFE because of feedback errors. It has been shown in Chapter 3

that the Gaussian approximation provides good estimates for MMSE equalizers in

situations when the error probability is relatively large (Pex > 10−3). However, its

results are very pessimistic for low error probabilities of 10−6 or smaller. This is also

a characteristic of the Saltzberg bound, which becomes less accurate for decreasing

error probabilities (see Section 3.5).

4.7 Numerical Results

The results presented in this section were obtained under the following ideal assump-

tions:

• Infinite length forward and (for the DFE) feedback filters,

• the channel impulse responses are known without error,

• the equalizer signals and tap weights are of infinite precision, and

• all decisions fed back into the DFE feedback filter are correct, i.e. the results

do not include error propagation.

Two systems with a different number of diversity channels have been considered:

1. 2× 2 system (low diversity): A = 2, K = 2, Udiv = 4,

11this is also the case for the ZF DFE if all decisions used in the feedback filter are assumed to
be correct.
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2. 4× 4 system (high diversity): A = 4, K = 4, Udiv = 16.

The low diversity system is investigated exclusively for a symbol period of T = 50 ns

and equal energy users, i.e. it is assumed that the average energy received from all

users is identical (Γk = Γ, ∀k ∈ IN , see Equation (D.6)). This corresponds to a

system with perfect power control. For the high diversity system, symbol periods of

T = 50 ns and T = 200 ns have been chosen. In addition to the case of equal energy

users, a second scenario with different energy users is also considered. This involves

a maximum difference in the received energy (near-far ratio) of 10 dB between the

strongest and the weakest user. The energies of the users are randomly chosen within

the 10 dB interval, the distribution of the random energies being uniform in that

interval.

It is assumed for the following results that the data signals ai are mutually and

temporally independent, stationary continuous-time stochastic processes with zero

mean and unit variance (Definitions A.1 and A.1). The MMSE results are valid for

any linear modulation scheme. On the other hand, the error probability depends

critically on the modulation format. The bit-error rate (BER) and outage proba-

bility results are obtained for 4-QAM with independently modulated inphase and

quadrature signals, i.e.

ai[n] ∈
1√
2
{1 + j, 1− j,−1 + j,−1− j}, Li = 2, ∀i ∈ IN , n ∈ Z. (4.143)

In addition, it is assumed that all symbols in the modulation alphabet occur with the

same probability.

For the capacity results, independent square QAM has been considered. The

number of modulation levels per user, Li, is maximized under the constraint that a

maximum BER of 10−4 be not exceeded.

Identical fifth-order Butterworth lowpass filters with a cut-off frequency f3dB =

K/(2T ) (i.e. K3dB = K) have been chosen for the analog transmit and receive fil-

ters pC(t) and bC(t). More detailed information about those filters is given in Sec-

tion 2.3.3.1.
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The spreading filters of all users have been set to qi[n] = δK [n]. In other words,

the filters qi (∀i ∈ IN ) have been omitted completely. This was justified because the

individual channels were strongly frequency selective (for T = 50 ns) and mutually

uncorrelated. Thus, the use of orthogonal and other spreading filters can be expected

to yield no significant improvement. However, better results may be obtained with

different spreading filters in less frequency selective environments, as for example in

the T = 200 ns system.

The results have been obtained with a semi-analytical approach. Based on the

channel information and a statistical model for the input data as described above,

the individual MMSE’s of the infinite-length equalizers have been calculated accord-

ing to the frequency-domain approach (see Sections 4.2.1.1 and 4.3.1.1). After that,

bounds on the bit error rate (BER) and system capacity have been determined using

expressions (4.132) and (4.142), which are based on the Saltzberg bound. Finally, the

results have been averaged over several scenarios with different radio channels drawn

from an ensemble of measured indoor channel impulse responses (CIR’s). Details

about the measurements and the characteristics of the CIR’s are described in Sec-

tion 2.3.3.2. The RMS delay spread distribution of the CIR’s had a mean of 40.4 ns

and a standard deviation of 9.2 ns [12]. These values indicate that the channels are

frequency selective for the chosen symbol period of T = 50 ns. A considerable amount

of ISI and CCI over several symbols can be expected in this case.

The reverse link of the system has been simulated by randomly selectingM out of a

total of 2044 CIR sets12 and assigning each to one ofM users13. These users have been

divided into several groups of N portables for which the theoretical MMSE’s, BER

bounds, outage probabilities and capacities have been calculated. This procedure has

been repeated 100 times for each value of N with different CIR sets. The final results

are the average over the 100 channel scenarios.

Let us start with the MMSE results for the 4× 4 system. Figure 4.10 shows the

absolute MMSE versus the number of system users in a scenario with T = 50 ns and

12Each set consists of 4 individual CIR’s. The CIR’s belonging to the same set have been measured
between one stationary transmit antenna and one of the four wavelength-spaced receive elements on
the mobile at the same location.

13Depending on the investigated scenario, M took on the values 8, 20 and 30.
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Figure 4.10: Maximal, average and minimal MMSE for 4 × 4, T = 50 ns system
with an average received SNR/symbol of 28 dB and a near-far ratio of 10 dB.

an average received SNR/symbol of 28 dB. The near-far ratio, i.e. the ratio of the

received SNR’s between the strongest and the weakest user, was 10 dB. Thus, this

system can be considered as applying no or only partial power control. The figure

displays, for both MIMO LE and DFE, the mean MMSE averaged over all users

and channel trials. Also shown is the largest (worst user) and smallest (best user)

individual MMSE that occurred among all users and channel situations. While close

to the curves of the LE for small N , the MMSE of the DFE increasingly surpasses

that of the LE for larger user populations. This behavior already indicates a better

performance of the DFE. At and around the point where N equals the number of

diversity channels (Udiv = 16), a significant increase in the MMSE of the LE can be

observed. The MMSE of the DFE also starts to increase at that point, however not

as strongly. The results for the DFE at N � 16 must be treated with attention

since error propagation effects are neglected. These tend to become increasingly

pronounced when the performance of one or more users drops significantly, which is

the case in strongly overpopulated systems. This can be seen in the worst user MMSE
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Figure 4.11: Maximal, average and minimal relative MMSE for 4 × 4, T = 50 ns
system with an average received SNR/symbol of 28 dB and a near-far ratio of 10 dB.

of the DFE, which exceeds −10 dB for more than 20 users.

As an alternative to absolute performance measures, the relative MMSE, i.e. the

ratio between the MMSE and the matched filter bound, can be used. This quantity

is very instructive since it is not biased by performance differences due to different re-

ceived energies per user. As a result, the relative MMSE directly measures the perfor-

mance deterioration caused by an increased user population. For the aforementioned

system, the relative MMSE is shown in Figure 4.11. These results shall be compared

to a system with a symbol period of T = 200 ns but otherwise identical properties

(Figure 4.12). It can be noted that, especially for the LE, the difference between the

best and worst user curves is significantly larger than that for the higher symbol rate

system. This leads to an inferior overall system performance. The same effect has

also been observed by Monsen [78] and Clark et al. [20, 21]. They have attributed

the better performance of systems with a longer delay spread (stronger frequency

selective channels) to an increased amount of “intrinsic” or “implicit” frequency di-

versity, which is not related to the diversity discussed earlier (antenna diversity A,
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Figure 4.12: Maximal, average and minimal relative MMSE for 4× 4, T = 200 ns
system with an average received SNR/symbol of 28 dB and a near-far ratio of 10 dB.

frequency diversity K, number of diversity channels Udiv). The potentially better

performance of higher frequency selective channels requires however more complex

receivers (i.e. longer filters with more coefficients) to take advantage of the implicit

diversity because the amount of ISI and CCI is greater.

Figure 4.13 shows the average MMSE, averaged over all users and trials, in the

2 × 2 system for different receiver input SNR’s. The corresponding results for the

4 × 4 system are displayed in Figure 4.14. Included is the new lower bound on the

average MMSE for overpopulated systems with a linear equalizer (4.50). As can

be seen, the bound is very tight. It was found that it becomes tighter the larger

the received SNR. The figures show again that the average performance degradation

paid for each additional user is stronger for the LE than for the DFE. While the LE

yields unsatisfactory results in the overpopulated region (average MMSE > −10 dB),
the DFE may allow communication with restricted quality when N exceeds Udiv.

However, error propagation effects may deteriorate the final performance such that

reliable communication may not be possible in practice.
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Figure 4.13: Average MMSE for identical 2 × 2, T = 50 ns systems with different
average received SNR’s and equal energy users.
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Figure 4.14: Average MMSE for identical 4 × 4, T = 50 ns systems with different
average received SNR’s and equal energy users.
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Figure 4.15: MMSE ratio between identical 2× 2, T = 50 ns systems with different
average received SNR’s and equal energy users.

The average MMSE ratio for identical 2 × 2 systems14 with different received

SNR’s is shown in Figure 4.15. The circles correspond to the MMSE ratio between

the 28 and 23 dB SNR curves of Figure 4.13. Analogously, the crosses represent

the ratio between the 28 and 18 dB SNR curves. Consequently, the difference in

received SNR between the two compared systems is 5 dB and 10 dB, respectively.

The results for the 4 × 4 system are shown in Figure 4.16. Considering the linear

equalizer (LE), it can clearly be seen that there are large MMSE advantages for

systems with higher SNR levels if the number of users is smaller than or equal to the

number of diversity channels. For overpopulated systems, larger SNR’s have negligible

effects on the MMSE performance. This is in agreement with the lower bound on

the average MMSE for overpopulated systems, Equation (4.50), which depends only

on the number of users and the number of diversity channels but not on the received

SNR. In particular, an overpopulated system with LE can be considered as completely

14The systems compared differed only in the received SNR, i.e. only the noise level was different.
All other system characteristics, especially the channels, were identical.
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Figure 4.16: MMSE ratio between identical 4× 4, T = 50 ns systems with different
average received SNR’s and equal energy users.

interference limited since the received SNR does not or only marginally influence its

performance. However, the ratio of the average MMSE for small N is practically

identical to the SNR difference between the two systems. Thus, if N � Udiv, an

increase of the SNR will result in an almost identical decrease of the MMSE (in dB).

The transition of the MMSE ratio at N = Udiv to overpopulated systems is steep

but continuous. More detailed simulations have shown that it is influenced by the SNR

level. If high SNR systems are compared, the transition will become more abrupt,

changing almost step like from the SNR difference (N ≤ Udiv) to zero (overpopulated

systems). On the other hand, the transition around N = Udiv becomes more and

more continuous the lower the SNR’s of the compared systems are.

The MMSE ratio for identical systems with different SNR’s decreases not as

strongly around N = Udiv for a DFE. In contrast to the LE, the performance of

even strongly overpopulated systems will improve noticeably if the SNR is increased

and error propagation effects are neglected. The performance loss due to overpopu-

lation is visible but more moderate. Thus, an overpopulated system with DFE does
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Figure 4.17: Upper BER bound versus average received SNR for 2× 2, T = 50 ns
systems with a different number of equal energy users.

not seem to be completely interference limited.

Let us now investigate the upper BER bounds, averaged over all users and tri-

als, for the MIMO MMSE LE and DFE. Figure 4.17 displays the BER versus the

received SNR for the 2× 2 system. There are 8 curves for both equalizers, each one

for a different system population (N = 1, 2, . . . , 8). It can be seen that the DFE

performs in all cases considerably better than the linear equalizer. The LE displays

the characteristic waterfall-like shape of the BER for N = 1, 2, 3 users. For 4 users

the BER also seems to decrease, however, a much higher input SNR is required for

low BER values. For more than 4 users, the curves of the LE show an irreducible

BER floor. This is explained by the fact that the number of diversity channels in

this system is Udiv = 4, allowing up to 4 users with reliable performance if a LE is

employed. Figure 4.18 shows the corresponding results for the 4×4 system. Remark-

able is the performance of the DFE with 20 users, i.e. 4 more users than diversity

channels. Average BER’s of less than 10−6 can be achieved for received SNR’s per bit

greater than 27 dB. This means that the DFE performs well even in overpopulated

systems. Error propagation effects have most probably no qualitative influence on
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Figure 4.18: Upper BER bound versus average received SNR for 4× 4, T = 50 ns
systems with a different number of equal energy users.

this result since the variation of all calculated BER’s, including the ones from the

worst users, is relatively small around the average values shown in the figures. Hence,

the performance of all system users is good, which makes the occurrence of errors

relatively rare. Under this circumstance, it has been shown that error propagation

does not lead to pathological situations but only to an overall performance loss of

approximately 2 dB [99].

Results for an identical 4× 4 system except a longer symbol period of T = 200 ns

are given in Figure 4.19. The lower amount of “implicit” diversity [21, 78] leads to

a worse performance of the LE compared to the T = 50 ns case for all user popula-

tions shown while the results of the DFE seem to be degraded only in overpopulated

scenarios.

The next two Figures 4.20 and 4.21 show the average BER versus the number of

users with the received SNR/bit as parameter. It can be observed that the DFE is

able to support consistently a larger number of users for the same error probability

than the LE. These figures also confirm that a larger received SNR does not have
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Figure 4.19: Upper BER bound versus average received SNR for 4× 4, T = 200 ns
systems with a different number of equal energy users.

much effect on the performance of the LE when the system is overpopulated. On

the other hand, the DFE has the potential to achieve a distinctly better performance

gain by increasing the SNR in situations with many users.

The next results measure the system performance in terms of the outage proba-

bility. An outage condition is assumed when the Saltzberg upper bound BER of an

individual user is larger than 10−4. The outage probability is then

Pout = Prob
{
Pb,k > 10−4

}
(4.144)

where Pb,k is the upper bound of the BER. For the transfer of data, a raw BER of

10−4 before coding is generally considered appropriate. An estimate of the outage

probability is calculated with

P̂out =
Nout

Ntot
(4.145)
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Figure 4.20: Upper BER bound versus number of users for 2×2, T = 50 ns systems
with different average received SNR’s and equal energy users.
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Figure 4.21: Upper BER bound versus number of users for 4×4, T = 50 ns systems
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Figure 4.22: Estimated outage probability versus average received SNR for 4 × 4,
T = 50 ns systems with a different number of equal energy users.

where Nout is the number of users whose upper bound BER exceeded 10−4 and Ntot =

2000 is the total number of users for which the BER bound was computed.

The estimated outage probability versus the received SNR/bit for the 4×4 system

with T = 50 ns is shown in Figure 4.22. As can be seen, the LE may achieve outage

probabilities of less than 1% for 10, 12 and 14 users. For N = 16, a considerably

higher SNR is necessary in order to obtain low outage values. When the number of

users is larger than the number of diversity channels, the outage probability does not

decrease considerably below 100% over the whole SNR range displayed. The DFE

may achieve low outage probabilities for N < 16. Even if the number of users becomes

larger than 16, small outage probabilities can be obtained in low noise environments.

This example provides further evidence for the superiority of the DFE especially in

highly populated and overpopulated systems.

The next two figures plot the outage probability over the number of system users.

In the equal energy user case (Figure 4.23), between 4 and 5 more users can be

supported for the same outage probability if a DFE receiver is employed instead of a
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LE. This result was found to be independent of the received SNR/bit. It also seems

as if the DFE may allow a significant portion of the users (about 40% for 25 dB

SNR/bit) to communicate reliably even if the number of users is almost twice the

number of diversity channels. In this case, however, the effect of incorrect decisions

must be taken into account. The users which are in an outage condition may cause a

considerable amount of errors. This affects, in turn, also the better users through the

decision-feedback loop. Since the number of users which perform poorly is large and

since their error probability might be high, the negligence of error propagation leads in

Figures 4.23 and 4.24 to overly optimistic results for N � Udiv. Figure 4.24 considers

users whose signals are received at different SNR’s (near-far effect). The near-far

ratio (maximal possible SNR ratio between signals received from different users) was

set to 10 dB. Compared to the equal energy case, the performance suffers between

dramatically for low SNR’s of 15 dB to mildly at higher SNR’s. The advantage of

a DFE over a LE seems to be hardly affected. Overall, all equalizers proved to be

near-far resistant15.

The final investigation considers the system capacity. The average asymptotic

capacity (Equation (4.139)) of the 4 × 4, 50 ns system with equal energy users is

shown in Figure 4.25 for a desired minimum BER probability of Pb = 10−4. A

clear difference in the behavior of LE and DFE can be noticed. The asymptotic

capacity of the LE has a distinct maximum for 12 users and decreases for increasing

N . In largely overpopulated systems, the asymptotic capacity is not dependent on

the received SNR. On the other hand, the asymptotic capacity of the DFE increases

almost linearly for smallN . After the maximum is reached for approximately 19 users,

15Near-far resistance is a measure of how well a multiuser detector is able to suppress multiple
access interference (CCI and ISI). It is defined as the worst case asymptotic efficiency for a certain
bit of a specified user over all possible energies of the other (interfering and noninterfering) bits [69].
The asymptotic efficiency describes the performance degradation due to interference from other users
and ISI in the limit of no Gaussian noise [69, 122, 123].
If the multiple access interference (MAI) causes an irreducible error floor even in the absence of

Gaussian noise, the near-far resistance of the detector will be zero. In other words, the detector
will not be near-far resistant. On the other hand, a near-far resistant detector does not have an
irreducible error floor in the presence of MAI, and its error probability decreases monotonically
towards zero for increasing SNR. For example, the conventional matched filter detector is not near-
far resistant. Conversely, the ZF and MMSE MIMO LE as well as DFE have been found to be
near-far resistant for linearly independent channels [69, 79].
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Figure 4.23: Estimated outage probability versus number of users for 4×4, T = 50 ns
systems with different average received SNR’s and equal energy users.
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Figure 4.24: Estimated outage probability versus number of users for 4×4, T = 50 ns
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Figure 4.25: Asymptotic capacity versus number of users for 4 × 4, T = 50 ns
systems with different average received SNR’s and equal energy users.

the capacity decreases only marginally. The asymptotic capacity of the DFE for large

N still depends on the received SNR. Almost identical results for the asymptotic

capacity were found for users received with unequal energies (near-far scenario).

A more realistic performance measure is the practically achievable capacity (Equa-

tion 4.142). Figure 4.26 shows this quantity for the same system as above. The dif-

ferences are obvious. For small values of N , the capacity curves increase linearly with

three different slopes, each corresponding to a modulation scheme with a different

number of constellation points. Some curves have local maxima. Independent of the

received SNR, the capacity of the LE is zero in overpopulated scenarios. The curves

of the DFE have to be treated with caution for large N because error propagation is

neglected. In all cases, the DFE achieves its capacity maximum at larger N than the

LE.

Interestingly, in contrast to the asymptotic capacity, the practically achievable

capacity results are quite different for the equal and unequal energy user cases. An

example with a near-far ratio of 10 dB is displayed in Figure 4.27. The curves resemble
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Figure 4.26: Practical capacity versus number of users for 4× 4, T = 50 ns systems
with different average received SNR’s and equal energy users.

more those of the asymptotic capacity and have only one maximum. For the DFE,

the capacity values at the maxima are approximately the same for both equal and

unequal energy scenarios. The practically achievable capacity of the LE decreases

slightly for increasing near-far ratios. Overall, both DFE and LE suffer only small

capacity losses due to near-far situations.

4.8 Conclusion

Different multiple-input multiple-output (MIMO) equalizer structures used for joint

detection of multiple signals have been described and analyzed. In addition, the effect

of diversity and the number of system users on the performance of these detectors is

quantified and discussed.

The MIMO equalizers analyzed include the linear equalizer (LE) and two differ-

ent structures of the decision-feedback equalizer (C-DFE, NP-DFE). Both minimum

mean-square error (MMSE) and zero-forcing (ZF) criteria have been considered as
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Figure 4.27: Practical capacity versus number of users for 4× 4, T = 50 ns systems
with different average received SNR’s and a near-far ratio of 10 dB.

optimization criteria.

Considering stationary environments, the analysis may be carried out in either

time- or frequency-domain. It has been shown that the frequency-domain approach is

generally more efficient and leads to the optimal infinite-length MMSE (ZF) equalizer.

On the other hand, the time-domain analysis is conceptually simpler (especially for

the DFE) and yields the optimal finite-length equalizer.

Despite the potential advantages of the frequency-domain analysis, it has not

received nearly as much attention in the literature as the time-domain approach.

One reason is that the latter is definitively more appropriate for systems with non-

stationary channels or when adaptive solutions are desired. As for stationary envi-

ronments, the frequency-domain analysis may be conceptually more complicated and

requires apparently a more complex implementation of the equalizer structure. On

the positive side are potentially significant efficiency gains for the calculation of the

equalizer filters and a better numerical stability. The issue of a more complex im-

plementation is mainly a result of the well-known frequency-domain structure. This
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form consists of a noise-whitening matched filter and a channel matched filter followed

by the actual equalizer [27, 51, 118]. The determination and implementation of this

structure seems to be less attractive. However, it has been shown here that a simpler

structure of the linear equalizer exists which does not require knowledge about the

noise characteristics and the channels. Rather, it is based on the characteristics of

directly measurable (received signal) and known (training symbols provided) quanti-

ties. This and the other advantages mentioned above may make the frequency-domain

based approach attractive for the determination of the MMSE MIMO LE.

The calculation of the DFE filters in the frequency-domain is complicated by the

need for a matrix spectral factorization. This procedure is complex and requires a

relatively large amount of operations [43]. However, the number of necessary opera-

tions increases still only linearly with the equalizer (time-) length versus cubically for

the time-domain approach. Hence, the frequency-domain analysis may still be more

efficient, especially when the channels are strongly frequency selective.

A new lower bound of the average MMSE has been derived for the MIMO LE in

overpopulated systems16. This bound shows the basic limitation of the LE when the

number of users is larger than the number of diversity channels in the system.

It has been proved that the general relationship between equalizer output SINR

and MMSE for single-input single-output (SISO) equalizers is also valid for their

MIMO counterparts. This enabled a formal application of error probability bounds

for MIMO equalizers.

The performance of the equalizers considered here has been investigated in terms

of the MMSE, BER, outage probability and capacity. It has been found that the

decision-feedback equalizer (DFE) may achieve sufficiently good results in systems

where the number of users exceeds the number of diversity channels, while a lin-

ear equalizer (LE) always performed unsatisfactorily under these circumstances. In

situations when the number of users was distinctly smaller than the number of di-

versity channels, the LE achieved almost as good results as the DFE. With growing

user populations, the performance advantage of the DFE was increasing. Therefore,

16A system is defined as overpopulated when the number of users (N) is larger than the number
of diversity channels (Udiv).
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the LE may be a good choice for systems with low user populations with respect to

the number of diversity channels (Udiv) since it is less complex than the DFE. For

densely populated and especially overpopulated systems, only a DFE may offer re-

liable communication quality. Both equalizer types proved to be robust in near-far

scenarios.



Chapter 5

Delayed-Decision-Feedback

Equalization

5.1 Introduction

This chapter describes a method to improve the overall performance of multiple-

input multiple-output (MIMO) decision-feedback equalizers used in the reverse link

of multiuser systems. The method is effective if the channels between users and

receiver are frequency selective and if the signal power received from different users

varies significantly.

The MIMO DFE detectors described in Chapter 4 improve the performance by

means of a feedback filter which uses previously detected symbols in order to esti-

mate and cancel interference and noise in the input signal to the decision device.

Since almost the same decisions are available to the feedback filters of all users, their

performance benefits more or less equally.

Consider now that the base station receives the signals of different users with

significantly varying average powers. This may lead to large performance differences

for the detected signals of different users. Signals of users received at a high SNR

may perform well while the detection of weak users may show an unsatisfactory error

probability. In addition, the unreliable decisions of the weak users are used in the

feedback filter to cancel interference in the strong users’ symbol estimates, which may
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eventually cause a worse performance than without a feedback section. A possible

solution to this problem is to use more of the (reliable) decisions of the strong users’

signals in order to further improve the quality of the weak users’ estimates, while

employing less or no (unreliable) decisions of the weak users’ signals in the feedback

process for the strong users. This is practically achieved by delaying the decisions for

weaker users relatively to those of the stronger users. It ensures that more reliable

signals are processed at first, making more decisions available to improve the weaker

signals. In return, the weaker signals are processed later and they have, thus, less

malicious influence on the detection of the earlier processed strong signals.

Let us consider the reverse link of a multiuser system in a frequency-selective

environment as described in Chapter 2. A common characteristic of such systems is

that the received signal powers from different users may vary significantly due to their

spatial location with respect to the base station and the structure of the environment.

In general, signals of users close to the base station are received at a higher power

than signals transmitted by more remote users unless power control techniques are

applied. This situation of relatively strongly differing received signal powers is termed

near-far effect.

It is shown in Chapter 4 that the structure of the optimal MMSE equalizers may

be described by a cascade consisting of a noise-whitening matched filter, followed by a

channel matched filter and finally aN×N matrix filter, whereN is the number of users

in the system. As a result of the combination of time dispersive (frequency selective)

channels and a channel matched matrix filter in the base station, each received sample

will consist of several successively transmitted symbols from each user. Consider now

the output signal of the forward filter, ăk[n], which is a linear estimate of ak[n],

the n-th symbol transmitted by user k. This estimate contains, due to the time-

dispersive channel plus channel matched filter structure, interference components

from “previously” transmitted symbols ai[n − m] (m > 0, i ∈ IN), “presently”
transmitted symbols ai[n] (i �= k, i ∈ IN ) and “subsequently” transmitted symbols

ai[n+m] (m > 0, i ∈ IN ).
Recall the MIMO DFE’s analyzed in Chapter 4. The feedback part of these

equalizers makes use of decisions for the previously and some of the presently trans-
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mitted symbols in order to estimate and cancel interference. However, subsequently

transmitted symbols cannot be employed because the detector must be causal. As

a result, it is possible to cancel interference (ISI and CCI) caused by previously and

some presently transmitted symbols in the linear data estimate for each user. On

the other hand, the feedback part is not able to reduce interference caused by subse-

quently transmitted symbols. Another characteristic of these DFE’s is that all users

benefit, correct decisions provided, almost equally from the feedback structure since

approximately the same number of decisions is available for interference cancellation

in each of the N estimated data streams.

Due to the near-far effect of the multiuser system considered, the performance of

the strong users’ data estimates may already be sufficient after the forward filter. Thus

further improvement by the feedback process may not be necessary. On the other

hand, the weak users’ data estimates after forward filtering are generally significantly

worse and require more improvement by the feedback filter. In addition, it may not be

desirable to employ less reliable decisions of the weaker users in the feedback process

for the strong users since frequent decision errors may impair the overall quality of the

data estimates. In return, employing more decisions of the stronger users decreases

the probability that erroneous decisions enter the feedback loop.

The strategy of putting more weight on the improvement of the weak users leads

to a lower performance spread between the best and the worst data estimates. Hence,

the quality difference of the decisions for different users will become smaller, which

is generally desired. In addition, the weak users’ error rates may limit the overall

performance of the entire system. Thus, by enhancing the weak users’ estimates, the

overall system performance may be significantly improved.

5.1.1 Decision Path

Decision-feedback equalizers (DFE) use already detected symbols in a feedback pro-

cedure in order to improve the quality of the signals at the input to the quantizers.

Due to causality constraints, only previously detected symbols may be used in the

feedback process . Note that, in general, previously detected symbols are not neces-
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sarily identical to previously transmitted or received symbols. Therefore, the order

in which the decisions are made may affect the performance of the DFE significantly.

Let us define the decision path as the order in which the final decisions on the

symbols are made. Consider at first the single user case. The input to the decision

quantizer is the scalar signal ã[n]. The natural way to perform the symbol-by-symbol

decisions is in chronological order, i.e. quantizing at first the symbol ã[n], then ã[n+1],

after that ã[n + 2], and so on. The decision path proceeds in this case successively

from n = −∞ to n = ∞. In general, the decision path may be chosen arbitrarily. For

example, one could, by modifying the equalizer structure appropriately, perform the

decisions in the following order: ã[0], ã[2], ã[1], ã[3], . . . . Let us quantify the decision

path with the decision order function d[n]. This function maps the symbol index n

into an integer number. The value of d shall be interpreted as the decision index,

i.e. the d[n0]-th decision is made on the symbol ã[n0]. For the chronological decision

order, d can be expressed as d[n] = n.

Consider now a multiuser system with N users. Let us express the signal to be

quantized as two-dimensional scalar function ã[k, n] � ãk[n], where k is the user

number and n is the time index. The decision path can now be chosen arbitrarily

in the [k, n]-plane. This is described by a two-dimensional decision order function

d[k, n].

As a special case, one might choose to perform the decisions at first with respect to

the users and afterwards with respect to time. Figure 5.1 shows the decision path for a

system with 4 users and sequences of length 4. The horizontal direction represents the

time dimension and the different users are ordered vertically. Each circle represents a

symbol at the input to the decision element. The values of the decision order function

d are printed inside the circles. The detection of the different sequences is performed

almost parallel with respect to the time dimension. Therefore, this decision order is

referred to as parallel. Note that the DFE structures described in Chapter 4 perform

the decisions in this order.

When the whole data sequences of each user are detected subsequently, the deci-

sion order is called successive. In this case the decision path is chosen as shown in

Figure 5.2. For infinite-length sequences, at first the symbols of user 1 are detected
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Figure 5.1: Decision path for parallel decision order in a system with 4 users and
4 symbols per user.

for all times n ∈ Z. After that all symbols of user 2 are detected, and so on, until all

sequences are quantized. Note that for the decision of symbol ã[k0, n0] all symbols

of the sequences 1, 2, . . . , k0 − 1 are available and may be used in the feedback loop.

Also available are all temporally preceding symbols of the same sequence, i.e. the

symbols ã[k0, n] for n < n0.

5.1.2 MIMO Delayed DFE Structures

The well-known DFE structures for multiuser systems are parallel detectors [55, 27,

31]. Their decision order is strictly defined and cannot be changed. A more flexible

detection order can be achieved by including delay elements after the linear forward

filter matrix [107]. The MIMO conventional delayed-decision-feedback equalizer (C-

DDFE) is an extension of the MIMO C-DFE (Section 4.3.1, Figure 4.4). It is obtained

by inserting a delay element after each output of the forward filter matrix C. Fig-

ure 5.3 shows the block diagram of the MIMO C-DDFE. The delay elements D∆k
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Figure 5.2: Decision path for successive decision order in a system with 4 users and
4 symbols per user.

(k ∈ IN ) delay the input sequence ăk by ∆k symbols, where ∆k may be an arbitrary

nonnegative integer number.

Consider the following example in order to understand the effect of the delay

elements on the decision path. Let the first branch be without delay (∆1 = 0). The

remaining branches are delayed by one symbol with respect to the previous branch,

i.e. ∆k = ∆k−1 + 1, ∀k = 2, 3, . . . , N . The decisions are then made in the order

shown in Figure 5.4 for a 4 user system with 4 received symbol per user. Each circle

represents a symbol ăk[n] at the output of the forward filter. The decision path

visualizes the order in which the decisions are made.

Figure 5.5 shows how a delay in its data sequence benefits a higher indexed user

(user 2) with respect to the less delayed lower indexed user (user 1). This diagram

contains for clarity only two users. The first user’s signal is undelayed while the

sequence of user 2 is delayed by one symbol. The lower left part of the figure shows

the sequences of both users before the delay. As a result of the frequency selective
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channels and the noise-whitening/channel matched filter structure at the receiver

front-end, the symbol denoted x of user 2 contains cochannel interference (CCI) from

the previous (a), present (b) and subsequent (c) symbols of the first user. If the

sequence of user 2 were not delayed, the decision on symbol x would be made before

the decision on c. Thus, only the symbols a and b would be available to the feedback

filter in order to reduce interference caused by them in symbol x. However, after

delaying the second users sequence, the decision on symbols a, b and c is made before

that on x and the knowledge of all three CCI causing symbols can be used in the

feedback filter to reduce the interference in x before the decision. In conclusion,

the continuous-valued estimate of x before quantization becomes more reliable since

more information of CCI causing symbols is available to the feedback filter, which is

then able to produce a better estimate of the noise component in x. Conversely, less

information can be used in the feedback process in order to reduce the interference

in the symbols of user 1. Therefore, while user 2 will benefit from the delay of its

sequence, the estimate of user 1 will become less reliable (provided that the decisions

used in the feedback filter are correct).

The delayed version of the MIMO noise-predictive DFE (Section 4.3.2, Figure 4.7)

is obtained by including a delay element after each forward filter output. The block

diagram of the resulting MIMO NP-DDFE is shown in Figure 5.6.

5.2 Optimal Parameters and Ideal Performance

Expressions for the optimal forward and feedback matrix filters, based on the MMSE

criterion, are given in the following subsections. It is assumed that all decisions

used in the feedback filter are correct. At first, the conventional DDFE structure is

considered and the optimal filters are derived in the frequency domain. The same

approach is used for the noise-predictive DDFE. In addition, the feedback filter of

the NP-DDFE can be calculated in the time-domain, while the forward filter may be

determined in the frequency-domain. With this hybrid approach, a matrix spectral

factorization is avoided and only matrix inversions are required for the calculation of

the NP-DDFE filters.
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5.2.1 Conventional DDFE

It is well known (Section 4.3) that the optimal MMSE MIMO DFE forward filter can

be expressed by a cascade of three elements: firstly a noise-whitening matched filter

S−1
ν (D); secondly a channel matched filter XH(D−∗); and lastly a N × N matrix

filter L. This matched filter structure is the starting point for the system model. As

in Section 4.3.1.1, the first two elements of the forward filter can be combined with
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ᾰ2

ᾰN
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Figure 5.6: Block diagram of the MIMO noise-predictive delayed-decision-feedback
equalizer (NP-DDFE).

the channel X(D) to form the equivalent channel

Sx(D) � X(D)S−1
ν (D)XH(D−∗). (5.1)

The resulting Gaussian noise at the output of the channel matched filter, z, is a

correlated vector signal with N components. Its power spectrum is (Equation (4.60))

Sz(D) � EM

[
zH(D−∗)z(D)

]
= Sx(D). (5.2)

In order to define a vector model, the delay elements after the forward filter of

the C-DDFE (Figure 5.3) are described by the delay matrix

∆(D) = Diag〈D∆k 〉, k = 1, 2, . . . , N (5.3)

where Diag〈D∆k 〉 is a N × N diagonal matrix with diagonal elements D∆k for k =

1, 2, . . . , N (Table A.3) and ∆k ∈ N0. With this, the vector model of the system
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Figure 5.7: Vector block diagram of the equivalent system model including MMSE
MIMO C-DDFE detector.

including MMSE MIMO C-DDFE is shown in Figure 5.7.

Define the delayed data signal, α, and the delayed quantized estimate, α̂, according

to

α(D) � a(D)∆(D) (5.4)

α̂(D) � â(D)∆(D). (5.5)

The power spectrum of the delayed data signal is easily found to be

Sα(D) � EM

[
αH(D−∗)α(D)

]
= ∆−1(D)Sa(D)∆(D) (5.6)

where Sa(D) is the power spectrum of the data signal a (Equation (2.61)) and

∆−1(D) is the anticausal inverse of the delay matrix. Note that

∆H(D−∗) = ∆−1(D) (5.7)

since for each diagonal element [(D−∗)∆k ]∗ = D−∆k .

The signal ă is the linear estimate of the data signal a at the output of the forward

filter Lc∆. The difference between this estimate and the data signal is ĕ � ă − a

(Equation (4.1)).

The output of the delay matrix is given by

ᾰ(D) � ă(D)∆(D) (5.8)

which represents a linear estimate of the delayed data α(D). The error in this estimate
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is

ε̆(D) � ᾰ(D)−α(D) = ĕ(D)∆(D). (5.9)

The decisions α̂ are used as inputs to the purely causal feedback filter Bc∆, which

produces an estimate of the negative error signal −ε̆. Assuming that all decisions are

correct, α̂ = α, the error estimate is

−ε̃(D) = α(D)Bc∆(D). (5.10)

Finally, the input to the decision device is the continuous-valued estimate

α̃ = ᾰ− ε̃. (5.11)

Thus, the error signal before quantization is

ε � α̃−α (5.12)

= ε̆ − ε̃. (5.13)

Let us now define the quantities

ζ(D) � z(D)∆(D) (5.14)

Σx(D) �∆−1(D)Sx(D)∆(D) (5.15)

Λc(D) �∆−1(D)Lc∆(D)∆(D). (5.16)

Applying these definitions to the system model as shown in Figure 5.7, the system

may be described alternatively by the model in Figure 5.8.

It is easily shown that the power spectrum of the delayed noise signal ζ is equal
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Figure 5.8: Alternative vector block diagram of the equivalent system model includ-
ing MMSE MIMO C-DDFE detector.

to the transfer function of the equivalent delay channel

Sζ(D) � EM

[
ζH(D−∗)ζ(D)

]
(5.14)
= ∆−1(D)EM

[
zH(D−∗)z(D)

]
∆(D)

(5.2)
= Σx(D). (5.17)

Note that the model shown in Figure 5.8 is identical to the model for the parallel

(undelayed) version of the MMSE MIMO C-DFE (Figure 4.6), which is analyzed in

Section 4.3.1.1. In fact, the quantities α, α̂, ζ, Σx, Λc, Bc∆ replace in Figure 4.6 a,

â, z, Sx, Lc, Bc, respectively. Hence, the results of Section 4.3.1.1 may be applied

directly in order to derive the optimal filters of the MMSE MIMO C-DDFE.

In particular, let us define the spectrum

Q∆(D) � Σx(D) + S−1
α (D) (5.18)

=∆−1(D)Q(D)∆(D) (5.19)

where Q(D) � Sx(D) + S−1
a (D) (Equation (4.18)). This spectrum may be factored

into [126]

Q∆(D) = Ψ∆(D)G
−1
∆ Ψ

H
∆(D

−∗) (5.20)

where Ψ∆(D) is a causal and stable matrix with Ψ∆(D) =
∑∞

n=0Ψ∆[n]D
n. Ψ∆[0]

is constrained to be an upper triangular matrix with ones on the main diagonal and

G−1
∆ is a diagonal matrix independent of D. Applying the result of Equation (4.62),



5.2 Optimal Parameters and Ideal Performance 224

the forward filter for the model in Figure 5.8 is

Λc(D) = Ψ
−H
∆ (D−∗)G∆. (5.21)

Considering definition (5.16) and using the result (4.63), the forward and feedback

filters of the MMSE MIMO C-DDFE as shown in Figure 5.7 are given by

Lc∆(D) =∆(D)Ψ−H
∆ (D−∗)G∆∆

−1(D) (5.22)

Bc∆(D) = IN −Ψ∆(D). (5.23)

The equalizer performance in terms of the individual MMSE is

Jk,c∆ = [G∆]kk , ∀k ∈ IN . (5.24)

While the determination of the individual MMSE’s Jk,c∆ requires the matrix spec-

tral factorization (5.20), their geometric average J̄Π (Equation (4.66)) may be calcu-

lated with a closed-form expression. In general, Q(D) would have to be replaced with

Q∆(D) in Equation (4.67) in order to determine J̄Π for the MMSE MIMO C-DDFE.

However, note that the determinants of Q∆(D) and Q(D) are equal since

det [Q∆(D)] = det
[
∆−1(D)Q(D)∆(D)

]
= det

[
∆−1(D)

]
det [Q(D)] det [∆(D)]

= det [Q(D)] . (5.25)

Therefore, the geometric average MMSE J̄Π of the MMSE MIMO C-DDFE is exactly

given by Equation (4.67). It is remarkable that J̄Π does not depend on the delays

D∆k . In fact, the introduction of delays after the forward filter changes the individual

MMSE’s, however, their geometric average remains constant.
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Figure 5.9: Equivalent system models including MMSE MIMO NP-DDFE detector.

5.2.2 Noise-Predictive DDFE

5.2.2.1 Frequency-Domain Approach

Let us again assume the matched filter front-end structure of the receiver in the form

Cnp∆(D) = S−1
ν (D)XH(D−∗)Lnp∆(D). (5.26)

With this, the vector model of the system including MIMO NP-DDFE results in the

structure shown in Figure 5.9(a). The equivalent channel Sx(D) (Equation (5.1))

includes the “real” channel as well as the receiver front-end structure. The equalizer

elements Lnp∆(D), Bnp∆(D), ∆(D) are the forward filter, feedback filter and delay

matrix (Equation (5.3)), respectively. Expressions for the optimal filters Lnp∆(D)

and Bnp∆(D) with respect to the MMSE criterion are derived in the following.

Note that most of the signals in the NP-DDFE are described by the same expres-

sions as those in the C-DDFE. Equations (5.1) to (5.9) and (5.11) to (5.13) apply also
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to the MIMO NP-DDFE and are not repeated here for the sake of brevity. However,

the input to the feedback filter is different for the NP-DDFE and it is equal to

−ε̂ � α̂− ᾰ. (5.27)

Combining the assumption that all decisions provided to the feedback loop are correct,

α̂ = α, with Equations (5.27) and (5.9) results in ε̂ = ε̆. Thus, the output signal of

the feedback filter is

−ε̃(D) = −ε̆(D)Bnp∆(D). (5.28)

Note that the purely causal feedback filter acts as a linear prediction filter that extrap-

olates the value of the present noise vector sample ε̆[n] based on past noise samples

ε̆[n −m] (m > 0) and some components of the present noise sample. The final er-

ror of the continuous-valued estimate at the input to the decision device is therefore

identical to the prediction error ε = ε̆− ε̃.

Define, in analogy to the previous section, the delayed noise signal ζ(D) (Equa-

tion (5.14)), the equivalent delay channel Σx(D) (Equation (5.15) and the equivalent

delay forward filter

Λnp(D) �∆−1(D)Lnp∆(D)∆(D). (5.29)

Note that the power spectrum of the delayed noise is equal to the transfer function

of the equivalent delay channel (Equation (5.17)).

With these definitions, an equivalent system model results, which is shown in

Figure 5.9(b). This model does not have explicit delay elements in the equalizer

structure and is identical to the parallel (undelayed) structure of the MIMO NP-

DFE, which is analyzed in Section 4.3.2. Thus, the results of Section 4.3.2 may

be applied here simply by replacing the quantities a, â, z, Sx, Lnp, Bnp with α,

α̂, ζ, Σx, Λnp and Bnp∆, respectively. In particular, applying this substitution to
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Equation (4.104) yields the forward filter

Λnp(D) =
[
Σx(D) + S−1

α (D)
]−1

(5.18)
= Q−1

∆ (D). (5.30)

Combining Equations (5.30), (5.29), (5.19) and applying the result in Equation (4.106)

to the current model yields the final expressions for the forward and feedback filters

of the MMSE MIMO NP-DDFE

Lnp∆(D) = Q−1(D) (5.31)

Bnp∆(D) = IN −Ψ∆(D) (5.32)

where Q(D) � Sx(D)+S−1
a (D) (Equation (4.18)) and Ψ∆(D) is the causal factor of

Q∆(D) (Equation (5.18)) obtained by matrix spectral factorization (Equation (5.20)).

Note that the forward filter of the delayed equalizer is identical to that of the

(undelayed) MMSE MIMO NP-DFE and that of the MMSE MIMO linear equalizer

(LE). Hence, the MMSE MIMO LE can be extended by a feedback structure with

delays to become the MMSE MIMO NP-DDFE without changing the parameters

of the forward filter. This enables relatively simple upgrading of linear equalizer

structures to higher performance DFE detectors.

All comments and results of Section 5.2.1 with respect to the performance apply

to the MMSE MIMO NP-DDFE as well. In particular, the individual MMSE’s of the

equalizer are given by Equation (5.24).

5.2.2.2 Hybrid Approach

In general, a determination of forward and feedback filters of the MMSE MIMO

DDFE’s will require the spectral factorization of a matrix function if a frequency-

domain approach is used. Although not described here, the optimal parameters of

the MMSE MIMO C-DDFE may also be calculated in the time-domain. Despite

rendering the optimal finite-length solution for the filters, the matrix to be inverted

may be of a very large dimension and it may be ill conditioned. For situations in
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which it is desired to avoid a matrix spectral factorization as well as the inversion of

a large matrix, a hybrid approach may be considered that uses both frequency- and

time-domain techniques.

The initial idea for the hybrid approach is based on the following observations

for the MMSE MIMO NP-DDFE: Firstly, the forward filter is equal to that of the

MMSE MIMO LE and thus independent of the delays; and secondly, the feedback

filter can be interpreted as a linear prediction filter. Hence, one may determine the

forward filter in the frequency domain and the feedback filter in the time-domain.

The forward filter is calculated as described for the linear equalizer in Section 4.2.1.1,

for which only simple inversions of lower-dimensional matrices are required. The

feedback filter can be determined independently by applying the time-domain linear

prediction theory.

According to Equation (5.31), the forward filter of the MMSE MIMO NP-DDFE

can be calculated in the frequency-domain with

Lnp∆(D) = Q−1(D). (5.33)

Provided that all decisions used in the feedback process are correct, the input to

the decision device becomes −ε̂ = −ε̆. In this case, Bnp∆ is a linear prediction filter

for the noise component ε̆ in the output signal of the forward filter, i.e. it extrapolates

the value of ε̆k[n] based on all previous samples ε̆k[n − m] (m > 0, ∀k ∈ IN ) and
the present samples ε̆i[n] (∀i < k). Assuming that the length of the linear prediction

filter is MB (matrix) samples, the predicted value may be expressed as

ε̃[n] =

MB−1∑
m=0

ε̆[n−m]Bnp∆[m] (5.34)

where ε̃[n] is the prediction of ε̆[n] and the Bnp∆[m] are N × N matrices for all

m ∈ {0, 1, 2, . . . ,MB − 1}. Since the feedback filter is causal, the zeroth feedback

coefficient matrix Bnp∆[0] is constrained to be an upper triangular matrix with zeros

on and below the main diagonal. Note that the prediction error ε[n] = ε̆[n]− ε̃[n] is

identical to the error in the continuous-valued data estimate α̃[n] at the input to the
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decision device (Equation (5.13)).

Define the extended noise vector

ε[n] � [ε̆[n−MB + 1], ε̆[n−MB + 2], ε̆[n−MB + 3], . . . , ε̆[n]] (5.35)

which contains all input symbols to the feedback filter. Furthermore, define the

extended feedback filter matrix

B̄np∆ �




Bnp∆[MB − 1]

Bnp∆[MB − 2]

Bnp∆[MB − 3]
...

Bnp∆[0]



. (5.36)

Note that the dimension of this matrix is NMB ×N .

As mentioned before, the matrix Bnp∆[0] has zeros on and below the main diago-

nal. In order to avoid inconvenient constraints in the following mathematical formu-

lation, shortened versions of the extended noise vector and the columns of B̄np∆ are

defined by

εk[n] � [ε[n]][1(1)Lk]
(5.37)

bHk �
[
B̄np∆

]
[1(1)Lk],k

(5.38)

where the vector and matrix functions [. . . ][f(s)l] and [. . . ][f(s)l],c are defined in Ta-

bles A.3, A.7 and Equation (A.8). Lk is a positive integer number defining the

lengths of the above vectors:

Lk =MBN −N + k − 1. (5.39)

In other words, the row vector εk[n] is formed by taking the first Lk elements of ε[n]

and the column vector bHk is obtained by taking the first Lk elements in the k-th

column of the matrix B̄np∆.
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Combining Equations (5.13), (5.34) and the above definitions yields the error

signal εk

εk[n] = ε̆k[n]− ε̃k[n]

= ε̆k[n]− εk[n]b
H
k (5.40)

The second moment of the signal εk is identical to the MMSE of the k-th user’s

estimate

Jk,np∆ � E [ε∗k[n]εk[n]]

= Jk,le,mmse − rε̆ε,kb
H
k − bkr

H
ε̆ε,k + bkRε,kb

H
k (5.41)

where Jk,le,mmse is the k-th user’s MMSE obtained with a MMSE MIMO LE (Equa-

tion (4.23)) and

rHε̆ε,k � E
[
εHk [n]ε̆k[n]

]
(5.42)

Rε,k � E
[
εHk [n]εk[n]

]
. (5.43)

Using standard methods, the expression on the left hand side of Equation (5.41)

can easily be minimized [46]. As a result, the optimal parameters of the feedback

filter are given by

bHk,mmse = R−1
ε,kr

H
ε̆ε,k (5.44)

B̄np∆,mmse =


 bH1,mmse bH2,mmse bH3,mmse . . . bHN,mmse

0HN 0HN−1 0HN−2 . . . 0H1


 (5.45)

where 0Hi is an i-dimensional column vector in which each element is equal to zero

(Table A.7). The optimal feedback filter matrices Bnp∆[m] are finally determined by

comparing Equations (5.45) and (5.36).

Substituting the expressions for the optimal feedback filter into Equation (5.41)
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yields the MMSE of user k

Jk,np∆ = Jk,le,mmse − rε̆ε,kR
−1
ε,kr

H
ε̆ε,k. (5.46)

The matrix-vector product R−1
ε,kr

H
ε̆ε,k required for the solutions in Equations (5.44)

and (5.46) is efficiently performed by applying a Cholesky factorization to the Her-

mitian Lk × Lk-matrix Rε,k and backsubstitution with the elements of rHε̆ε,k. Note

that the determination of the feedback filter coefficients can be done very efficiently:

since the matrices Rε,k (k = 1, 2, . . . , N − 1) are all upper left submatrices of Rε,N ,

only the latter matrix has to be Cholesky factorized. For all other submatrices, the

Cholesky factors are directly obtained by partitioning the Cholesky factors of Rε,N .

Refer to Section 4.3.1.2 for more details.

Let us now find expressions for the vectors rHε̆ε,k and the matrices Rε,k, which are

required to find the optimal feedback filter and the MMSE. In particular, it can be

shown that

rHε̆ε,k = [Rε][1(1)Lk],Lk
(5.47)

Rε,k = [Rε][1(1)Lk],[1(1)Lk]
, (5.48)

i.e. rHε̆ε,k contains the first Lk components in the Lk-th column of the matrix Rε; Rε,k

is a submatrix consisting of the first Lk rows and columns of Rε, which is defined by

Rε � E
[
εH [n]ε[n]

]

(5.35)
=




Rε̆[0] Rε̆[1] . . . Rε̆[MB − 1]

Rε̆[−1] Rε̆[0] . . . Rε̆[MB − 2]
...

...
. . .

...

Rε̆[−MB + 1] Rε̆[−MB + 2] . . . Rε̆[0]




(5.49)

where the autocorrelation sequence Rε̆[m] is defined by

Rε̆[m] � E
[
ε̆H [n−m]ε̆[n]

]
. (5.50)
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It may be calculated from the corresponding power spectrum

S ε̆(D) � EM

[
ε̆H(D−∗)ε̆(D)

]
(5.51)

(5.9)
= ∆−1(D)EM

[
ĕH(D−∗)ĕ(D)

]
∆(D)

= ∆−1(D)S ĕ(D)∆(D). (5.52)

Using the notational convention (1.24) and the D-transformation rule (1.25), one gets

Rε̆[m] = D−1 {S ε̆(D)}

=∆−1(D)D−1 {S ĕ(D)} ∆(D)

=∆−1(D)Rĕ[m]∆(D)

=




rĕ,11[m] rĕ,12[m− (∆2 −∆1)] . . . rĕ,1N [m− (∆N −∆1)]

rĕ,21[m− (∆1 −∆2)] rĕ,22[m] . . . rĕ,2N [m− (∆N −∆2)]
...

...
. . .

...

rĕ,N1[m− (∆1 −∆N)] rĕ,N2[m− (∆2 −∆N)] . . . rĕ,NN [m]




(5.53)

where rĕ,ik[m] is the (i, k)-th element of the matrix Rĕ[m]

rĕ,ik[m] � [Rĕ[m]]ik . (5.54)

The forward filters of the MMSE MIMO NP-DDFE and the MMSE MIMO LE are

identical. Thus, the error signal ĕ of the NP-DDFE is equal to the final error signal e

of the LE before the decision. Recalling the expressions for the power spectrum of the

latter signal, Equations (4.22) and (4.17), one finds for the MMSE MIMO NP-DDFE

S ĕ(D) = Q−1(D). (5.55)

With this, the corresponding autocorrelation Rĕ[m] may be calculated by performing
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the inverse discrete-time Fourier transform (DTFT) on S ĕ(e
−j2πf̌ )

Rĕ[m] =

∫ 1

0

Q−1(e−j2πf̌ ) ej2πf̌m df̌ . (5.56)

5.3 Successive Detector

The successive DFE processes one data sequence after another. It is a special case of

the delayed DFE for which the relative delays between two consecutive data sequences

approach infinity.

In particular, for the interference reduction in symbol ăk[n] of user k, all decisions

on previously, presently and subsequently transmitted symbols âi[n −m] (∀m ∈ Z)

of the lower indexed users i < k are available to the feedback filter. Additionally, all

decisions âk[n − m] (∀m > 0) on previously transmitted symbols of the same user

may be employed in the feedback process. All other symbols have not been processed

yet and are not available. As a result, the feedback filter B is constrained to be

an upper triangular matrix function whose main diagonal elements must be causal,

scalar functions.

The optimal forward and feedback filters with respect to the MMSE criterion

can be determined by applying the orthogonality principle [46]. It states that all

available detector input signals must be statistically orthogonal to the error in the final

continuous-valued symbol estimate. Assuming that all decisions used in the feedback

filter are correct, two necessary conditions to satisfy the orthogonality principle for

the successive conventional decision-feedback equalizer (SC-DFE), Figure 4.6, are

E[u∗i [n−m]ek[n]] = 0, ∀m ∈ Z; i ∈ IN (5.57)

E[a∗i [n−m]ek[n]] = 0, ∀m ∈ Z; i < k (5.58)

where k ∈ IN . The ui[n], ai[n] and ei[n] (i ∈ IN ) are the input signals to the forward
filter, feedback filter and the error component in the data estimate before the decision

element, respectively. Z is the set of all positive and negative integer numbers (see

Table A.7). Note that the above equations will only be sufficient if previous decisions
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of the currently decoded sequence are not used in the feedback process, i.e. if the

decisions âk[n−m] (∀m > 0) are not available to the feedback filter for the detection of

the symbol ak[n]. This case is investigated in Section 5.3.1. However, if the previously

detected symbols of the same sequence are used in the feedback filter, an additional

equation is necessary in order to satisfy the orthogonality principle (Section 5.3.2).

Define the following cross-correlation functions and cross-power spectra

Rue[m] � E[uH[n−m]e[n]] (5.59)

Rae[m] � E[aH [n−m]e[n]] (5.60)

Sue(D) � EM

[
uH(D−∗)e(D)

]
(5.61)

Sae(D) � EM

[
aH(D−∗)e(D)

]
(5.62)

where u � [u1, u2, . . . , uN ], a � [a1, a2, . . . , aN ] and e � [e1, e2, . . . , eN ]. The corre-

sponding cross-correlations and cross spectra are connected through the D-transform:

Rue[m]
D←→ Sue(D) (5.63)

Rae[m]
D←→ Sae(D). (5.64)

Considering the above definitions, the necessary conditions of the orthogonality prin-

ciple (5.57) and (5.58) can alternatively be formulated in matrix form as

Rue[m] = ON×N , ∀m ∈ Z (5.65)

{Rae[m]}J = ON×N , ∀m ∈ Z (5.66)

where {A}J is a matrix whose upper triangular part is equal to that of A and which

has zeros on and below the main diagonal (see Table A.3).

The necessary conditions of the orthogonality principle can also be formulated in

the frequency-domain by applying the D-transform to Equations (5.65) and (5.66),
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which yields

Sue(D) = ON×N , ∀D ∈ C (5.67)

{Sae(D)}J = ON×N , ∀D ∈ C. (5.68)

The frequency-domain conditions of the orthogonality principle serve as starting

point for the determination of the optimal forward and feedback filters. Consider now

the vector block diagram of the system including MMSE MIMO SC-DFE with noise-

whitening/channel matched filter front-end (Figure 4.6). The vector input signal to

the forward filter is

u(D) = a(D)Sx(D) + z(D). (5.69)

Assuming that all decisions provided to the feedback filter are correct, â = a, the

input signal to the decision element becomes

ã(D) = u(D)L(D) + a(D)B(D). (5.70)

The error component in the final continuous-valued data estimate before quantization

is then

e(D) � ã(D) − a(D)

= u(D)L(D) + a(D) [B(D) − IN ] . (5.71)

Consider the power spectra

Saz(D) � EM

[
aH(D−∗)z(D)

]
(5.72)

Su(D) � EM

[
uH(D−∗)u(D)

]
(5.73)

Sua(D) � EM

[
uH(D−∗)a(D)

]
. (5.74)

Since z(D) = ν(D)S−1
ν (D)XH(D−∗) and Saν(D) = ON×AK , ∀D ∈ C (Equa-
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tion (2.63)), we get

Saz(D) = ON×N . (5.75)

Substituting Equation (5.69) into (5.73) and applying the relationships (5.75), (4.60),

(4.18) yields

Su(D) = Sx(D)Sa(D)Q(D). (5.76)

In the same manner, Sua(D) is easily found to be

Sua(D) = Sx(D)Sa(D). (5.77)

The cross-power spectrum Sue(D) is calculated by substituting Equation (5.71)

into (5.61)

Sue(D)

(5.71)

(5.61)

= EM

[
uH(D−∗) {u(D)L(D) + a(D) [B(D) − IN ]}

]
(5.74)

(5.73)

= Su(D)L(D) + Sua(D) [B(D) − IN ]

(5.77)

(5.76)

= Sx(D)Sa(D) [Q(D)L(D) +B(D) − IN ] . (5.78)

Accordingly, the cross spectrum Sae(D) is determined to be

Sae(D)

(5.71)

(5.62)

= EM

[
aH(D−∗) {u(D)L(D) + a(D) [B(D) − IN ]}

]
(5.74)

(2.61)

= SH
ua(D

−∗)L(D) + Sa(D) [B(D) − IN ]

(5.77)
= Sa(D) [Sx(D)L(D) +B(D)− IN ] . (5.79)

The necessary conditions of the orthogonality principle as formulated above may
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now be applied. Let us start with the first part (5.67). Combining this requirement

with expression (5.78) and solving for the forward filter L(D) results in

L(D) = Q−1(D) [IN −B(D)] . (5.80)

Substituting this equation into (5.79) yields after a few mathematical manipulations

Sae(D) = −L(D) (5.81)

= −Q−1(D) [IN −B(D)] . (5.82)

Comparing expression (5.81) with the orthogonality principle requirement (5.68)

shows that the forward filter is a lower triangular matrix filter. Note that, in the

right hand side of Equation (5.82), the notation with the factor [IN −B(D)] is used

rather than the negative term [B(D) − IN ]. This might seem to be not significant,

but it will prove very useful since the DC-coefficient of the former term, [IN −B[0]],

is a normalized upper triangular matrix (it has ones on the main diagonal) due to the

causality constraints imposed on the feedback filter.

Let us now apply the expression in Equation (5.82) to the second necessary con-

dition of the orthogonality principle (5.68). This results in the following requirement

for the feedback filter

{
−Q−1(D) [IN −B(D)]

}
J

= ON×N . (5.83)

5.3.1 Decision-Feedback Excluding the Currently Decoded

Sequence

Consider that we want to ignore previous decisions âk[n −m] of the sequence to be

decoded, i.e. the sequence of user k. Thus, only the decisions âi[n] (∀n ∈ Z) of the

lower indexed data streams i < k are used for interference reduction in the current

estimate ăk[n]. This simplifies the determination of the optimal forward and feedback

filters and reduces a sufficient formulation of the orthogonality principle to the two

Equations (5.57) and (5.58) (time domain) or Equations (5.67) and (5.68) (frequency
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domain), respectively. Since no previous decisions of the currently decoded sequence

are used in the feedback process, the feedback filter does not relate the k-th input

signal to the k-th output. In other words, the main diagonal elements of B(D) are

constrained to be zero, in the same manner as all elements of B(D) below the main

diagonal must be zero.

The first part of the orthogonality principle is satisfied with the relationship (5.80).

The second part requires to find a feedback filter which fulfills Equation (5.83).

Consider the decomposition of the matrix spectrum Q(D) by means of a Cholesky

factorization

Q(D) = Γ(D)V −1(D)ΓH(D−∗) (5.84)

where Γ(D) is a normalized upper triangular matrix, i.e. the elements below the main

diagonal are equal to zero and the elements on the main diagonal are equal to one for

all D ∈ C. ΓH(D−∗) is a normalized lower triangular matrix function and V −1(D) is

a diagonal matrix.

Note that the Cholesky factorization (5.84) has to be interpreted as a procedure

for a fixed variable D. The Cholesky factorization is, fundamentally, an operation

on matrices and it is not defined for matrix functions. In practice, one may ap-

ply an approach identical to that described in Section 4.2.1.3, page 151: At first,

the matrix spectrum Q(D) is frequency sampled on the unit circle D = e−j2πf̌

at a finite number of equidistant, discrete frequencies f̌m = m/MC , where m =

0, 1, 2, . . . ,MC − 1 and the number of sampling points MC is an odd integer num-

ber. This results in MC different points Dm = e−j2πf̌m located on the unit circle. A

separate Cholesky factorization (5.84) is performed for every sample D = Dm, i.e.

Q(Dm) = Γ(Dm)V
−1(Dm)Γ

H(D−∗
m ), ∀m = 0, 1, 2, . . . ,MC − 1.

Substituting Equation (5.84) into (5.83) yields

{
Γ−H(D−∗)V (D)Γ−1(D) [IN −B(D)]

}J
= ON×N . (5.85)

The inverse of a normalized upper (lower) triangular matrix is again a normalized

upper (lower) triangular matrix [136, p.69]. Therefore, Γ−1(D) is a normalized upper
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triangular matrix, Γ−H(D−∗) is a normalized lower triangular matrix and V (D) is a

diagonal matrix. It can now immediately be seen that the solution of Equation (5.85)

is

Γ−1(D) [IN −B(D)] = IN (5.86)

since Γ−H(D−∗)V (D) is a lower triangular matrix and, therefore, {Γ−H(D−∗)V (D)}J =

ON×N is satisfied. Solving Equation (5.86) forB(D) yields the optimal feedback filter

of the MMSE MIMO SC-DFE

Bsc0(D) = IN − Γ(D). (5.87)

The expression of the optimal forward filter is found by substituting the last relation-

ship into Equation (5.80)

Lsc0(D) = Γ
−H(D−∗)V (D). (5.88)

The power spectrum of the error signal at the input to the decision element can be

found by substituting Equation (5.71) into definition (4.6) and applying the results

for the optimal filters (5.87) and (5.88)

Se(D) = V (D). (5.89)

The individual MMSE of user k’s signal can be found with Equation (4.12)

Jk,sc0 =

∫ 1

0

[
V (e−j2πf̌ )

]
kk
df̌ , ∀k ∈ IN . (5.90)

5.3.2 Decision-Feedback Including the Currently Decoded

Sequence

The objective is now to estimate the symbol ak[n] based on the inputs to the forward

filter ui[n −m] (i ∈ IN , m ∈ Z), the decisions on the symbols of all lower indexed

data streams âi[n − m] (i < k, m ∈ Z) and the decisions on previously detected
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symbols of the same data stream âk[n−m] (m > 0). The orthogonality principle for

the former two information sets is formulated in Equations (5.57) and (5.58). This

has to be extended by a third equation which reflects the orthogonality principle for

the previous decisions of the currently decoded sequence k:

E[a∗k[n−m]ek[n]] = 0, ∀m > 0, k ∈ IN . (5.91)

Formulated in matrix form, this equation is equivalent to

{Rae[m]}C = ON×N , ∀m > 0 (5.92)

where {A}C is a diagonal matrix whose diagonal elements are equal to those ofA and

which has zeros above and below the main diagonal (see Table A.3). Transforming

the last expression into the D-domain results in

{
{Sae(D)}C

}+
= ON×N , ∀D ∈ C (5.93)

where {F (D)}+ � FJ[0] +
∑∞

m=1 F [m]Dm denotes the purely causal part of the

matrix-valued function F (D) �
∑∞

m=−∞ F [m]Dm (see Table A.3). Substituting

Equation (5.82) into the last expression yields

{{
−Q−1(D) [IN −B(D)]

}
C
}+

= ON×N . (5.94)

This equation has to be used in conjunction with the conditions (5.80) and (5.83) in

order to satisfy the orthogonality principle.

Consider the triangular Cholesky factorization of Q(D) in Equation (5.84) and in

addition the spectral factorization of the diagonal matrix V −1(D)

V −1(D) = Θ(D)P −1ΘH(D−∗) (5.95)

where P−1 is a diagonal matrix independent of D and Θ(D) is a causal and diagonal
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matrix function as defined by

Θ(D) = IN +
∞∑
n=1

Θ[n]Dn (5.96)

Θ(D) = {Θ(D)}C . (5.97)

Conversely, ΘH(D−∗) is diagonal and anticausal.

Combining Equations (5.84) and (5.95) with the conditions (5.83) and (5.94) re-

sults in the two equations

{
Γ−H(D−∗)Θ−H(D−∗)PΘ−1(D)Γ−1(D) [IN −B(D)]

}J
= ON×N (5.98){{

Γ−H(D−∗)Θ−H(D−∗)PΘ−1(D)Γ−1(D) [IN −B(D)]
}C}+

= ON×N . (5.99)

Examining Equations (5.98) and (5.99), it is clear that they are satisfied if

Θ−1(D)Γ−1(D) [IN −B(D)] = IN (5.100)

since the term Γ−H(D−∗)Θ−H(D−∗)P is a lower triangular matrix function whose

main diagonal elements are anticausal functions.

Finally, the optimal feedback and forward filters of the MMSE MIMO SC-DFE

are found by solving Equation (5.100) for B(D) and substituting the result into

Equation (5.80)

Bsc+(D) = IN − Γ(D)Θ(D) (5.101)

Lsc+(D) = Γ
−H(D−∗)Θ−H(D−∗)P . (5.102)

The individual MMSE of user k can be determined in analogy to the previous

section. It turns out that it is equal to the k-th diagonal element of the matrix P ,

i.e.

Jk,sc+ = [P ]kk , ∀k ∈ IN . (5.103)
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For the determination of the forward and feedback filters, both the Cholesky fac-

torization (5.84) and the spectral factorization (5.95) have to be performed. In prac-

tice, the spectrum is evaluated at discrete points on the unit circle D = e−j2πm/M ,

where M is the length of the filters and m = 0, 1, 2, . . . ,M − 1. At first, a sepa-

rate Cholesky factorization (5.84) is performed for each value of m. After that, the

(matrix) spectral factorization can be efficiently evaluated by performing N sepa-

rate (scalar) spectral factorizations (one for each of the scalar diagonal elements of

V −1(D)) since V −1(D) is a diagonal matrix. This significantly simplifies the complex-

ity and the numerical requirements of the spectral factorization procedure. For ex-

ample, while a matrix spectral factorization according to the algorithm of Harris and

Davis [43] is computationally quite involving, a much simpler standard algorithm for

the spectral factorization of scalar functions may be applied for diagonal matrices. As

a result, the total number of operations required for the spectral factorization (5.95)

increases only linearly with the number of users. In particular, the factorization is

done by taking the i-th diagonal element of V −1(D), v−1
i (D) = [V −1(D)]ii, and

decomposing it into

v−1
i (D) = p−1

i θi(D)θ
∗
i (D

−∗) (5.104)

where pi is a scalar constant and θi(D) is a causal, scalar function with θk(D) =

1+
∑∞

n=1 θk[n]D
n. After this has been done for all i ∈ IN , the matrices P and Θ(D)

are given by

P = Diag〈pi〉, i = 1, 2, . . . , N (5.105)

Θ(D) = Diag〈θi(D)〉, i = 1, 2, . . . , N (5.106)

where Diag〈. . . 〉 is defined in Table A.3.



5.4 Numerical Results 243

5.4 Numerical Results

The theoretical expressions derived in previous sections are now used in order to

investigate the performance of the MIMO delayed DFE (DDFE) and the successive

DFE (S-DFE) and compare it to the results obtained with the MIMO linear equalizer

(LE) and the parallel, undelayed DFE.

In all cases, the equalizers have been optimized with respect to the MMSE cri-

terion. For the sake of brevity, the abbreviations “MMSE” and “MIMO” are omit-

ted. For example, the notation “DDFE” implies “MMSE MIMO DDFE” in this

section. Note that the results do not distinguish between the noise-predictive and

the conventional DFE structures because their theoretical performance is identical.

Therefore, the abbreviation “DFE” refers to both C-DFE and NP-DFE. Accordingly,

“DDFE” includes the C-DDFE and the NP-DDFE. “S-DFE” stands for the succes-

sive noise-predictive DFE which excludes previous decisions of the currently decoded

sequence [106]. Its results are theoretically identical to the successive conventional

DFE structure (SC-DFE) described in Section 5.3.1.

The following assumptions are made throughout this section:

• All equalizers use infinite-length forward filters,

• the feedback filters of the DFE and DDFE are of finite length. In particular, a

constant filter length of MB = 7 has been chosen,

• the feedback filter of the S-DFE is of infinite length,

• the decision-feedback of the S-DFE excludes previous decisions of the currently

decoded sequence (see Section 5.3.1),

• the channel impulse responses are known without error,

• the equalizer signals and tap weights are of infinite precision, and

• all decisions fed back into the DFE feedback filter are correct, i.e. the results

do not include error propagation.
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The parameters of the system have been set to A = 4 antennas, a processing gain

of K = 4 and a symbol period of T = 50 ns. This results in a number of diversity

channels of Udiv = 16 and frequency selective channels. Two different cases with

respect to the distribution of the received signal energies have been investigated: The

first situation considers a maximal difference in the received signal energy (near-far

ratio) of 10 dB among all users, while the statistical distribution of the signal energies

is uniform within this interval. In the second case, the near-far ratio has been set to

1 dB. Therefore, the former case refers to a situation with no or less stringent power

control, while the latter describes a system with relatively tight power control.

As in Section 4.7, it is assumed that the data signals ai are mutually and tem-

porally independent, stationary continuous-time stochastic processes with zero mean

and unit variance (Definitions A.1 and A.2). While the MMSE performance applies

to any linear modulation format, this is not true for the error probability. For the

bit-error rate (BER) and outage probability, 4-QAM with independently modulated

inphase and quadrature signals is considered (Equation (4.143)). The symbols in the

modulation alphabet are assumed to occur with equal probability.

Independent square QAM is considered for the capacity results. The number of

modulation levels per user, Li, is maximized under the constraint that a maximum

BER of 10−4 be not exceeded.

The analog transmit and receive filters pC(t) and bC(t) are fifth-order Butterworth

lowpass filters with a cut-off frequency f3dB = K/(2T ). This implies that K3dB = K.

For more information, refer to Section 2.3.3.1. The spreading filters in the trans-

mitters have been omitted (i.e. qi[n] = δK[n], ∀i ∈ IN ) for the same reason as in

Section 4.7.

The same semi-analytical approach as in Section 4.7 has been used in order to

determine the results. In particular, given the channel impulse responses, the MMSE’s

have been calculated according to Section 4.2.1.1 for the LE and Section 5.2.2.2 for

both the DFE and the DDFE. In order to calculate the MMSE of the S-DFE, the

method described in publication [106] has been adopted. This approach excludes

previous decisions of the currently decoded sequence and leads, therefore, to the

same results as the detector described in Section 5.3.1.
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Figure 5.10: Best and worst user MMSE averaged over different channels for the
LE, (parallel) DFE and S-DFE in identical 4× 4, T = 50 ns systems with a median
received SNR/symbol of 30 dB and a near-far ratio of 1 dB.

Bounds on the bit error rate (BER) and system capacity have been determined

using expressions (4.132) and (4.142). All results represent the average over 100 sce-

narios with different radio channels, which belong to an ensemble of measured indoor

channel impulse responses (Section 2.3.3.2). The radio channels are frequency se-

lective for the chosen symbol rate of 50 ns and cause significant ISI and CCI over

several symbols. Details about the channel impulse response (CIR) delay spread and

other characteristics are given in Section 4.7 or in Behin’s report [12]. The method

for selecting the particular CIR’s is identical to that described in Section 4.7.

The following performance measures are evaluated as a function of the number

of system users (N). Figure 5.10 shows the MMSE of the best and the worst of all

30 users, averaged over 100 trials with different channel impulse responses. In this

case, all users are received with similar average powers (maximal variation of 1 dB).

The median received SNR/symbol1 (received signal to Gaussian noise power ratio per

1The received SNR/symbol of user k, Γk, is the expectation over the output SNR of a maximal
ratio combiner when only user k is in the system and all interference (CCI and ISI) is zero, i.e. the
ideal single user, one shot case. Γk is defined in Section D.1, Equation (D.6). It may be calculated
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user and symbol) among all system users is 30 dB. The best and worst user curves

are shown for the LE, the (parallel) DFE and the S-DFE. Let us at first consider

the worst user performance. It can be seen that the results for the DFE and the

S-DFE are almost identical for low to medium populations of up to 12 users. In

higher loaded systems, the DFE achieves a lower MMSE than the S-DFE. Note that

the S-DFE worst user MMSE is lower bounded by the best user MMSE of the LE

because the users are ordered according to their MSE performance after the forward

filter, which is identical to the forward filter of the LE (considering a noise-predictive

DFE structure). Hence, the best user of the S-DFE after the forward filter, user 1,

does not benefit from the decision-feedback structure and its performance is identical

to that achievable with a LE detector. The best user’s MMSE curves of the S-DFE

and the DFE are very close for up to 16 users. In the overpopulated region, the S-

DFE seems to perform increasingly better. However, the results for large N have to

be treated with care since fed-back decision errors are neglected. For example, once

the worst user MMSE exceeds −10 dB, the error probability becomes relatively large

and the displayed results may not be reliable. In conclusion, both decision-feedback

equalizers perform almost equally for low to medium N . For highly populated and

overpopulated systems, the parallel DFE is preferable since it offers a better worst

user performance.

Figure 5.11 shows the same situation as before except that the maximal spread in

the received power per user is increased to 10 dB. The received SNR/symbol varies

between −25 dB and −35 dB with a median value of −30 dB. Firstly, we note that

the LE performs consistently worse than both decision-feedback equalizers. Secondly,

the results for DFE and S-DFE are now reversed as compared to the case with similar

received powers (Figure 5.10). The worst user MMSE of the DFE increases continu-

ously with each additional system user. On the other hand, the worst user MMSE of

the S-DFE seems to be almost constant between 1 and 13 users. Adding more users

leads to a strong increase in the MMSE since the curve follows the best user MMSE

of the LE. For less than 16 users, the worst user MMSE of the S-DFE is lower than

from the channel impulse responses and the power spectral density of the additive white Gaussian
noise with Equation (D.7).
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Figure 5.11: Best and worst user MMSE averaged over different channels for the
LE, (parallel) DFE and S-DFE in identical 4× 4, T = 50 ns systems with a median
received SNR/symbol of 30 dB and a near-far ratio of 10 dB.

that of the DFE. This indicates overall a superior performance of the S-DFE because

the worst user limits the system performance. In exchange, a higher MMSE of the

best user can be tolerated since its performance is already very good and does not

need further improvement. Thus, the larger best user MMSE of the S-DFE compared

to that of the DFE may be considered less significant. The results prove that the

S-DFE is able to achieve larger improvements for the bad users while doing less for

the better ones. In particular, the performance spread between the best and the worst

user narrows from 10 dB for the single user case to approximately 5 dB for 13 users.

As a result, the S-DFE is able to mitigate the harmful consequences of the near-far

effect.

Let us now compare the S-DFE and a DDFE with relatively long delays2 between

consecutive users. In particular, the individual delays are chosen according to ∆k+1 =

∆k+3 (∆1 = 0). Note that the S-DFE can be viewed as a special case of the DDFE for

which the individual delays between consecutive users approach infinity. Additional

2“Relatively long delays” describe delays that are longer then the rms delay spread of the channel.



5.4 Numerical Results 248

-1

0

1

2

3

4

5

6

 worst user

 average

 best user

4 8 12 16 20 24 28

M
M

SE
 r

at
io

 [
dB

]

 number of users (N)

1 30

overpopulated

A = 4
K = 4
T = 50 ns
median SNR/symbol = 30 dB
near-far ratio: 10 dB

Figure 5.12: MMSE ratio between the DDFE (∆k+1 = ∆k + 3) and the S-DFE
for the best, worst and mean MMSE of all N system users, averaged over different
channels for identical 4× 4, T = 50 ns systems with a median received SNR/symbol
of 30 dB and a near-far ratio of 10 dB.

differences between both detectors are that the feedback filter of the DDFE is of finite

length (MB = 7) and that it includes previous decisions of the same data sequence

in the feedback process. On the other hand, the feedback filter of the S-DFE is

assumed to be infinitely long, using all decisions of the lower indexed users, but

excluding previous decisions of the currently decoded sequence. Figure 5.12 plots the

ratio between the MMSE of the DDFE and the MMSE of the S-DFE (in dB) versus

the number of system users. Note that values larger than zero indicate that the S-

DFE performs better than the DDFE and vice versa. The system parameters are

identical to those in Figure 5.11, i.e. a near-far ratio of 10 dB with a median received

SNR/symbol of 30 dB. Figure 5.12 shows three curves: one for the best user averaged

over all trials, one for the worst user and one for the average over all users and trials.

It can be seen that there is hardly any difference between the S-DFE and the DDFE

for up to 14 users. For larger N , the S-DFE is able to achieve an increasingly lower

MMSE for the best system user. This behavior may be attributed to the infinite

length of the S-DFE compared to the truncated feedback filter of the DDFE. For the
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Figure 5.13: Best and worst user MMSE averaged over different channels for the
LE, (parallel) DFE and S-DFE in identical 4× 4, T = 50 ns systems with a median
received SNR/symbol of 20 dB and a near-far ratio of 1 dB.

worst user, the DDFE performs better in the region N > 14, reaching the maximal

advantage for 17 users and approaching the S-DFE for increasing N . In occurs that

previous decisions of the same sequence are most useful when the system is critically

loaded (N ≈ Udiv) and all diversity paths are occupied with approximately one signal.

Most importantly, however, this figure shows that the S-DFE performs indeed like a

DDFE whose individual delays exceed significantly the delay spread of the channels.

The following three figures 5.13, 5.14 and 5.15 are identical to figures 5.10, 5.11

and 5.12, respectively, except that they are obtained for a lower median received

SNR/symbol of 20 dB. This particular SNR/symbol will also be used for the follow-

ing error probability investigations. It can be observed that the different detectors

behave essentially the same for a lower received SNR/symbol. The MMSE curves are

generally flatter and increase less with growing N since they start already at a higher

MMSE in the single user case. For a near-far ratio of 1 dB (Figure 5.13), the difference

in performance between the S-DFE and the DFE is smaller and the DFE provides

slightly better worst user results in highly populated and overpopulated systems. If
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Figure 5.14: Best and worst user MMSE averaged over different channels for the
LE, (parallel) DFE and S-DFE in identical 4× 4, T = 50 ns systems with a median
received SNR/symbol of 20 dB and a near-far ratio of 10 dB.

there is no or only partial power control (Figure 5.14), the S-DFE will achieve a con-

siderable advantage over the DDFE for the worst user. The performance difference

between S-DFE and DDFE, shown in Figure 5.15, becomes generally smaller for a

lower received SNR and both detectors obtain very similar results especially in well

populated systems (N ≤ 16).

The Saltzberg upper bound of the bit-error rate (BER) for the LE, DFE and

S-DFE detectors versus the number of users is shown in the next two pictures. The

median received SNR/symbol is set to 20 dB as in the last examples (since 4-QAM

with 2 bits/symbol is used, the median received SNR/bit is 17 dB). There are two

types of curves: the black symbols (“max.”) show the BER for the worst user within

a set of 30 users averaged over 100 trials with different channels; the grey curves

(“avg.”) represent the (arithmetic) average over all users and trials.

Figure 5.16 shows the results for a situation in which the received SNR’s of all

users differ by at most 1 dB. Note that the S-DFE will produce less errors if the

number of users is smaller than 12. For more densely populated systems, the parallel



5.4 Numerical Results 251

-0.5

0

0.5

1

1.5

2

2.5

 worst user

 average

 best user

4 8 12 16 20 24 28

M
M

SE
 r

at
io

 [
dB

]

 number of users (N)

1 30

overpopulated

A = 4
K = 4
T = 50 ns
median SNR/symbol = 20 dB
near-far ratio: 10 dB

Figure 5.15: MMSE ratio between the DDFE (∆k+1 = ∆k + 3) and the S-DFE
for the best, worst and mean MMSE of all N system users, averaged over different
channels for identical 4× 4, T = 50 ns systems with a median received SNR/symbol
of 20 dB and a near-far ratio of 10 dB.

10-8

10-7

10-6

10-5

0.0001

0.001

0.01

0.1

1

  max. LE  
  avg. LE  
  max. DFE 
  avg. DFE 
 max. S-DFE
 avg. S-DFE 

4 8 12 16 20 24 28

bi
t 

er
ro

r 
ra

te
 (

B
E

R
)

 number of users (N)

1 30

overpopulated

A = 4
K = 4
T = 50 ns
median SNR/bit = 17 dB
equal energy users

Figure 5.16: Average and worst user BER averaged over different channels for the
LE, (parallel) DFE and S-DFE in identical 4× 4, T = 50 ns systems with a median
received SNR/bit of 17 dB and a near-far ratio of 1 dB.



5.4 Numerical Results 252

10-8

10-7

10-6

10-5

0.0001

0.001

0.01

0.1

1
  max. LE  
  avg. LE  
  max. DFE 
  avg. DFE 
 max. S-DFE
 avg. S-DFE 

4 8 12 16 20 24 28

bi
t 

er
ro

r 
ra

te
 (

B
E

R
)

 number of users (N)

1 30

average

worst
user

overpopulated

A = 4
K = 4
T = 50 ns
median SNR/bit = 17 dB
near-far ratio:  10 dB
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symbol feedback of the DFE performs better than the successive method. Due to the

negligence of feedback errors, the accuracy of the results is decreasing for growing

BER’s. However, the values shown should be reliable for worst user BER’s less than

10−3.

Results for the same system except for a more relaxed power control, allowing

received SNR’s per users to vary by up to 10 dB, are displayed in Figure 5.17. In

this case, the S-DFE will perform significantly better than the DFE if there is more

than one user in the system3. It is very interesting to compare the increase in the

error probability for growing user populations. For example, if N grows from 1 to

14 users, the worst user’s error probability will increase dramatically by a factor of

100,000 for the LE and a factor of 10,000 for the DFE. However, the worst user’s

BER of the S-DFE will increase by only 5 times. Comparable results are obtained

3In the single user case, the MIMO DFE degenerates to a single-input single-output DFE. On the
other hand, the S-DFE becomes a single-input single-output linear equalizer because it does not use
previous decisions in the feedback filter. Hence, for systems with only one user, the DFE performs
better than the S-DFE.
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Figure 5.18: Estimated outage probability P̂out for the LE, (parallel) DFE and S-
DFE in identical 4× 4, T = 50 ns systems with a median received SNR/bit of 17 dB
and near-far ratios of 1 and 10 dB.

for the average BER4. Hence, the most vulnerable user with the worst performance

is only very mildly affected by a growing user population as long as N is lower than

the number of diversity channels. This is a very desirable property for a multiuser

system because all users are in general equally important.

Let us now consider the outage probability, Pout, of the described system for the

three detector types. As in Section 4.7, an outage condition is assumed when the

BER exceeds 10−4 (Equation (4.144)). All users whose Saltzberg upper bound BER

is larger than 10−4 are counted. This number is then divided by the total num-

ber of users considered (3000 users) in order to determine an estimate of the outage

probability (P̂out, Equation (4.145)). Figure 5.18 is a plot of the estimated outage

probabilities versus the number of system users for the LE, DFE and S-DFE. The

white symbols represent the results for a system with relatively tight power control

(near-far ratio of 1 dB) and the black symbols are obtained for identical system pa-

rameters except for more relaxed power control requirements (near-far ratio of 10 dB).

4Note that the average BER is dominated by the users whose performance is relatively bad.
Therefore, the behavior of the worst user’s BER and the average BER is very similar.
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The outage probability results for the decision-feedback detectors are unreliable in

highly overpopulated systems since erroneous decisions used in the feedback loop are

neglected. In contrast to the curves for the DFE and the S-DFE shown in the figure,

it can be expected that the outage probability approaches in practice 100% for large

N . For a comparison of the different detectors, let us assume that a maximal outage

probability of 1% is tolerated. Keeping the median received SNR/symbol constant at

20 dB and increasing the near-far ratio from 1 to 10 dB, the number of supportable

users drops for the LE by 6 (from 11 to 5 users) and for the DFE by 7 (from 15 to

8 users). The S-DFE is significantly less sensitive to a change in the near-far ratio

since the number of supportable users changes by only 2 (maximal 14 and 16 users,

respectively). Note also that for close to equal received powers (1 dB near-far ratio),

the outage probability seems to change threshold-like if a certain number of users is

exceeded. This qualitative behavior will be preserved only for the S-DFE if the near-

far ratio increases to 10 dB. In contrast, the outage probability of the LE and DFE

grows continuously at a smaller slope for increasing N , already having significant

outage probabilities for a relatively small number of users.

Lower bounds for the system capacity (Definition 4.1) have been derived in Sec-

tion 4.5. The asymptotic capacity Cas (Equation (4.139)) neglects the fact that the

number of symbols being transmitted must be an integer number. On the other hand,

the system capacity C takes this practical constraint into account.

Figure 5.19 shows lower bounds for the asymptotic capacity of the system in bits

per number of diversity channels versus the number of users for the three detector

types. The received SNR’s per user are varying by up to 10 dB. Two sets of curves

are plotted: one for a median SNR/symbol of 20 dB (black) and the other for a

median SNR/symbol of 30 dB (white). If the number of users is relatively small,

the asymptotic capacity of all three equalizers increases at approximately the same

rate for growing N . Using a LE, the system reaches the maximal capacity when the

number of users is approximately three quarters the number of diversity channels and

decreases if N grows further. The capacity for the DFE and the S-DFE increases

for growing N until the number of users exceeds the number of diversity channels.

After that it stays approximately constant for further increasing N . In the case of
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Figure 5.19: Lower bounds on the asymptotic capacity Cas for the LE, (parallel)
DFE and S-DFE in identical 4× 4, T = 50 ns systems with a near-far ratio of 10 dB
and median received SNR/symbol of 20 and 30 dB.

higher received signal powers, the capacity of the DFE decreases to some extent in

the overpopulated region for growing N . Note that the capacity of the DFE and the

S-DFE is almost identical for reasonable populations between 1 and 20 users.

Lower bounds on the practically achievable capacity C are plotted in the diagram

of Figure 5.20 for the same system parameters as in the previous figure. It can be

observed that the capacity of the LE approaches zero very fast in the overpopulated

region. The capacity curves of the DFE and C-DFE are very close. Both decision-

feedback types approach their maximal system capacity when the number of users is

approximately equal to the number of diversity channels.

It is interesting to compare this situation with one in which the received signal

energies differ only slightly. Figure 5.21 shows lower bounds on the practically achiev-

able capacity for a near-far ratio of only 1 dB. Note that the capacity curves of the

decision-feedback equalizers change very little compared to the last figure. It seems

that varying the spread of the individually received SNR’s per user does not or only

marginally affect the overall system capacity for the S-DFE and the DFE. In addition,

both decision-feedback detectors achieve very similar capacities for all reasonable val-
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Figure 5.20: Lower bounds on the practically achievable capacity C for the LE,
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of 10 dB and median received SNR/symbol of 20 and 30 dB.
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ues of N . This suggests that the system capacity is more or less independent of both

the near-far ratio and the delays between individual users data sequences before the

decision element. In other words, the delayed MIMO DFE is not able to achieve a

larger system capacity than the regular, undelayed MIMO DFE.

5.5 Conclusion

Delayed-decision-feedback equalization (DDFE) is the topic of this chapter. Based

on a general idea mentioned by Duel-Hallen [29] and Fulghum [35, 36], the decisions

on more reliable symbols of data streams with a better performance are made at first.

This information is then used in the feedback filter in order to increase the quality

of the interference estimate in the signals of lower performance users. In essence, the

achievable performance improvement gained with decision-feedback is redistributed

in order to improve the worse signals more and the better signals less.

The main contributions of this work are the description of a simple structure which

changes the decision order of the different data sequences (delayed-decision-feedback

equalizer, DDFE) and its mathematical analysis. In particular, expressions for the

optimal forward and feedback equalizer as well as for the performance are derived in

Section 5.2.1 for the conventional structure and in Section 5.2.2 for the noise-predictive

type. Most of the analysis is done in the frequency domain, however, Section 5.2.2.2

describes a method for the calculation of the NP-DDFE feedback filter in the time-

domain. A simpler solution with respect to the number of required operations is

obtained by conceptually increasing the individual delays between consecutive data

sequences to infinity. This results in the successive decision-feedback equalizer (S-

DFE), which is described and analyzed in Section 5.3.

The numerical results in this chapter show that the absolute performance of a

linear equalizer can be improved by adding a feedback filter that utilizes previous

symbol decisions. The decision-feedback type equalizers achieve better results than

the linear equalizer with respect to all investigated performance quantities including

the MMSE, BER, outage probability and system capacity. Furthermore, the results

show that a change in the relative individual delays of the DDFE affects the system
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capacity only little, if at all. Hence, a DDFE may apparently not be able to improve

the absolute system performance. However, the individual delays can be chosen in

order to distribute, within certain limits, the amount of performance improvement

individually for different data sequences. For example, it is possible to improve the

weaker signals relatively more and the stronger signals relatively less while achieving

the same overall improvement for all users. Hence, the DDFE narrows the perfor-

mance gap between the strongest and the weakest signal. This is in practice a very

desirable property since all users are in general equally important and deserve the

same or at least a comparable signal quality.

A possible solution for the near-far effect, i.e. a situation in which the signals of

the system users are received with significantly different energies, is a feedback path

to the users which provides them with information about the channel and system

properties. This information may be used in order to adjust the transmit powers of

the individual portables such that the base station receives all signal with equal energy

(power control). Alternatively, the transmitters may use the channel information in

order to adjust their information rate (send as much bits per data symbol as possible

while meeting a certain error rate). However, it has been shown in this chapter

that the same or comparable improvements may be achieved with delayed-decision-

feedback equalization (DDFE) at a reduced system complexity5. A feedback path to

the users is not required because DDFE is performed exclusively at the receiver. In

addition, DDFE is implemented with simple delay elements, adding practically no

additional hardware complexity to the system.

5It may also be possible to replace a complex, fast and tight power control technique by a
combination of DDFE with a less stringent and complex power control method.



Chapter 6

Conclusions

The central topic of this dissertation is a wireless spread spectrum based multiuser

system consisting of several portables and one central base station. Considered is

only the reverse link (uplink) communication from the portables to the base. The

base station may receive the signals at multiple antennas.

Multiple-input multiple-output (MIMO) equalizers have been considered as de-

tectors in order to recover the transmitted data of all users. These detectors have

been designed for frequency selective and quasi-stationary systems.

Frequency-selective or time-dispersive channels cause intersymbol and cochannel

interference from temporally preceding and subsequent symbols. A quasi-stationary

system may be treated as completely stationary for analysis purposes if we are con-

cerned about the detection of symbols for a certain data block only. The general

assumption is that the system behavior does not change during the transmission of

one data block, but may change in the long term from one block to another.

6.1 System Model

An equivalent discrete-time model is developed for the multiuser system. The model

requires no pulse generators, sampling devices, up- or downsamplers. It consists

simply of linear discrete-time filters and operates at the symbol rate only. These

properties make it easy to handle and analyze. Despite its simple structure, the
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discrete-time model is an exact representation of the initial system model.

Important information can be gained from the structure of the model. It has

been shown that the number of parallel diversity channels is equal to the product of

processing gain K (bandwidth spreading factor) and the number of receive antennas

A. In other words, the system may be represented by a set of Udiv = AK linear

equations. This gives an immediate idea about the number of portables (N) that may

be supported by the system: for N < AK, there is more information available at the

receiver than signals to recover and the remaining diversity may be used to enhance

the performance; for N > AK, not enough information is available to estimate the

signals with a linear detector.

6.2 Calculation of the Error Probability

The Saltzberg bound is a simple and popular approximation for the error probabil-

ity of linear systems. It has been adapted in this work to multiuser systems using

rectangular quadrature amplitude modulation (QAM) with independent inphase and

quadrature signal components. In this case, both the inphase and the quadrature

signals are pulse amplitude modulated (PAM). The final expressions for the Saltz-

berg bound depend only on the signal-to-interference-and-noise ratio (SINR) and the

number of modulation levels. For square QAM, the number of PAM levels is the same

for both inphase and quadrature signals. In this case, the Saltzberg bound is identical

for both components and depends on the overall SINR (i.e. the SINR of the complex

baseband signal). The total SINR can be calculated from the minimum mean-square

error (MMSE) of an optimal equalizer. This fact is important in Chapter 4, where the

Saltzberg bound is formulated in terms of the MMSE and the number of modulation

levels.

Sometimes, more accurate approximations of the error probability than the Saltz-

berg bound are required. A new class of strict and approximate upper bounds has

been derived for systems with Gaussian noise and interference. The bounds are valid

for systems with the following three properties: data symbols sent at different times

are statistically independent and zero mean; the noise and data signals are indepen-
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dent; and the noise is Gaussian distributed with zero mean. At first, the unique root

of a transcendental expression has to be determined. After that, the root value is

substituted into a given formula, which yields the approximation of the error prob-

ability. The simplest approximation is the energy upper bound, for which only the

variance of the interference and the variance of the noise are required. However,

it fails to provide accurate results in situations of high signal-to-noise ratio (SNR)

and small to moderate interference. Significantly better results are achieved with the

first- and second-order approximations, which require explicit knowledge of all inter-

ference samples. The second-order approximation needs approximately three times

as many operations as the first-order bound, but the overall amount grows in both

cases linearly with the number of interfering symbols. In exchange for the higher

numerical complexity, the second-order approximation achieves a better accuracy. It

has been shown that both approximations perform reliably in most situations. The

worst results are obtained for a large peak distortion (maximal possible value of the

interference) and high SNR. However, the approximation and the true error proba-

bility differed even in these cases by less than a factor of 2. Considering its accuracy,

conceptual and numerical complexity, the developed method compares very well with

already existing high-performance approximations.

6.3 Equalizers for Spread SpectrumMultiuser Sys-

tems

The signals transmitted by different users of spread spectrum systems are, in practice,

usually not orthogonal and interfere with each other. Only true multiuser detectors,

taking the special characteristics of all signals into account, are able to suppress in-

terference effectively. The maximum likelihood sequence estimator (MLSE) achieves

excellent performance. However, it is not suited for systems which have a fair amount

of users as well as frequency selective channels since its numerical complexity grows ex-

ponentially in both those quantities. Multiple-input multiple-output (MIMO) equal-

izers perform in many situations not very much worse, are near-far resistant and the
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required number of operations grows only linearly in the number of users, while it

may be even independent of the frequency selectivity (memory) of the channel. Thus,

these detectors are very well suited for the system considered in this work.

Two types of MIMO equalizers have been considered: The linear equalizer (LE)

and the nonlinear decision-feedback equalizer (DFE). Both types are analyzed with

frequency- and time-domain techniques. In addition, the equalizer coefficients have

been optimized based on the minimum mean-square error (MMSE) and zero-forcing

(ZF) criteria. Although all these issues are discussed, the main emphasis is laid on

the frequency-domain analysis with respect to the MMSE criterion.

A comparison of both methods has been conducted. It shows that the frequency-

domain determination of the equalizer coefficients is significantly more efficient than

the time-domain approach provided that the system can be considered stationary.

The optimal MIMO equalizer structure may be realized by a cascade of three

blocks: The first is a noise-whitening matched matrix filter which is required for cor-

related or colored noise signals; it is followed by a channel matched matrix filter that

is matched to the received signal waveforms; finally a symbol-rate space-time matrix

filter is applied. This optimal structure may be used for both time- and frequency-

domain equalizers. However, it requires exact knowledge of the noise characteristics

and channel impulse responses. Since this is in practice not easily available, time-

domain equalizers are usually implemented directly without a matched filter front-end

structure. In fact, the time-domain equalizers require for the determination of the op-

timal coefficients only the desired, transmitted data and the received signals. An anal-

ogous direct implementation for frequency-domain based linear equalizers has been

derived here. This method needs merely information about the spectra of the former

two signals. A similar structure has, to my knowledge, not yet been described in the

relevant literature. Other publications applying a frequency-domain description of

the linear equalizer assume, either explicitly or implicitly, a noise-whitening/channel

matched filter receiver front-end.

It is well known that a ZF MIMO LE may exist only if the number of users is

smaller than or equal to the number of diversity channels in the system (N ≤ AK). In

contrast, a MMSEMIMOLE exists for all user populations. However, its performance
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should be strongly limited in overpopulated systems (N > AK). This fact is proved

by deriving a new lower bound on the average MMSE for the MMSE MIMO LE. The

bound is equal to zero for N ≤ AK and produces positive values for overpopulated

situations.

Foschini et al. have derived an extremely useful upper bound on the error prob-

ability, which is solely a function of the MMSE [34]. The expression is valid for

single-input single-output (SISO) equalizers and can be interpreted as a special case

of the Saltzberg bound. A crucial result used in the derivation is the relationship

between the MMSE and the bias coefficient, which was found by Mueller et al. for

SISO equalizers [83]. However, since Foschini and Mueller considered explicitly a

SISO equalizer for a single-user system, the application of the bound [34] to mul-

tiuser systems and MIMO equalizers is not straightforwardly justified. The analysis

in this work proves formally that the relationship between the bias coefficient and

the MMSE is the same for both single-user, SISO equalizers and multiuser MIMO

equalizers. Hence, it is shown that Foschini et al.’s [34] very useful bound for the

error probability can also be applied for MIMO equalizers in multiuser systems.

The MIMO DFE has been analyzed in the frequency domain. Both the conven-

tional and the noise-predictive structure have been considered. Expressions for the

optimal filters and the performance in terms of the MMSE are given.

A lower bound of the system capacity, based on the Saltzberg bound, has been

derived for MIMO equalizers. This bound can be expressed in terms of the individual

MMSE’s and the desired error probability.

Numerical results for the performance of the MMSE MIMO LE and DFE have

been presented in terms of the MMSE, bit error rate, outage probability and capacity.

The diagrams show the performance quantities depending on either the number of

system users or the SNR. It was found that the DFE performed always superior to

the LE. The performance difference is moderate in systems with significantly less

users than diversity channels. However, the more users are in the system, the larger

is the possible performance advantage of a DFE. In particular, only the DFE may

achieve satisfactory results in overpopulated systems, i.e. systems with more users

than diversity channels.



6.4 Delayed-Decision-Feedback Equalization 264

6.4 Delayed-Decision-Feedback Equalization

The delayed-decision-feedback equalizer (DDFE), an extension to the MIMO DFE

structure, is introduced. The idea is to include delay elements after the forward filters

and delay the decision of weaker signals with respect to stronger ones. This strategy

is particularly beneficial in near-far situations, i.e. when the signals of different users

are received at considerably different strengths.

Very strong users can swamp weaker signals such that they may be indistinguish-

able by the receiver. A popular technique to overcome the harmful impacts of the

near-far effect is power control. In this case, feedback information about the individ-

ual signal strengths is sent to the users such that they adjust their transmit power

level and avoid a near-far situation. However, it is clear that power control adds

considerable complexity to the system.

Since the DDFE performs best in near-far situations, it reduces the requirements

for power control or may even work completely without it. In any case, the DDFE de-

tector has the potential to improve the system performance and reduce the complexity

of power control.

A model for the DDFE is introduced and mathematically analyzed. Frequency-

domain expressions for the optimal filters and the detector performance are derived.

The calculation of the optimal DDFE filters requires in general a matrix spectral

factorization. This procedure is numerically complex and one may want to avoid it.

A method is described, which requires only matrix inversions for the determination

of all equalizer coefficients. However, it has the disadvantage that it may involve the

inversion of a large matrix.

Alternatively, successive detectors may be considered. These equalizers increase

the delay between two consecutive signals hypothetically to infinity. This simplifies

the determination of the equalizer coefficients and avoids a matrix spectral factoriza-

tion. Successive detectors with or without feedback from the currently decoded signal

are introduced and analyzed. Numerical results have been presented which show that

the performance of the successive detector is similar to the DDFE. It achieves the

largest improvement in systems with a strong near-far effect. Conversely, both the
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DDFE and the successive detector will perform worse than the MIMO DFE if the

received powers of all signals are similar.

6.5 Open Issues

The method of approximating the error probability described in this work starts with

the error integral (1.10) and approximates the noise cdf by an exponential expression.

This results finally in a second-order expression which is an approximate rather than

a strict upper bound. In other words, the value of the approximation is almost

exclusively larger than the true error probability, but it may occasionally be slightly

lower. In addition, a slightly less accurate upper bound has been obtained, but no

lower bounds have been found.

It might be promising to start with the integral error expression (1.9) and approxi-

mate the bell shaped noise pdf instead of the noise cdf. The remaining analysis would

be very similar to the method described in Section 3.4. This may yield a second-order

approximation which is a strict upper bound on the error probability. In addition, an

approximate lower bound may be obtained. The availability of an upper and lower

bound would also provide a good estimate for the achieved accuracy.

A direct structure of the MMSE MIMO LE has been derived in Section 4.2.1.1

(Equation 4.32). The optimal equalizer can be calculated from the power spectrum of

the received signal and the cross-power spectrum of the received signal and the desired

data. Thus, the quality of the equalizer coefficients depends in practice strongly on

the quality of spectral estimates. This suggests to consider sophisticated methods

for spectrum analysis, which may either provide a better estimate for a given set of

samples or require less samples for a reasonable estimate. Two attractive techniques

that could be considered are the maximum entropy method (MEM) and the maximum

likelihood method (MLM) [18].

Simulation results have been provided which show that the DDFE or successive

detector perform excellent under near-far conditions. It should be investigated how

efficient these detector types work in practical situations considering quantization

effects, finite word length and non-ideal channel knowledge.
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Appendix A

Notation

A.1 Symbol Notation

Throughout this thesis, the notation described in Table A.1 will be used. Various

mathematical symbols are defined in Table A.2.

Functions and stochastic processes are generally denoted by a variable without

argument, e.g. yC. Sometimes, the notation yC(t) may also refer to a continuous-

time function or stochastic process. In this context, both notations with and without

argument, yC and yC(t), refer to continuous-time functions (stochastic processes) and

are interchangeable. However, yC(t) may also denote the particular value obtained

by mapping the value t according to the rule defined by the function yC . In case of

a continuous-time stochastic process yC , yC(t) may refer to a random variable which

represents the outcome of the stochastic process at the particular time t. Note that

the function (stochastic process) yC(t) and the value (random variable) yC(t) refer to

fundamentally different concepts. This notational ambiguity is a result of an effort to

simplify the readability and presentation in this document and to conform with the

general notation used in the common literature. Confusion of the different concepts

may be avoided in most cases by referring to the context.

Consequently, in the context of discrete-time functions or stochastic processes,

a variable without argument (e.g. x), always denotes the function or process. On

the other hand, a variable with argument (e.g. x[n]) may refer either to a function
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Table A.1: Symbol notation.

Letter attribute Explanation Examples

normal type scalar number or scalar function a, b, x[n], XC(f)

lowercase normal type time-domain function x[n], yC(t)

uppercase normal type frequency-domain function X[k], YC(f), Z(D)

lowercase bold type row vector or row vector function v, a[n], a(D)

uppercase bold type matrix or matrix function Q, L[n], L(D)

subscript ‘C’ function of a continuous-valued variable yC(t), XC(f)

round brackets ‘(’, ‘)’ function of a continuous-valued variable yC(t), XC(f), L(D)

square brackets ‘[’, ‘]’ function of a discrete-valued variable y[n], X[k], L[k]

(stochastic process) or to the particular value of the function x at time n (random

variable described by the statistical properties of the stochastic process x at the

specific time n).

A.2 Vector Notation

This document uses a row vector notation. In contrast, most of the literature applies

a column vector notation. The reason for this choice is that the former has, in my

opinion, a more intuitive relationship with graphical block diagrams and conforms to

the common mathematical notation for matrices.

Consider, for example, a two-dimensional vector input signal a, consisting of two

scalar values (symbols). A system performs at first a linear transformation X on the

input. This result, denoted b, is then further processed by a second linear transfor-

mation Y , producing the final result r. For simplicity, both transformations shall be

represented by 2× 2 matrices. Hence, a, b and r are also two-dimensional.

The system behavior can be fully described by the block diagram in Figure A.1.

Note that the signal flow starts, similar to writing, at the left side and passes each

system element by moving consecutively to the right until the output, r, is reached.

Using the row vector notation a = [a1, a2], the system equation is obtained from

the block diagram by starting with the left-most signal and proceeding to the right,
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Table A.2: Mathematical symbols.

Symbol Meaning

= . . . is equal to . . .

�= . . . is not equal to . . .

� . . . is defined by . . .

≡ . . . is equivalent to . . .

> . . . is greater than . . .

< . . . is smaller than . . .

� . . . is much greater than . . .

� . . . is much smaller than . . .

≥ . . . is greater than or equal to . . .

≤ . . . is smaller than or equal to . . .

≈ . . . is approximately the same as . . .

∈ . . . is an element of the set . . .

/∈ . . . is not an element of the set . . .

| . . . such that . . .

∀ for all . . .

∞ infinity

 → . . . is mapped into . . .
Comment: The dots “. . . ” indicate that the mathematical symbol requires a variable
or an expression where the dots occur.

i.e.

aXY = r. (A.1)

Note that the linear transformations in the above equation are not commutative, i.e.

the order of X and Y cannot be exchanged, because they represent matrix transfor-

mations rather than scalar transformations.

If the column vector notation were used, we would have to start instead at the

right end of the block diagram and proceed to the left, which results in the system

equation

r = Y Xa. (A.2)
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X Ya r
b

Figure A.1: Block diagram of a simple vector system.

In this case, all vectors are written in column form, i.e.

a =


 a1

a2


 . (A.3)

Therefore, the row vector notation conforms to the intuitive “left to right” signal

flow of the block diagram representation.

Consider now the 2 × 2 matrix X. Its mathematically correct index notation is

X =


 x11 x12

x21 x22


 (A.4)

where the first index of each element denotes the row and the second index denotes the

column of the matrix. It can easily be verified that in row vector notation, the element

xik represents the transformation coefficient connecting the i-th input element (ai)

with the k-th output element (bk), which is intuitive and easy to remember. However,

in column vector notation, xik represents the coefficient connecting the i-th output

with the k-th input, suggesting “right to left” or “output to input” signal processing.

A.3 Functions

Several scalar and matrix functions are defined in Table A.3. The following notation

has been used in the table: r and v are a real numbers, a is a complex number

and X is a random variable. A and R are arbitrary sets, where the elements of the

latter are real numbers. q is an arbitrary domain, real valued function. The range

and probability density function (pdf) of the random variable X are the set SX and

fX(x), respectively. a is a vector, A and All are N × M matrices with complex

elements. Are and Aim are the real and imaginary parts of A, respectively. A is a
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vector for either N = 1 or M = 1, and it is a scalar for N = 1 and M = 1. B is

a square N × N -matrix. F [m] (m ∈ Z) is a discrete-domain matrix sequence whose

range is the set of N ×N matrices with complex elements. The D-transform of F [m]

is defined as F (D) �
∑∞

m=−∞ F [m]Dm. ı1 and ı2 are vectors whose elements are

positive integer numbers ([ı1]i, [ı2]k ∈ N).

Table A.3: Functions

Function Description Definition

�{. . .} real part �{a} � r, for a = r + jv

�{. . .} imaginary part �{a} � v, for a = r + jv

max{. . . } maximum max{R} � largest value in the set R

max
A

{. . . } maximum max
A

{q(a)} � largest value of the func-

tion q(a) ∀a ∈ A

min{. . .} minimum min{R} � smallest value in the set R

min
A

{. . .} minimum min
A

{q(a)} � smallest value of the func-

tion q(a) ∀a ∈ A

exp{. . . } exponent with base e exp{a} � ea

ln{. . . } natural logarithm

logr{. . .} logarithm to the base r

sin(. . . ) sine function sin(a) � eja − e−ja

2j

cos(. . . ) cosine function cos(a) � eja + e−ja

2

tan(. . . ) tangent tan(a) � sin(a)

cos(a)

cot(. . . ) cotangent cot(a) � 1

tan(a)

sinh(. . . ) hyperbolic sine sinh(a) � ea − e−a

2

cosh(. . . ) hyperbolic cosine cosh(a) � ea + e−a

2

tanh(. . . ) hyperbolic tangent tanh(a) � sinh(a)

cosh(a)
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Table A.3: Functions (continued)

Function Description Definition

coth(. . . ) hyperbolic cotangent coth(a) � 1

tanh(a)

|. . . | absolute value |a| �
√
�{a}2 + �{a}2

". . . # largest integer number

smaller or equal to the

argument

"r# � max{n ≤ r |n ∈ Z}

$. . . % smallest integer number

greater or equal to the

argument

$r% � min{n ≥ r |n ∈ Z}

. . .! factorial n! �
n∏

i=1

i

dn

dxn
. . . n-th derivative with respect

to the variable x

. . .′ first derivative g′(x0) � d

dx
g(x)

∣∣∣∣
x=x0

. . .′′ second derivative g′′(x0) � d2

dx2
g(x)

∣∣∣∣
x=x0

. . .′′′ third derivative g′′′(x0) � d3

dx3
g(x)

∣∣∣∣
x=x0

Q(. . . ) Q-function Q(r) � 1√
2π

∫ ∞

r

e−
x2

2 dx

δ(. . . ) Dirac delta distribution g(t0) =

∫ ∞

−∞
g(t)δ(t− t0) dt

δK [. . . ] Kronecker delta sequence δK [n] �


 1 for n = 0

0 for n �= 0
, n ∈ Z

Prob {. . .} probability that the

expression . . . in the

brackets is satisfied

(0 ≤ Prob {. . .} ≤ 1)

E[. . . ] statistical expectation E[X] �
∫
SX

xfX(x) dx
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Table A.3: Functions (continued)

Function Description Definition

[. . . ]i i-th element of vector [a]i � i-th element of the vector a

[. . . ]i,k

[. . . ]ik

(i, k)-th element of matrix [A]i,k ≡ [A]ik � element on the i-th row

and k-th column of A

[. . . ]{1,{2 submatrix of a matrix [A]{1,{2 � submatrix comprising ele-

ments of A defined by the vectors ı1 and

ı2

‖ . . . ‖∞ H∞-norm ‖A‖∞ � maxi∈{1,2,... ,N},k∈{1,2,...,M} |[A]ik|

. . .∗ complex conjugation (Are + jAim)
∗ � Are − jAim

. . .−1 inverse AA−1 = IN

. . .T transpose [AT ]ik � [A]ki, i ∈ {1, 2, . . . , N},
k ∈ {1, 2, . . . ,M}

. . .H conjugate transpose [AH]ik � ([A]ki)
∗, i ∈ {1, 2, . . . , N},

k ∈ {1, 2, . . . ,M}

. . .−∗ complex conjugated inverse A−∗ � (A−1)∗

. . .−T inverse transpose A−T � (A−1)T

. . .−H inverse conjugate transpose A−H � (A−1)H

. . .J upper triangular part [{A}J]ik �


 [A]ik, for i < k

0, for i ≥ k

. . .I lower triangular part [{A}I]ik �


 0, for i ≤ k

[A]ik , for i > k

. . .C diagonal part [{A}C]ik �


 [A]ik, for i = k

0, for i �= k

. . .+ purely causal part {F (D)}+ � FJ[0] +
∑∞

m=1 F [m]Dm

. . .− purely anticausal part {F (D)}− � FI[0] +
∑−1

m=−∞ F [m]Dm
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Table A.3: Functions (continued)

Function Description Definition

det{. . .} determinant of a matrix see Zurmühl and Falk [136]

tr{. . .} trace of a square matrix tr {B} �
∑N

i=1 [B]kk

Diag〈. . . 〉 diagonal hypermatrix Diag〈All〉 �


A11 ON×M . . . ON×M

ON×M A22 . . . ON×M

...
...

. . .
...

ON×M ON×M . . . AKK



,

l ∈ {1, 2, . . . , K}

In addition to the descriptions in Table A.3, a few comments and examples shall

be provided:

It can easily be shown that inversion and transposition are commutative, as are

inversion and conjugate transposition. Thus,

A−T � (A−1)T = (AT )−1 (A.5)

A−H � (A−1)H = (AH)−1. (A.6)

Provided that the argument is a scalar, inversion and complex conjugation are com-

mutative:

a−∗ �
(
1

a

)∗
=

1

a∗
. (A.7)

A submatrix may be created from a matrix A by applying the function [A]{1,{2.

The positive integer elements in the vectors ı1 and ı2 define the submatrix. This

function is most easily explained by an example:

[A][1,7],[4,2,3] �


 [A]1,4 [A]1,2 [A]1,3

[A]7,4 [A]7,2 [A]7,3


 . (A.8)
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Table A.4: Scalar operators.

Operator Description Comments

+ addition

− subtraction

· multiplication may be omitted, i.e. xy � x · y
/ division

> convolution xC(t) > yC(t) �
∫ ∞

−∞
x(τ )y(t− τ ) dτ

x[n] > y[n] �
∞∑

m=−∞
x[m]y[n−m]

� modulus n� k � n− k ·
⌊n
k

⌋
, n, k ∈ Z

A.4 Operators

Table A.4 lists commonly used scalar operators and their definitions. Matrix operators

are described in Table A.5 and set operators are defined in Table A.6.

A.5 Constants and Sets

Symbols denoting particular constants and sets are defined in Table A.7.

A.6 Statistical Definitions

Let us define the terms mutually independent and temporally independent. They

describe certain properties of stochastic processes which turn out to be useful in the

following chapters.

Definition A.1 Consider the discrete-time stochastic processes ai, i ∈ IN . The set

of these stochastic processes will be called mutually independent if, for all i ∈ IN , the
particular process ai does, at all times n ∈ Z, not depend on the remaining processes

ak ∀k ∈ IN \ i.
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Table A.5: Vector and matrix operators.

Operator Description Definition

+ matrix addition [A+B]ik � [A]ik + [B]ik
− matrix subtraction [A−B]ik � [A]ik − [B]ik

· matrix multiplication [AB]ik � [A ·B]ik �
M∑
l=1

[A]il · [B]lk

> matrix convolution [A >B]ik �
M∑
l=1

[A]il > [B]lk

Comment: A and B are N ×M and M ×K matrices, respectively. They are vectors
if N = 1 or K = 1, respectively. The above definitions are for all matrix elements,
i.e. ∀i ∈ {1, 2, . . . , N}, k ∈ {1, 2, . . . , K}.

If a set of stochastic processes is mutually independent, it will also be mutually un-

correlated1. In particular, if the discrete-time stochastic processes ai, i ∈ IN , are mu-
tually uncorrelated and wide-sense stationary with zero mean, their cross-covariance

will be zero at all time lags:

E[a∗i [n−m]ak[n]] = 0, i �= k, ∀i, k ∈ IN , n,m ∈ Z. (A.9)

Definition A.2 Consider the discrete-time stochastic process ai. ai will called tem-

porally independent if the outcome of the process at time n, ai[n], does not depend

on the outcomes of the process at other times m �= n for all n,m ∈ Z.

Temporal independence causes directly temporal uncorrelation. Consider that the

stochastic process ai is temporally uncorrelated and wide-sense stationary with zero

mean and variance Ea,i. The autocovariance of ai is then zero at all time lags except

for lag zero:

E[a∗i [n−m]ai[n]] = Ea,i δK [m] (A.10)

where δK [m] is the Kronecker delta sequence (Table A.3).

1However, mutually uncorrelated stochastic processes are not necessarily mutually independent.
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Table A.6: Set operators.

Operator Description Example

∪ union
A = B ∪ C. The set A contains all elements

which are either in B or in C or in both.

∩ intersection
A = B ∩ C. The set A contains all elements

which belong to both B and C.

\ set minus
A = B \ C. A consists of all elements of

B except for those which belong to C.
Comment: B and C are arbitrary sets.

A.7 Orthogonal Basis Functions

Much alike vectors of a particular vector space, functions belong to a “function space”.

In analogy, an orthogonal basis may be found consisting of a set of basis functions.

Consider complex-valued scalar functions. A specific set of basis functions for the

set of all continuous-domain and discrete-domain functions is listed in Table A.8.

Additionally, basis functions for the subsets of periodic continuous- and discrete-

domain functions are also included. The corresponding orthogonality relations are:

∫ ∞

−∞
e−j2πf1tej2πf2t dt = δ(f1 − f2) (A.11)

∞∑
n=−∞

e−j2πf̌1nej2πf̌2n =
∞∑

l=−∞
δ(f̌1 − f̌2 + l) (A.12)

∫ ∞

−∞
e
−j2πk1

t
T0 e

j2πk2
t

T0 d

(
t

T0

)
= δK [k1 − k2] (A.13)

1

L

L−1∑
n=0

e−j 2π
L
nk1ej

2π
L
nk2 =

∞∑
l=−∞

δK [k1 − k2 + lL]. (A.14)

A.8 Fourier Transforms

Four different kinds of Fourier transforms can be defined, since the domains of the

transform signal pair may be continuous or discrete. Table A.9 describes the Fourier

transforms. The notational convention for the different signal types is shown in
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Table A.7: Constant scalars, matrices and sets.

Constant Definition Description

j j �
√
−1 imaginary unit, square root of “−1”

π π � 3.141592 . . . Ludolphian number

e d
dx
ex = ex (e � 2.7182 . . . ) constant

N N � {1, 2, 3, . . . } set of positive integer numbers

N0 N0 � N ∪ 0 set of nonnegative integer numbers

Z Z � {0,±1,±2, . . .} set of all integer numbers

Q Q � {n/k |n, k ∈ Z} set of rational numbers

R set of real numbers

R+ R+ � {r|r ∈ R, r > 0} set of positive real numbers

C C � {a + jb | a, b ∈ R} set of complex numbers

IN IN � {1, 2, . . . , N} set of integer numbers between

1 and N

wK wK � e−j2π/K , K ∈ Z discrete basis function

0N [0N ]i � 0, ∀i ∈ IN
all zero row vector with N

components

1N [1N ]i � 1, ∀i ∈ IN
all ones row vector with N

components

ON×M [ON×M ]ik � 0, ∀i ∈ IN , k ∈ IM N ×M null matrix

IN
[IN ]ik �

{
1 for i = k

0 for i �= k ,

i, k ∈ IN
N ×N identity matrix

[f(s)l]
[f(s)l] �
[f, f + s, f + 2s, . . . , l− s, l]

row vector whose elements

are defined by:

f . . . start value,

s . . . step size,

l . . . end value,

Table A.10.

Depending on certain conditions, the appropriate Fourier transform can be chosen.

Consider the arbitrary continuous-time signal xC(t). If this signal contains infinite

frequency components and if it is of infinite duration, the spectrum may only be

obtained with the Fourier transform (FT).

If xC(t) contains no frequency greater than f0, no information will be lost by
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Table A.8: Orthogonal basis functions.

Function Space Basis Functions

all scalar continuous-domain functions

{xC|xC(t) ∈ C, ∀t ∈ R} e−j2πft; f ∈ R

all scalar discrete-domain functions

{x|x[n] ∈ C, ∀n ∈ Z} e−j2πf̌n; f̌ ∈ [0, 1)

all periodic, scalar continuous-domain functions

{xC|xC(t+ T0) = xC(t) ∈ C, ∀t ∈ R, T0 ∈ R} e−j2πkt/T0; k ∈ Z

all periodic, scalar discrete-domain functions

{x|x[n+ L] = x[n] ∈ C, ∀n ∈ Z, L ∈ N} e−j2πk/L; k ∈ {0, 1, 2, . . . , L− 1}

sampling it at a rate 1/Ts ≥ 2f0:

x[n] = xC(nTs). (A.15)

We may then employ the discrete-time Fourier transform (DTFT). The spectrum of

the bandlimited signal xC(t) is, except for a constant, equal to X̌C(e
−j2πf̌s) for the

low frequencies |f | ≤ f0 and zero for |f | > f0, where the normalized frequency is

defined as

f̌s � fTs. (A.16)

If xC(t) is not bandlimited, but of finite time duration, the nonzero portion of

the signal may be taken and repeated periodically. Considering that xC(t) is nonzero

only between tmin and tmax, we define the resulting periodic time signal x̌C(e
j2πt/T0)

with

x̌C
(
e
j2π t

T0

)
= xC(t), for tmin ≤ t < tmax (A.17)

where T0 = tmax − tmin is the period of the signal. Introducing the normalized time

ť0 � t

T0

(A.18)
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Table A.9: Fourier transforms.

Domain Transform Pair

Transform Time Frequ. and Notation

Fourier Transform

(FT)
cont. cont.

XC(f) = Fcc{xC} �
∫ ∞

−∞
xC(t)e

−j2πft dt

xC(t) = F−1
cc {XC} �

∫ ∞

−∞
XC(f)e

j2πft df

Discrete-Time

Fourier Transform

(DTFT)

discr. cont.

X̌C(e
−j2πf̌s) = Fdc{x} �

∞∑
n=−∞

x[n]e−j2πf̌sn

x[n] = F−1
dc {X̌C} �

∫ 1

0

X̌C(e
−j2πf̌s)ej2πf̌sn df̌s

Fourier Series

(FS)
cont. discr.

X̌ [k] = Fcd{x̌C} �
∫ 1

0

x̌C(e
j2πť0)e−j2πť0k dť0

x̌C(e
j2πť0) = F−1

cd {X̌} �
∞∑

n=−∞
X̌[k]ej2πť0k

Discrete

Fourier Series

(DFS)

discr. discr.

X[k] = Fdd{x} �
L−1∑
n=0

x[n]e−j 2π
L
nk

x[n] = F−1
dd {X} � 1

L

L−1∑
k=0

X[k]ej
2π
L
nk

the Fourier series (FS) may be applied. The original signal xC(t) can thus alternatively

be described by the discrete frequency spectrum X̌[k].

If xC(t) is both bandwidth- and time-limited, we may represent the signal by a

finite number of L samples x[n] = xC(nTs), n ∈ {0, 1, 2, . . . , L − 1}. The minimum

number of required samples is

L =

⌈
T0

Ts

⌉
. (A.19)

In this case, the discrete Fourier series (DFS) can be used in order to obtain the

spectrum of the signal economically. Note that there exists a definite relationship

between the DTFT and the DFS if the sequence x[n] consists of only L non-zero

samples. By comparing the transform equations for the DTFT and the DFS, it can
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Table A.10: Signal definition.

Signal Description

xC(t) continuous-time signal

x̌C(e
j2πť0) periodic continuous-time function

x[n] discrete-time signal

XC(f) Fourier transform of xC(t)

X̌C(e
−j2πf̌s) discrete Fourier transform of x[n]

X̌ [k] Fourier series of x̌C(e
j2πť0)

X[k] discrete Fourier series of x[n]

immediately be verified that

X[k] = X̌C(e
−j2π k

L ) (A.20)

X̌C(e
−j2πf̌s)


f̌s=

k
L

= X[k]. (A.21)

Therefore, if x[n] is restricted to a finite number of non-zero samples, the sequence

X[k] represents the values of the DTFT X̌C(e
j2πf̌s) at the discrete frequencies f̌s =

k/L. In other words, X[k] is the frequency-sampled spectrum of the signal x[n].



Appendix B

Signal Processing Elements

B.1 Up- and Downsampler

Up- and downsamplers are used in order to change the sampling rate in the discrete-

time system part. The upsampler increases the sampling rate while the downsampler

decreases it.

Upsampler The symbol for an upsampler is shown in Figure B.1(a). In this case,

the sampling rate increases by an integer factor K. Let a[n]
D←→ a(D) and s[n]

D←→
s(D) be the input and output signal, respectively. The time-domain relationship

between these signals is

s[Kn+m] =


 a[n], for m = m0

0, for m ∈ {0, 1, 2, . . . , K − 1} \m0

(B.1)

where the sampling phase m0 is an integer number between 0 and K − 1 and “\” is

the set minus operator (Table A.6).

Lemma B.1 The D-domain relationship between the input and output signals of an

upsampler is given by

s(D) = Dm0 a(DK). (B.2)
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(a) upsampler (b) downsampler

Ka[n] s[n] y[n]Kx[n]

Figure B.1: Upsampler and downsampler symbol blocks.

Proof. Let us start with the definition of the D-transform for the pair s[n]
D←→ s(D).

After changing the summation variable with l = Kn + m, Equation (B.1) may be

substituted, and we obtain after some simple calculations

s(D) =
∞∑

l=−∞
s[l]Dl

=
∞∑

n=−∞

K−1∑
m=0

s[Kn+m]DKn+m

= Dm0

∞∑
n=−∞

a[n](DK)n

= Dm0 a(DK).

�

Frequency and time-domain signals are connected through the discrete-time Fourier

transform (DTFT). The relationship between the input ǍC(e
−j2πf̌ ) = Fdc{a[n]} and

the output ŠC(e
−j2πf̌ ) = Fdc{s[n]} is most easily obtained by evaluating the D-

transform on the unit circle D = e−j2πf̌

ŠC(e
−j2πf̌ ) = e−j2πf̌m0 ǍC(e

−j2πf̌K). (B.3)

For m0 = 0, this relationship is identical to the one derived by Oppenheim and

Schafer [88].

Downsampler A downsampler, with input x[n] and output y[n], is shown in Fig-

ure B.1(b). The most general relationship between output and input signal is de-
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scribed by

y[n] = x[Kn+m0], m0 ∈ {0, 1, 2, . . . , K − 1} (B.4)

Lemma B.2 The D-domain relationship between the input and output signals of a

downsampler is given by

y(D) =
1

K

K−1∑
l=0

x
(
D

1
Kwl

K

) (
D

1
Kwl

K

)−m0

(B.5)

where wK � e−j2π/K.

Proof. Define the intermediary signal u as

u[n] = x[n+m0] (B.6)

y[n] = u[Kn]. (B.7)

From the definition of the D-transform u(D) =
∑∞

n=−∞ u[n]D
n, we get

u
(
D

1
Kwl

K

)
=

∞∑
n=−∞

u[n]D
n
Kwln

K . (B.8)

With this equation, we find

K−1∑
l=0

u
(
D

1
Kwl

K

)
=

∞∑
n=−∞

u[n]D
n
K

K−1∑
l=0

wln
K (B.9)

= K
∞∑

v=−∞
u[Kv]Dv (B.10)

where the orthogonality relation
∑K−1

l=0 wln
K = K

∑∞
v=−∞ δK [n−Kv] is used (Equa-

tion A.14) and δK [n] is the Kronecker delta sequence (Table A.3). It follows from

Equation (B.7) that y(D) =
∑∞

v=−∞ u[Kv]D
v. Substituting Equation (B.10) into this
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relationship yields

y(D) =
1

K

K−1∑
l=0

u
(
D

1
Kwl

K

)
. (B.11)

Applying the time-shift property (Equation (1.22)) to Equation (B.6) gives u(D) =

x(D)D−m0 and substituting this into Equation (B.11) results finally in Lemma B.2.

�

The DTFT relationship is obtained by evaluating Equation (B.5) on the unit circle

D = e−j2πf̌ :

Y̌C(e
−j2πf̌ ) =

1

K

K−1∑
l=0

X̌C

(
e−j 2π

K
(f̌+l)

)
ej

2π
K

(f̌+l)m0 (B.12)

where Y̌C(e
−j2πf̌ ) = Fdc{y[n]} and X̌C(e

−j2πf̌ ) = Fdc{x[n]}.

B.2 Interfaces between Continuous-Time and Discrete-

Time Systems

B.2.1 Pulse Generator

The pulse generator is an interface between a discrete-time and a continuous-time sys-

tem part. The input to the impulse generator is a discrete-time signal and the output

is a continuous-time signal consisting of identical time-shifted pulses. Figure B.2(a)

shows the symbol of an impulse generator. Let s[n] and vC(t) be the input sequence

and output signal of the pulse generator, respectively. The relationship between these

signals is given by

vC(t) =
∞∑

n=−∞
s[n] pC(t− nTs) (B.13)

where pC(t) is the pulse shape and Ts is the pulse period.
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pC
(t)

sT

s[n] Cv  (t)

pC
(t)

dT

s[n] Cv  (t)K

(a)

(b)

Figure B.2: (a) symbol block of the pulse generator and (b) equivalent realization.

Lemma B.3 For the pulse generator, the Fourier transform of the output signal

VC(f) = Fcc{vC(t)} is given by

VC(f) = ŠC(e
−j2πfTs)PC(f) (B.14)

where ŠC(e
−j2πf̌ ) = Fdc{s[n]} is the discrete-time Fourier transform of the input

signal s[n], PC(f) = Fcc{pC(t)} is the Fourier transform of the pulse shape and Ts is

the pulse period.

Proof. This relationship is directly obtained by taking the Fourier transform (FT)

of Equation (B.13) recognizing the linearity property of the FT and applying the

discrete-time Fourier transform definition (Table A.9).

�

The impulse generator in Figure B.2(a) can be replaced by the equivalent config-

uration shown in Figure B.2(b). This configuration consists of a K-times upsampler

followed by a pulse generator with sampling period Td, where

Td =
Ts
K
, K ∈ N (B.15)

It has the same input/output relationship given by Equations (B.13) and (B.14).
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dT

u[n]Cu  (t) K

(b)

sT

Cu  (t) u[n]

(a)

Figure B.3: (a) symbol block of the sampler and (b) equivalent realization.

B.2.2 Sampler

A sampler is used to transform a continuous-time signal into a discrete-time sequence.

Figure B.3(a) shows the symbol of a sampler operating at a sampling period Ts. The

most general relationship between the continuous-time input UC(f) = Fcc{uC(t)}
and the discrete-time output ǓC(e

−j2πf̌ ) = Fdc{u[n]} is given by

u[n] = uC(nTs + τ ) (B.16)

ǓC(e
−j2πfTs) =

1

Ts

∞∑
l=−∞

UC

(
f − l

Ts

)
ej2π(f−

l
Ts
)τ , τ ∈ R (B.17)

where the time instant τ determines the sampling phase.

Proof. Let us start with the sampler input signal uC(t) = F−1
cc {UC(f)}. Sampling

it at the time instants t = nTs yields the discrete-time sequence uC(nTs). According

to Oppenheim and Schafer [88], the DTFT of this sequence may be expressed as

Fdc{uC(nTs)} =
1

Ts

∞∑
l=−∞

UC

(
f − l

Ts

)
. (B.18)

Consider now the signal uC(t+ τ ) = F−1
cc {U τ

C(f)}, where U τ
C(f) can be found by
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applying the time shifting property of the Fourier transform [45]:

U τ
C(f) = UC(f) e

j2πfτ . (B.19)

Applying Equations (B.18) and (B.19) to ǓC(e
−j2πf̌ ) yields the final result

ǓC(e
−j2πf̌ ) � Fdc{uC(nTs + τ )}

(B.18)
=

1

Ts

∞∑
l=−∞

U τ
C

(
f − l

Ts

)

(B.19)
=

1

Ts

∞∑
l=−∞

UC

(
f − l

Ts

)
ej2π(f−

l
Ts
)τ .

�

The sampler in Figure B.3(a) can be replaced by an equivalent configuration

consisting of a sampler operating at a higher sampling rate followed by a downsampler.

This configuration is shown in Figure B.3(b). Both systems are equivalent if the

relationship between the two sampling periods is given by Equation (B.15).



Appendix C

Details about System Components

Section 2.3.3 describes the general function and behavior of different system compo-

nents. For the simulations performed in Chapters 4 and 5, specific impulse responses

have been chosen for the radio channel, transmit and receive filters. The transmit

and receive blocks have been modeled by identical fifth-order Butterworth lowpass

filters. In order to obtain realistic results, measured indoor channel impulse responses

have been used to simulate the radio channel. Practical details and characteristics

are provided in the following sections.

C.1 Transmit and Receive Filters

For the system simulations, all transmitter pulses and receive filters have been cho-

sen to be real (pC(t) = bC(t) ∈ R) with a Butterworth lowpass signal shape. The

frequency-domain representation PC(f) = Fcc{pC(t)} of a lowpass signal is given

by [116]

PC(f) =
P0∏

k(1 + jβkΩ − γkΩ2)
(C.1)

where P0 is the gain at zero frequency, Ω � f/f3dB is the normalized frequency, f3dB

is the 3 dB cut-off frequency and βk, γk are the filter coefficients. The highest order

of the denominator polynomial in Ω determines the order of the pulse (nb). For a
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butterworth lowpass pulse and even order nb, the coefficients are [116]

βk = 2cos
(2k − 1)π

2nb
, for k ∈

{
1, 2, 3, . . . ,

nb
2

}
(C.2)

γk = 1 (C.3)

while for odd order

βk =


 1, for k = 1

cos (k−1)π
nb

, for k ∈
{
2, 3, 4, . . . , nb+1

2

} (C.4)

γk =


 0, for k = 1

1, for k ∈
{
2, 3, 4, . . . , nb+1

2

} . (C.5)

In addition, the squared frequency magnitude of the lowpass butterworth signal is

|PC(f)|2 =
P 2

0

1 + Ω2nb
. (C.6)

A fifth-order butterworth lowpass pulse (nb = 5) has been used in the system

simulations. Using Equation (C.6), it can be found that the magnitude of the signal

component for f ≥ 2f3dB is more than 30 dB below that at zero frequency. The high

frequency magnitudes may be set to zero altogether with negligible error. This fact

becomes important because the implementation of a simulation with discrete-time

arithmetic requires that the bandwidth of all signals be strictly limited, i.e. all signal

components above the maximum frequency fmax vanish. fmax has been chosen to be

twice the single-sided spreading frequency K/(2T ):

fmax =
K

T
. (C.7)

Since for practical purposes K ≥ K3dB, the maximum frequency is at least twice as

high as the 3 dB cut-off frequency. This guarantees that the approximation by setting

PC(f) = 0, ∀f ≥ fmax does practically not influence the final result.

Figure C.1 shows the frequency-domain phase and magnitude of the strictly band-

width limited pulse versus the normalized frequency f̄ = 2Tf for K3dB = K = 4.
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Figure C.1: Phase and magnitude of fifth-order Butterworth lowpass pulse versus
the normalized frequency f̄ = 2Tf for K3dB = K = 4.

The corresponding time-domain signal pC(t)/p0 is displayed in Figure C.2, where p0

is the maximum of pC(t), ∀t ∈ R.

C.2 Channel Impulse Response Measurements

Measurement System The measurement system and some properties of the ob-

tained channel impulse responses (CIR’s) are described in the TRLabs internal tech-

nical reports by Behin [12] and Messier [74]. These documents provide also more

details about the measurement hardware.

The CIR’s have been measured in an indoor office environment at TRLabs Cal-

gary [12]. The measurement system included four stationary transmit antennas and

a mobile with four receive antennas. All four transmit antennas have been of a dis-

cone type which radiate more strongly below the horizon. They were set a height of

2.35 m. On the mobile, four quarter-wave monopoles with a circular 6 inch diameter

groundplane each have been used as receive antennas. The distance between two ad-
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Figure C.2: Fifth-order Butterworth lowpass pulse pC(t) versus normalized time
t/T for K3dB = K = 4.

jacent receive antennas was one wavelength of the carrier frequency fcar = 1.8 GHz.

The stationary antennas were placed in different corners of the office environment.

Different impulse responses were obtained by changing the location of the mobile.

Each measurement at a certain mobile location yielded four sets of four CIR’s be-

tween the adjacent mobile antennas and one of the stationary antennas. The four

CIR’s belonging to one set had the same large scale propagation characteristics be-

cause the distances between a certain stationary antenna and each of the four mobile

antennas were practically the same. The mobile was moved to 511 different locations.

Therefore, a total of 2044 sets or 8176 CIR’s had been obtained. The bandwidth of

the measured CIR’s was approximately 120 MHz. It was found that the CIR’s had

an RMS delay spread distribution with a mean of 40.4 ns and a standard deviation

of 9.2 ns [12].

A sequence of binary symbols was generated in the first step of the measurement.

This sequence consisted of one subsequence which was repeated three times. The sub-

sequence was a PN sequence with 1023 symbols. Thus, the total sequence length was
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3069. The modulator assigned to each symbol one impulse chosen from a set of two

bipolar waveforms. These signals were transmitted at a symbol rate of 200 Msym-

bols/s (symbol period: 5 ns). The carrier frequency of the transmitted signal was

1.8 GHz. At the receiver, the signal was sampled at period of 1 ns (five times over-

sampling). Both the transmitted and the received sequences were used to estimate

the discrete-time CIR (2.25).

Characteristics of the Measured Channel Impulse Responses Different al-

gorithms can be employed to calculate the CIR. One of them is the correlation

method, which correlates the transmitted PN sequence with a part of the received

sequence [12]. The result of the correlation is an estimate of the discrete-time CIR.

The magnitude of one of the channel transfer functions (CTF’s) obtained with the

correlation method is shown in Figure C.3. It can be seen that the CTF is only re-

liable in a short band around zero frequency. The strong attenuation for frequencies

|f | > 100 MHz is caused by

• the sinc-function roll-off due to the PN sequence,

• bandpass and lowpass filters which limit the transmitted signal to approximately

200 MHz, and

• receive antennas that have a bandpass characteristic. Their 3 dB bandwidth is

approximately 160 MHz centered around the carrier frequency.

Let us investigate the back-to-back system impulse response in order to obtain

more insight into the attenuation characteristics of the measurement system. In the

back-to-back system, transmitter and receiver are connected directly through a broad-

band cable. The system contains neither the antennas nor the radio channel. Thus,

the back-to-back system provides information about how the measurement instru-

ments limit the estimated CIR’s. Figure C.4 shows the magnitude of the measured

back-to-back transfer function Hb2b(f). The transfer function is normalized by a con-

stant H0 such that the values around 0 Hz are approximately equal to 0 dB. This

makes it easier to determine the attenuation at different frequencies. It can be seen
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Figure C.3: Normalized magnitude of a measured radio channel transfer function
— calculated with the correlation method.

that the measurement system already causes an attenuation of more than 10 dB to

frequencies |f | > 100 MHz. Figure C.5 magnifies the frequency band |f | < 100 MHz

from Figure C.4. It shows that the double-sided 3 dB bandwidth of the measurement

system is approximately 120 MHz.

The CIR’s used in the semi-analytical simulations of Chapters 4 and 5 have been

obtained with the least sum of squared errors (LSSE) channel estimation method [22]

instead of the correlation method. The reason was that the LSSE method achieved

better results in terms of a higher signal-to-noise ratio (SNR) for the CIR’s. In order

to align the transmitted and received sequences1, the received signal is downsampled

by a factor of five. Both sequences have then a sampling period of Tc = 5 ns. This

means that the spectrum of the estimated discrete-time CTF will be periodic with a

period of Bc = 1/Tc = 200 MHz.

1The received signal is five times oversampled. Thus, its symbol period does not match that of
the transmitted PN sequence.
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Figure C.4: Normalized magnitude of the back-to-back system transfer function for
|f | < 500 MHz.
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Figure C.5: Normalized magnitude of the back-to-back system transfer function for
|f | < 100 MHz.
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Prior to downsampling, the signal must be lowpass filtered in order to reduce

aliasing. A frequency-domain raised cosine filter is applied to the received signal for

this purpose. It has to be chosen such that an acceptable compromise among the

following demands is obtained:

• the distortion of the signal in the information band (|f | < 100 MHz) should be

as small as possible,

• aliasing should be reduced as much as possible, and

• the output sequence of the lowpass filter must have an acceptable duration.

The first two points suggest an ideal rectangular filter with a constant passband gain

for |f | < 100 MHz and zero gain for |f | > 100 MHz. However, it is well known that

such a filter possesses a very long impulse response. This is not acceptable for the

estimated CIR’s because it is intended to truncate them without causing a large error.

Shorter impulse response lengths can be obtained by allowing a continuous transition

between passband and the zero gain range. Generally, the longer and smoother the

transition band is, the shorter is the impulse response. For the raised cosine filter,

the impulse response length is controlled by the excess bandwidth.

Figure C.5 shows that the attenuation from the measuring system alone is more

than 5 dB for frequencies greater than 80 MHz. Moreover, the receive antennas,

whose effects are not included in the back-to-back transfer function, cause an addi-

tional attenuation at higher frequencies since their 3 dB bandwidth is approximately

120 MHz. Thus, the measurements contain less reliable channel information for fre-

quencies |f | > 80 MHz. It is therefore reasonable to sacrifice the channel character-

istics beyond 80 MHz.

The frequency response of the raised-cosine lowpass filter is shown in Figure C.6.

The constant passband extends from -80 to 80 MHz. The transition range lies between

80 and 120 MHz. Hence, the raised-cosine filter has an excess bandwidth of 20%.

After downsampling, identical copies of the low frequency signal will be present at

every harmonic of 200 MHz. Thus, aliasing will appear for the frequency range

80 MHz < |f | < 120 MHz. However, there is no aliasing for frequencies between -80

and 80 MHz. Furthermore, the lowpass filter does not distort the CTF in this range.
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Figure C.6: Gain of the raised cosine lowpass filter.

The characteristics of the lowpass filter in Figure C.6 imply that the measured

CTF’s should only be used in the frequency range |f | < 80 MHz. Figure C.7 shows a

back-to-back transfer function calculated with the LSSE method in order to obtain an

idea of the error caused by using the CTF’s for wideband simulations. If we assume

that a signal distortion of at most 3 dB is tolerable, the signals of the simulated

system must not exceed a double-sided bandwidth of 120 MHz.
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Figure C.7: Normalized Magnitude of a back-to-back transfer function obtained
with the LSSE estimation method.



Appendix D

Ideal System: The Matched Filter

Bound

D.1 SNR and MMSE

It is very helpful to evaluate the performance of suboptimal detectors in comparison

to the results that the optimal receiver achieves under ideal conditions. The optimal

performance, also referred to as thematched filter bound (MFB), shall be derived here.

For this purpose, the system described in Section 2.3 has to be slightly modified. In

particular, given the transmitters of the users and the channel characteristics, it is

clear that a receiver with arbitrarily chosen lowpass filters bC(t) will not achieve the

optimal performance. Therefore, the matched filter bound (MFB) will be determined

based on the signals rCl(t), l ∈ IA, available directly at each antenna element.

Consider a multiuser system defined by the transmitters of the users, the channels,

the number of receive antennas, the characteristics of the transmitted data and the

noise signals. According to the system model of Section 2.3, the signal received at

antenna l can be obtained with Equation (2.34). The block diagram corresponding to

these expressions is shown in Figure D.1. The objective is to find the best performance

achievable for this system assuming that it is operating under ideal conditions.

A system can be considered “ideal” when it operates in an environment without

interference, i.e. in the absence of ISI and CCI. It achieves under these conditions
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Figure D.1: System block diagram based on the overall channels ψCkl which are
including transmitters and channels.

the maximal signal-to-noise ratio (SNR)1 and the minimal error probability of all

possible systems with identical channels, transmit and noise signals. The performance

of this system expressed in either receiver output SNR or error probability is generally

referred to as matched filter bound.

The single user, one shot case fulfills the requirement that no interference be

present and it has therefore the same performance as the ideal system. Consider that

only user k transmits the “one-sample” sequence ak[n] = ak0δK [n], where k ∈ IN . ak0
is a random variable that can assume discrete values from the setAk. It has zero mean

and unit variance E[|ak0|2] = 1. It can be shown that the largest SNR is achieved with

maximal ratio combining. For that, the signal rCl(t) received at antenna l (l ∈ IA)
is applied to a filter ψ∗

Ckl(−t) matched to the overall channel waveform (2.33). The

output signals of all A matched filters are then summed, sampled at the ideal time

t = 0 and finally multiplied with a constant gain2 (see Figure D.2), such that the

1The SNR is in this case identical to the signal-to-interference-and-noise ratio (SINR) since there
is no interference in the system.

2The last step of multiplying the combined signal with a constant gain is optional and does not
change the output SNR. It is considered here merely to ensure that the signal part of ãk0 be equal
to ak0.
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receiver output signal is given by

ãk0 = ak0 + η (D.1)

where η represents the Gaussian noise component. It can immediately be seen from

this expression that the output SNR is

SNRk � |ak0|2
σ2
η

(D.2)

where σ2
η is the variance of η. On the other hand, the SNR at the output of the k-th

matched filter is

SNRk,l =
|ak0|2
N0,l

∫ ∞

−∞
|ψCkl(t)|2 dt (D.3)

where N0,l is the double-sided power spectral density of the white, complex Gaussian

noise signal added to receive antenna l. After combining all A signals, the total SNR

is

SNRk =
A∑
l=1

SNRk,l. (D.4)

Using the last two expressions for SNRk and Equation (D.3), one can solve for the

Gaussian noise variance and obtain

σ2
η =

1∑A
l=1

1
N0,l

∫∞
−∞ |ψCkl(t)|2 dt

. (D.5)

Let us finally determine the ensemble average of the output SNR for the ideal

system. This value is obtained by taking the expectation of the total SNR

Γk � E [SNRk] . (D.6)
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Figure D.2: Maximal ratio combiner.

Using the fact that the variance of the random variable ak0 is equal to unity, one gets

Γk =
A∑
l=1

1

N0,l

∫ ∞

−∞
|ψCkl(t)|2 dt. (D.7)

Kavehrad and Salz have stated that output SNR and minimal achievable mean-

square error of the ideal system are related through a simple expression for the single

input case [55]. It can be shown that the same expression is also valid for multiple

input receivers (see Section 4.4). In essence, the matched filter bound minimum

mean-square error (MFB-MMSE) for user k, Jk,mfb � E
[
|ãk0 − ak0|2

]
, is given by

Jk,mfb =
1

1 + Γk
. (D.8)

The quantities Γk and Jk,mfb are useful for a comparison to real systems with in-

terference whose measures of performance are the average receiver output signal-to-

interference-and-noise ratio (SINR) or the MMSE.

D.2 Error Probability

Consider, as before, a multiuser system with fixed and given transmitters, channels,

transmit and noise signals (Figure D.1). The results of this section provide the lowest

error probability achievable for this system with an optimal detector under ideal

conditions. Ideal conditions mean in this context that there is no interference (ISI or
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CCI) present at the receiver input, i.e. only one user transmits a single symbol (one

shot case). The received signal is distorted only by Gaussian noise. It is clear that the

result obtained for this scenario poses a lower bound on the error probability, called

the matched filter bound, for any system under practical conditions since interference,

if uncorrelated with the signal of interest, can only increase the probability of error.

The ideal system is described in the previous section. An expression for the

matched filter bound SNR has been obtained. With that and the fact that the error

in the output signal of the ideal detector is Gaussian distributed (no interference

present), the error probability can easily be determined. Consider as modulation

format square QAM, i.e. both the inphase and the quadrature component are pulse

amplitude modulated (PAM) with Lk symbols each (Lk = Lre
k = Lim

k ). The receiver

output signal of the ideal system (Equation (D.1))

ãk0 = ak0 + η

consists of the the symbol transmitted, ak0, and a noise component η. It can be

divided into a real (inphase) and an imaginary (quadrature) part. For the remain-

der, only the inphase component will be considered since the error probability of

the quadrature signal is, due to the symmetry caused by the square QAM scheme,

identical. Let αk0, α̃k0 and ηre denote the real parts of ak0, ãk0 and η, respectively.

The inphase output signal of the maximal ratio combiner (Figure D.2), which is the

optimal detector for the given scenario, is then

α̃k0 = αk0 + η
re. (D.9)

The variance of the inphase Gaussian noise is equal to one half of the variance of

the complex Gaussian noise (D.5):

E[|ηre|2] = 1

2
σ2
η. (D.10)

With the modulation levels chosen as in Equations (2.6), (2.8), the probability of
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exceeding the decision threshold in the positive direction becomes

P
(mfb)
ex,k = Prob

{
α̃k0 > αk0 +

1

2
κk

}

= Prob

{
ηre >

1

2
κk

}

= Q

(√
κ2
k

2σ2
η

)
. (D.11)

With Lk = Lre
k = Lim

k and Definition (3.59), Equation (2.12) yields κ2
k = 6/(L2

k − 1) =

2/ρ(Lk). Combining Equations (D.7) and (D.5) results in σ2
η = 1/Γk . After substi-

tuting the last two expressions into Equation (D.11), P
(mfb)
ex,k can be expressed as

P
(mfb)
ex,k = Q

(√
Γk

ρ(Lk)

)
(D.12)

where Γk is the signal-to-noise ratio (SNR) at the output of the optimal detector

(Equation (D.7)).

Finally, using Gray coding and similar arguments about the error probability for

outer and inner modulation levels as in Section 3.2, the matched filter bound bit error

rate (BER) is very well approximated by (3.44)

P
(mfb)
b,k = 2

Lk − 1

Lk
Q

(√
Γk

ρ(Lk)

)
. (D.13)



Appendix E

Spectral Correlation of Partitioned

Noise Signals

Equation (2.72) is derived in this section.

Per definition, the cross-power spectra of the partitioned noise signals νml and the

sampled noise sequences νl are

σuvν,l(D) � [Sν,ll(D)]uv � EM

[
{νul (D−∗)}∗νvl (D)

]
(E.1)

σν,l(D) � EM

[
ν∗l (D

−∗)νl(D)
]
. (E.2)

The corresponding cross-correlation functions are defined by

Luvν,l[k] � E [{νul [n− k]}∗νvl [n]] (E.3)

Lν,l[k] � E [ν∗l [n− k]νl[n]] . (E.4)

According to Lemma 1.2, cross-correlation functions and cross-power spectra form

D-transform pairs, i.e.

Luvν,l[k]
D←→ σuvν,l(D) (E.5)

Lν,l[k]
D←→ σν,l(D). (E.6)

Evaluating the D-transform on the unit circle, it is easy to show that σuvν,l(e
−j2πf̌ )
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and σν,l(e
−j2πf̌s) form a discrete-time Fourier transform (DTFT) pair with Luvν,l[k] and

Lν,l[k], respectively:

σuvν,l(e
−j2πf̌ ) = Fdc{Luvν,l[k]} (E.7)

σν,l(e
−j2πf̌s) = Fdc{Lν,l[k]} (E.8)

where f̌ � fT and f̌s � fTs are the normalized frequencies1.

It can be shown that the cross-power spectrum of the sampled noise is given by

σν,l(e
−j2πfTs) =

N0

Ts

∞∑
l=−∞

∣∣∣∣BC

(
f − l

Ts

)∣∣∣∣
2

. (E.9)

Proof. At first, the autocorrelation of νl shall be expressed in terms of the receive

filter impulse response bC(t) and the noise power spectral density N0:

Lν,l[k] � E [ν∗l [n− k]νl[n]]
(2.41)

(2.38)

= E

[∫ ∞

−∞
b∗C(τ1)ν

∗
CGl((n− k)Ts − τ1) dτ1

∫ ∞

−∞
bC(τ2)νCGl(nTs − τ2) dτ2

]

=

∫ ∞

−∞

∫ ∞

−∞
b∗C(τ1)bC(τ2)E [ν∗CGl((n− k)Ts − τ1)νCGl(nTs − τ2)] dτ2 dτ1

(2.13)
= N0

∫ ∞

−∞
b∗C(τ1)bC(kTs + τ1) dτ1. (E.10)

The cross-power spectrum σν,l(e
−j2πf̌s) may be obtained by taking the DTFT of Lν,l[k]:

σν,l(e
−j2πf̌s) =

∞∑
k=−∞

Lν,l[k]e
−j2πfTsk

(E.10)
= N0

∫ ∞

−∞
b∗C(τ1)

∞∑
k=−∞

bC(kTs + τ1)e
−j2πfTsk dτ1. (E.11)

The sequence bC(kTs+τ1) can be viewed as the sampled lowpass filter impulse response

1The normalized frequency f̌ � fT is used in conjunction with the demultiplexer output signal
σuv

ν,l since its sample period is T provided that the data is processed in real time. Accordingly,
f̌s � fTs is used with the signal σν,l because its sample period is Ts.
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bC(t) at the time instants t = kTs+τ1. The right hand side of Equation (E.11) contains

the DTFT transformation equation for bC(kTs + τ1). It was found in Section B.2.2

that the DTFT of the sampled sequence is given by (Equation (B.17))

Fdc{bC(kTs + τ1)} =
1

Ts

∞∑
l=−∞

BC

(
f − l

Ts

)
ej2π(f−

l
Ts
)τ1.

Substituting this relation into Equation (E.11) yields

σν,l(e
−j2πf̌s) =

N0

Ts

∞∑
l=−∞

BC

(
f − l

Ts

) ∫ ∞

−∞
b∗C(τ1) e

j2π(f− l
Ts
)τ1 dτ1

=
N0

Ts

∞∑
l=−∞

∣∣∣∣BC

(
f − l

Ts

)∣∣∣∣
2

.

�

Consider now the cross-correlation of the partitioned noise signals

Luvν,l[k]
(E.3)
= E [{νul [n− k]}∗νvl [n]]

(2.48)
= E [ν∗l [Kn−Kk + u− 1]νl[Kn+ v − 1]]

= E [ν∗l [Kn−Kk + u− v]νl[Kn]]
(E.4)
= Lν,l[Kk + v − u] (E.12)

where the relation Lν,l[k] � E [ν∗l [n− k]νl[n]] = E [ν∗l [Kn− k]νl[Kn]] was used.

Equation (E.12) shows that the signal Luvν,l[k] can be viewed as the output of a K-times

downsampler with Lν,l[k] at the input. Lemma B.2 in Section B.1 shows the D-domain

relationship between the input and output signals of the downsampler. This relation

may be used to obtain the connection between the noise cross-power spectra σuvν,l(D)

and σν,l(D). According to Lemma B.2 we get

σuvν,l(D) =
1

K

K−1∑
i=0

σν,l

(
D

1
Kwi

K

) (
D

1
Kwi

K

)u−v

(E.13)

where wK � e−j2π/K . After evaluating this expression on the unit circle D = e−j2πfT ,
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using T = KTs and applying several substitutions, the final result is

σuvν,l(e
−j2πfT ) =

1

K

K−1∑
i=0

σν,l
(
e−j 2π

K
fT e−j 2π

K
i
)
e−j 2π

K
fT (u−v)e−j 2π

K
i(u−v)

=
1

K

K−1∑
i=0

σν,l

(
e−j2π(f+ i

T )Ts

)
e−j2π(f+ i

T )Ts(u−v)

(E.9)
=

N0

KTs

K−1∑
i=0

∞∑
l=−∞

∣∣∣∣BC

(
f − Kl− i

T

)∣∣∣∣
2

e−j2π(f+ i
T )Ts(u−v)

m=Kl−i
=

N0

T

∞∑
m=−∞

∣∣∣BC

(
f − m

T

)∣∣∣2 e−j 2π
K

(fT−m)(u−v)

where the relationship e−j2π(u−v)l = 1 (u, v and l are integers) was used. This con-

cludes the proof.



Appendix F

Proof of Lemma 3.1

Let us at first collect some relationships. The Q-function and its first two derivatives

are

Q(x) � 1√
2π

∫ ∞

x

exp

(
−u

2

2

)
du (F.1)

Q′(x) = − 1√
2π

exp

(
−x

2

2

)
(F.2)

Q′′(x) =
x√
2π

exp

(
−x

2

2

)
. (F.3)

Define for convenience

e{} � exp

{
1

2
Ez,Mλ2 − λz0

}
(F.4)

Π{} �
M∏
k=1

1

Lk

sinh (Lkλfk)

sinh (λfk)
. (F.5)

Consider the following relationship

d

dλ

sinh (Lkλfk)

sinh (λfk)
=

sinh(λfk)Lkfk cosh(Lkλfk)− fk cosh(λfk) sinh(Lkλfk)

sinh2(λfk)

= fk
sinh(Lkλfk)

sinh(λfk)
[Lk coth(Lkλfk)− coth(λfk)] . (F.6)
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The derivatives of e{} and Π{} with respect to z0 are then given by

de{}

dz0

(F.4)
= e{}

[
dλ

dz0
(Ez,Mλ− z0)− λ

]
. (F.7)

dΠ{}
dz0

(F.5)
=

dΠ{}
dλ

dλ

dz0

(F.5)
=

M∑
k=1

1

Lk

d

dλ

{
sinh (Lkλfk)

sinh (λfk)

} M∏
l=1
l �=k

1

Lk

sinh (Lkλfk)

sinh (λfk)

dλ

dz0

(F.6)
=

dλ

dz0
Π{}

M∑
k=1

fk [Lk coth(Lkλfk)− coth(λfk)]. (F.8)

Using the above quantities, the first derivative of the upper bound F1(z0) (Equa-

tion (3.99)) with respect to z0 is expressed by

dF1(z0)

dz0

(3.99)
= −Q′(f0 − z0) e{}Π{}+Q(f0 − z0)

de{}

dz0
Π{}+Q(f0 − z0) e{}

dΠ{}
dz0

(F.7)
= Q(f0 − z0) e{}Π{}

{
−Q

′(f0 − z0)
Q(f0 − z0)

+
dλ

dz0
(Ez,Mλ− z0)− λ

+
dλ

dz0

M∑
k=1

fk [Lk coth(Lkλfk)− coth(λfk)]

}

(3.99)
= F1(z0)

dλ

dz0
g(z0) (F.9)

where g(z0) is defined as

g(z0) � Ez,Mλ− z0 +
M∑
k=1

fk [Lk coth(Lkλfk)− coth(λfk)]. (F.10)

Lemma F.1 (a) The function F1(z0) is always positive, i.e.

F1(z0) > 0, ∀z0 ∈ R. (F.11)

(b) λ is always positive, i.e.

λ > 0, ∀z0 ∈ R. (F.12)
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(c) The derivative dλ/dz0 is always negative, i.e.

dλ

dz0
< 0, ∀z0 ∈ R. (F.13)

(d) g(z0) is a strictly monotonically decreasing function in z0, i.e.

g(z0 + δz0) < g(z0), ∀δz0 > 0, z0 ∈ R. (F.14)

(e) g(z0) has exactly one root z̄0, i.e.

g(z0) = 0, if and only if z0 = z̄0. (F.15)

Proof. (a) The first two terms in the definition of F1(z0) in Equation (3.99) are

greater than zero since Q(x) and ex are positive for all x ∈ R. Additionally, each

product term sinh(Lkλfk)/ sinh(λfk) is greater than zero since the hyperbolic sine is

an odd function and the arguments of both hyperbolic sines in the above ratio have

the same sign. Thus, F1(z0) > 0, ∀z0 ∈ R, q.e.d.

(b) Note that Q′(x) = −1/
√
2π exp (−x2/2) < 0, ∀x ∈ R. In addition, Q(x) >

0, ∀x ∈ R, and it follows that

λ = −Q
′(f0 − z0)
Q(f0 − z0)

> 0, ∀z0 ∈ R, q.e.d.

(c) Comparing Equations (F.2) and (F.3) yields Q′′(x) = −xQ′(x) and the ratio

of Q′′(f0 − z0) and Q(f0 − z0) may be written as

Q′′(f0 − z0)
Q(f0 − z0)

= (f0 − z0)λ (F.16)

where λ is defined in Equation (3.96). The first derivative of λ is then

dλ

dz0

(3.96)
=

Q(f0 − z0)Q′′(f0 − z0)− [Q′(f0 − z0)]2
[Q(f0 − z0)]2

(F.16)
= (f0 − z0)λ− λ2. (F.17)
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Proof (b) showed that Q(x) > 0 and Q′(x) < 0 for all x ∈ R. Therefore,

−Q′(x)

Q(x)
> 0 ≥ x, ∀x ≤ 0. (F.18)

For the case x > 0, Q(x) may be upper bounded by [45]

Q(x) =
1

2
erfc

(
x√
2

)
<

1√
2πx

exp

(
−x

2

2

)
, ∀x > 0. (F.19)

Using this bound and the expression for Q′(x) in Equation (F.2), it follows that

−Q′(x)

Q(x)
>

1√
2π

exp
(
−x2

2

)
1√
2πx

exp
(
−x2

2

) = x, ∀x > 0. (F.20)

Combining Equations (F.18) and (F.20) yields

−Q
′(x)

Q(x)
> x, ∀x ∈ R. (F.21)

Thus, one can obtain

dλ

dz0

(F.17)
= λ [(f0 − z0)− λ]

(F.21)
< λ

[
−Q

′(f0 − z0)
Q(f0 − z0)

− λ
]

(3.96)
= 0, ∀z0 ∈ R, q.e.d.

(F.22)

(d) Taking the first derivative of g(z0) yields

dg(z0)

dz0
=
dλ

dz0

{
Ez,M +

M∑
k=1

f2
k

[
1

sinh2(λfk)
− L2

k

sinh2(Lkλfk)

]}
− 1. (F.23)

It is shown below that (Equation (F.25))

sinh2(Lx) ≥ L2 sinh2(x), ∀L ≥ 1 and x ∈ R.

Using this expression, it can easily be shown that each summation term in the rect-

angular brackets of Equation (F.23) is nonnegative. Since the energy Ez,M (Equa-

tion (3.98)) is always positive, the term in the curly brackets is also positive for all
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z0 ∈ R. According to Lemma 3.1(c), dλ/dz0 < 0, ∀z0 ∈ R. Therefore, it follows from

Equation (F.23) that

dg(z0)

dz0
< −1, ∀z0 ∈ R. (F.24)

In other words, g(z0) is a strictly monotonically decreasing function, q.e.d.

(e) It is a direct consequence of (d) that g(z0) has one and only one root z̄0 for

which g(z̄0) = 0.

�

Proposition:

sinh2(Lx) ≥ L2 sinh2(x), ∀L ≥ 1 and x ∈ R. (F.25)

Proof. The Taylor series expansion of sinh(x) is [17]

sinh(x) =
∞∑
i=1

x2i−1

(2i− 1)!
. (F.26)

Since the hyperbolic sine is an odd function, it follows that | sinh(x)| = sinh |x|. With

this and the fact that L ≥ 1, we get

|L sinh(x)| =
∞∑
i=1

L |x|2i−1

(2i− 1)!
(F.27)

| sinh(Lx)| =
∞∑
i=1

L2i−1 |x|2i−1

(2i− 1)!
. (F.28)

From the last two equations follows directly that | sinh(Lx)| ≥ |L sinh(x)| if L ≥ 1

and x ∈ R. Squaring both sides of the inequality yields sinh2(Lx) ≥ L2 sinh2(x).

�



Appendix G

Time-Domain Determination of

the Optimal MMSE Equalizers

G.1 MIMO Linear Equalizer

The MMSE MIMO LE, C le,mmse[n], is determined using time-domain analysis and

optimization methods. In the first step, the number of non-zero impulse response

samples has to be restricted to a finite number MC . The matrix impulse response

can then be written as

C[n] =

MC−1∑
m=0

C[m] δK[n−m] (G.1)

where δK [n] is the Kronecker delta sequence (Table A.3). The linear estimate of the

equalizer, ã, is a linear combination of the equalizer coefficients and the input signal

samples:

ã[n] =

MC−1∑
m=0

y[n−m]C[m]. (G.2)
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Let us define the extended equalizer input vector and the extended equalizer coefficient

matrix as

ȳ[n] � [y[n−MC + 1],y[n−MC + 2],y[n−MC + 3], . . . ,y[n]] (G.3)

C̄ �




C [MC − 1]

C [MC − 2]

C [MC − 3]
...

C [0]



, (G.4)

respectively. The linear estimate of the equalizer may then be expressed simply in

the form

ã[n] = ȳ[n]C̄. (G.5)

In a slight modification of Equation (4.2), define the linear estimation error

e[n] � ã[n]− a[n−∆]. (G.6)

This definition takes the time-delay of the system into account and adjusts the equal-

izer by comparing the estimate to the symbol transmitted ∆ samples before. ∆ is a

positive integer that has to be chosen such that the equalizer gives the best perfor-

mance (smallest MMSE) for the preselected number of equalizer coefficients.

The quantities to be minimized are the MSE’s Jk defined in Equation (4.10)

(∀k ∈ IN). Note that these quantities are equal to the main diagonal elements of the

matrix

Re[0] = E
[
eH [n]e[n]

]
(G.7)

where Re[m] � E
[
eH [n−m]e[n]

]
is the autocorrelation matrix of the linear esti-

mation error. Substituting Equations (G.6) and (G.5) into (G.7) and expanding the



G.1 MIMO Linear Equalizer 329

resulting expression yields

Re[0] =Ra[0]− C̄
H
Rȳa −RH

ȳaC̄ + C̄
H
RȳC̄ (G.8)

where Ra[0] is the autocorrelation of the transmitted data a at time m = 0 (Equa-

tion (2.64)) and

Rȳ � E
[
ȳH[n]ȳ[n]

]
(G.9)

Rȳa � E
[
ȳH[n]a[n−∆]

]
. (G.10)

Consider the autocorrelation of the equalizer input signal, Ry[m], and the cross-

correlation of the equalizer input signal and the transmitted data, Rya[m], (Equa-

tion (2.65))

Ry[m] � E
[
yH [n−m]y[n]

]
(G.11)

Rya[m] � E
[
yH [n−m]a[n]

]
. (G.12)

These quantities are related to the power and cross-power spectra of Equations (4.27)

and (4.28) by the D-transform:

Ry[m]
D←→ Sy(D) (G.13)

Rya[m]
D←→ Sya(D). (G.14)

Substituting Equation (G.3) into the definitions (G.9) and (G.10), expanding the

resulting terms and using expressions (G.11) and (G.12), the matrices Rȳ and Rȳa
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may be expressed in the form

Rȳ =




Ry[0] Ry[1] Ry[2] . . . Ry[MC − 1]

Ry[−1] Ry[0] Ry[1] . . . Ry[MC − 2]

Ry[−2] Ry[−1] Ry[0] . . . Ry[MC − 3]
...

...
...

. . .
...

Ry[−MC + 1] Ry[−MC + 2] Ry[−MC + 3] . . . Ry[0]



(G.15)

Rȳa =




Rya[MC − 1−∆]

Rya[MC − 2−∆]

Rya[MC − 3−∆]
...

Rya[−∆]



. (G.16)

The correlation matrix Rȳ is of size MCAK × MCAK. It has a block Toeplitz

structure, is Hermitian (RH
ȳ = Rȳ) and is positive semidefinite, which follows directly

from Definition (G.9). Moreover, the correlation matrix Rȳ is almost always positive

definite and therefore regular [46, pp. 102–103].

As mentioned before, the MSE’s to be minimized with respect to the equalizer

coefficients C̄ are the main diagonal elements of the matrix Re[0]. Let us express

Equation (G.8) in the equivalent quadratic form

Re[0] =Ra[0]−RH
ȳaR

−1
ȳ Rȳa +

[
C̄ −R−1

ȳ Rȳa

]H
Rȳ

[
C̄ −R−1

ȳ Rȳa

]
(G.17)

where it is assumed that Rȳ is regular. R
−H
ȳ = R−1

ȳ is Hermitian because the inverse

of a regular Hermitian matrix is also Hermitian [136, pp. 49–50].

As observed before, the matrix Rȳ is positive semidefinite and almost always

positive definite. Per definition, Rȳ will be positive definite if and only if [46, p. 102]

ξkRȳ ξ
H
k > 0 (G.18)
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for every nonzero row vector ξk. Let ξk be the k-th row of the matrix ΞH. The

quadratic form

ΞH R̄y Ξ (G.19)

has, for each arbitrary matrix Ξ, which is not the null matrix, main diagonal elements

greater than zero. Hence, the last term on the right hand side of Equation (G.17),

[
C̄ −R−1

ȳ Rȳa

]H
Rȳ

[
C̄ −R−1

ȳ Rȳa

]
,

also has main diagonal elements greater than zero unless [C̄−R−1
ȳ Rȳa] is equal to the

null matrix OMCAK×N . Since all other terms on the right hand side of this equation

are constant and do not depend on the equalizer coefficients C̄, the main diagonal

elements of Re[0] are minimized for

C̄ le,mmse = R−1
ȳ Rȳa (G.20)

in which case the main diagonal elements of the last term are zero and thus minimal.

In conjunction with Equation (G.4), the last expression defines the MMSE MIMO

LE.

The minimum mean-square error (MMSE) performance of the MMSE MIMO LE

follows immediately from Equations (4.11), (G.17) and (G.20):

Jk,le,mmse =
[
Ra[0]−RH

ȳaR
−1
ȳ Rȳa

]
kk
, ∀k ∈ IN . (G.21)

G.2 MIMO Decision-Feedback Equalizer

This section describes a time-domain approach to determine the MMSE MIMO C-

DFE with optimal finite-length forward and feedback matrix filters. In addition, an

expression for the individual MMSE Jk,c,mmse will be given. It is assumed that the

lengths of the forward and feedback matrix filters are MC and MB (MC ,MB ∈ N0),

respectively. According to this and Figure 4.3.1, the continuous-valued estimate ã
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may be expressed as

ã[n] =

MC−1∑
m=0

y[n−m]C[m] +

MB−1∑
m=0

â[n−m]B[m] (G.22)

where y is the input signal to the forward matrix filter and â are the decisions supplied

to the feedback matrix filter. Note that the feedback matrix filter has to be causal,

i.e. only previous decisions are available in the feedback loop. However, also a part of

the “present” decisions could be used if the decisions for different users are slightly

delayed in time [27]. Without loss of generality, we may assume that the decisions

are made in the user order, i.e. considering ã[n] is the present symbol, the symbol

estimate for user 1 (ã1[n]) is quantized at first, followed by that of user 2 (ã2[n]) and

so on until finally the decision element processes ãN [n]. By following this procedure,

k−1 “present” decisions, namely â1[n], â2[n], . . . , âk−1[n], are available to the feedback

filter before the estimate ãk[n] is quantized by the decision element. However, the

decisions âk[n], âk+1[n], . . . , âN [n] cannot be used at this time. This constrains the

zeroth feedback coefficient matrix B[0] to be an upper triangular matrix with zeros

on the main diagonal.

In order to simplify the analysis, it is desirable to express Equation (G.22) in

vector notation. Define the extended forward input signal and the extended feedback

input signal

ȳ[n] � [y[n−MC + 1],y[n−MC + 2],y[n−MC + 3], . . . ,y[n]] (G.23)

ā[n] � [â[n−MB + 1], â[n−MB + 2], â[n−MB + 3], . . . , â[n]] , (G.24)

respectively. The total equalizer input signal is then

u[n] � [ȳ[n], ā[n]] . (G.25)
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Furthermore, the forward and feedback filters are represented by defining

C̄ �




C[MC − 1]

C[MC − 2]

C[MC − 3]
...

C[0]




(G.26)

B̄ �




B[MB − 1]

B[MB − 2]

B[MB − 3]
...

B[0]




(G.27)

P �


 C̄

B̄


 (G.28)

where the latter matrix contains all equalizer coefficients (tap weights). It has already

been mentioned that B[0] must have zeros on and below the main diagonal. In order

to avoid inconvenient constraints in the following vector formulation, one needs to

define shortened versions of the input signal and equalizer coefficient vectors:

uk[n] � [u[n]][1(1)Lk]
(G.29)

pH
k � [P ][1(1)Lk],k

(G.30)

where Lk is a positive integer number defining the lengths of the above vectors:

Lk =MCAK +MBN −N + k − 1. (G.31)

The vector and matrix functions [. . . ][f(s)l] and [. . . ][f(s)l],c are defined in Tables A.3,

A.7 and Equation (A.8). Described in words, the row vector uk[n] is formed by taking

the first Lk elements of u[n] (or, equivalently, by taking all elements of u[n] except

for the last N − k+1 components). The column vector pH
k is obtained by taking the
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first Lk elements in the k-th column of the matrix P (taking all elements of the k-th

column of P except for the last N − k + 1 components).

Using the above definitions, the k-th error signal at the input to the decision

element can be written as

ek[n] � ãk[n]− ak[n−∆]

= uk[n]p
H
k − ak[n−∆]. (G.32)

∆ ∈ N is a constant which takes into account the time-delay introduced by the radio

channel and other system elements. The variance of this error signal is identical to

the mean-square error (MSE) of the k-th user1

[Re[0]]kk � E [e∗k[n]ek[n]]

= 1− rau,kp
H
k − pkr

H
au,k + pkRu,kp

H
k (G.33)

where

rHau,k � E
[
uH
k [n]ak[n−∆]

]
(G.34)

Ru,k � E
[
uH
k [n]uk[n]

]
. (G.35)

It can easily be shown, [46], that the parameter coefficients which minimize the

MSE (G.33) are

pH
k,c,mmse = R−1

u,kr
H
au,k (G.36)

P c,mmse =


 pH1,c,mmse pH

2,c,mmse pH
3,c,mmse . . . pH

N,c,mmse

0HN 0HN−1 0HN−2 . . . 0H1


 (G.37)

where 0Hi is an i-dimensional column vector in which each element is equal to zero

(Table A.7). All parameters of the MMSE MIMO C-DFE are contained in the matrix

P c,mmse. The optimal forward and feedback filter matrices Cc,mmse and Bc,mmse are

1The fact that the variance of the data symbols ak[n] is unity is used in the calculation of
Equation (G.33).



G.2 MIMO Decision-Feedback Equalizer 335

found by comparing Equations (G.26), (G.27), (G.28), and (G.37).

The minimum mean-square error (MMSE) can be determined by substituting the

optimal values for the equalizer coefficients (G.36) into Equation (G.33). The MMSE

of the k-th user is then

Jk = 1− rau,kR
−1
u,kr

H
au,k. (G.38)

It is possible to obtain the column vector rHau,k and the matrix Ru,k according to

the following relationships:

rHau,k = [Rua][1(1)Lk],k
(G.39)

Ru,k = [Ru][1(1)Lk],[1(1)Lk]
, (G.40)

i.e. rHau,k consists of the first Lk components in the k-th column of the matrix generated

by cross-correlating the vectors u[n] and a[n−∆];Ru,k is a submatrix which comprises

the first Lk rows and columns of the autocorrelation matrix Ru:

Rua � E
[
uH[n]a[n−∆]

]
=


 Rȳa

Rāa


 (G.41)

Ru � E
[
uH[n]u[n]

]
=


 Rȳ Rȳā

RH
ȳā Rā


 . (G.42)
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The submatrices used in the above equations are defined by

Rȳa � E
[
ȳH[n]a[n−∆]

]

=




Rya[MC − 1−∆]

Rya[MC − 2−∆]

Rya[MC − 3−∆]
...

Rya[−∆]




(G.43)

Rāa � E
[
āH [n]a[n−∆]

]

=




Râa[MB − 1−∆]

Râa[MB − 2−∆]

Râa[MB − 3−∆]
...

Râa[−∆]




(G.44)

Rȳ � E
[
ȳH[n]ȳ[n]

]

=




Ry[0] Ry[1] Ry[2] . . . Ry[MC − 1]

Ry[−1] Ry[0] Ry[1] . . . Ry[MC − 2]

Ry[−2] Ry[−1] Ry[0] . . . Ry[MC − 3]
...

...
...

. . .
...

Ry[−MC + 1] Ry[−MC + 2] Ry[−MC + 3] . . . Ry[0]



(G.45)

Rā � E
[
āH [n]ā[n]

]

=




Râ[0] Râ[1] Râ[2] . . . Râ[MB − 1]

Râ[−1] Râ[0] Râ[1] . . . Râ[MB − 2]

Râ[−2] Râ[−1] Râ[0] . . . Râ[MB − 3]
...

...
...

. . .
...

Râ[−MB + 1] Râ[−MB + 2] Râ[−MB + 3] . . . Râ[0]



(G.46)



G.2 MIMO Decision-Feedback Equalizer 337

Rȳā � E
[
ȳH[n]ā[n]

]

=




Ryâ[MC −MB] Ryâ[MC −MB + 1] . . . Ryâ[MC − 1]

Ryâ[MC −MB − 1] Ryâ[MC −MB] . . . Ryâ[MC − 2]

Ryâ[MC −MB − 2] Ryâ[MC −MB − 1] . . . Ryâ[MC − 3]
...

...
. . .

...

Ryâ[−MB + 1] Ryâ[−MB + 2] . . . Ryâ[0]



. (G.47)

Finally, the elements in the matrices are matrix samples of the following cross-

correlation functions:

Rya[m] � E
[
yH[n−m]a[n]

]
(G.48)

Râa[m] � E
[
âH[n−m]a[n]

]
(G.49)

Ry[m] � E
[
yH[n−m]y[n]

]
(G.50)

Râ[m] � E
[
âH[n−m]â[n]

]
(G.51)

Ryâ[m] � E
[
yH[n−m]â[n]

]
. (G.52)

In order to be able to calculate the cross-correlations involving past decisions

â[n] in practice, it is customary to assume that all past decisions are correct, i.e.

â[n] = a[n], ∀n ∈ Z. Under this condition, one obtains

Râa[m] = Ra[m] � E
[
aH [n−m]a[n]

]
(G.53)

Râ[m] = Ra[m] (G.54)

Ryâ[m] = Rya[m]. (G.55)

Thus, in order to determine the optimal MMSE MIMO C-DFE filters, one only needs

to know the autocorrelation functions of the input data a, Ra, and of the received

signal y, Ry, as well as the cross-correlation function between these two quantities,

Rya.

Let us finally approximate the number of operations required to determine the
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forward and feedback filters. The solution expressed in the relations (G.36) and (G.37)

suggests that it is necessary to evaluate the right hand side of Equation (G.36) for

all k ∈ IN . Since Ru,k is a Hermitian Lk × Lk-matrix (Equation (G.35)), an efficient

method would be to perform a Cholesky factorization onRu,k and backsubstitute with

the elements of rHau,k. However, as will be shown, only one Cholesky factorization is

required.

Consider for the N -th user the correlation matrix Ru,N . After performing a

Cholesky factorization, one obtains

Ru,N = UH
NUN (G.56)

where UN is an upper triangular LN × LN -matrix. According to Equation (G.40),

we note that Ru,k is the upper left submatrix of Ru,N of dimension Lk × Lk:

Ru,k = [Ru,N ][1(1)Lk],[1(1)Lk]
, ∀k ∈ IN . (G.57)

It can then easily be shown that the Lk × Lk upper left submatrix of UN ,

U k = [UN ][1(1)Lk],[1(1)Lk]
, (G.58)

is the right Cholesky factor of Ru,k, i.e.

Ru,k = UH
k U k, ∀k ∈ IN . (G.59)

Hence, in order to obtain all equalizer parameters pH
k,c,mmse, ∀k ∈ IN , we need to

perform only one Cholesky factorization, namely for Ru,N . The Cholesky factors

for all other correlation matrices Ru,k (k = 1, 2, . . . , N − 1) are obtained simply by

partitioning of UN , which does not involve any operations. The equalizer parame-

ters are finally determined from Equation (G.36) by backsubstitution of rHau,k to the

Cholesky factors UH
k U k [97]. This results, without taking into account the number

of calculations required for the determination of Ru,N and rHau,k (∀k ∈ IN ), in a total
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of approximately

1

6
L3
N +

N∑
k=1

L2
k operations. (G.60)

The unit operation (op) has been defined as the combination of one complex multi-

plication and one complex addition.



Appendix H

Relationship between MMSE and

Bias Coefficient

H.1 Relationship for the MMSEMIMOLinear Equal-

izer

This section provides a proof of Equation (4.129) for the MMSE MIMO LE.

Applying Equations (4.15) to (4.18) and performing a simple manipulation, the

total transfer function from the data input to the equalizer output, H(D) (4.117),

can be written in the form

H(D) = IN − S−1
a (D)[Sx(D) + S−1

a (D)]−1. (H.1)

Since the transmitted data sequences are mutually and temporally uncorrelated with

unit variance, the spectrum of the input data is Sa(D) = IN . Combining Equa-

tions (4.11) and (4.12), it is clear that the MMSE for user k, Jk, is given by the k-th

diagonal element of the matrix

Re[0] =

∫ 1

0

[Sx(e
−j2πf̌ ) + IN ]

−1 df̌ . (H.2)

The bias coefficient may be obtained from the overall system transfer function
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H(D). The system impulse response at time n = 0 is given by

H [0] =

∫ 1

0

H(e−j2πf̌ ) df̌ (H.3)

where hkk[0] = hre
kk[0] + jhim

kk[0] is the k-th diagonal element of H [0]. Substituting

Equation (H.1) into (H.3) and using (H.2), one obtains

H [0] = IN −Re[0]. (H.4)

The diagonal elements of the cross covariance matrixRe[0] are real. Thus, all diagonal

elements of H [0] are real, i.e. hkk[0] = h
re
kk[0]. Since the k-th diagonal element of the

matrix Re[0] is equal to the MMSE for user k, it can be concluded that the bias

coefficient of the MMSE MIMO LE is

hre
kk[0] = 1− Jk,le,mmse, ∀k ∈ IN . (H.5)

H.2 Relationship for the MMSE MIMO Decision-

Feedback Equalizer

Equation (4.129) will now be proven for the MMSE MIMO DFE. The MMSE and

bias coefficient expressions are identical for both the conventional and noise-predictive

DFE’s because both structures are completely equivalent. Thus, the C-DFE structure

may be considered without loss of generality. The final result applies to both C-DFE

and NP-DFE.

Let us again start with the total system transfer function H(D) from the system

input to the output of the DFE forward filter (4.117). This equation may be manip-

ulated using the expression for the MMSE MIMO DFE forward filter (4.57), (4.62),

Equations (4.18), (4.61) and Sa(D) = IN in order to obtain

H(D) =Ψ(D) −Ψ−H(D−∗)G. (H.6)
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The total system impulse response at the time n = 0 is then

H [0] =

∫ 1

0

H(e−j2πf̌ ) df̌

= Ψ[0]−Ω[0]G, (H.7)

where

Ω[0] �
∫ 1

0

[ΨH(e−j2πf̌ )]−1 df̌ . (H.8)

Note that Ψ(D) = Ψ[0] + Ψ[1]D + Ψ[2]D2 + . . . is causal, and Ψ[0] is an upper

triangular matrix with ones on the main diagonal. Thus, ΨH(D−∗) is anticausal and

may be written as

ΨH(D−∗) = IN +Θ(D), (H.9)

where Θ(D) is also anticausal with a DC-coefficient matrix Θ[0] that is lower tri-

angular with zeros on the main diagonal. Based on Equation (H.9), the inverse of

ΨH(D−∗) can be developed into a series:

[
ΨH(D−∗)

]−1
= IN +

∞∑
ν=1

(−1)νΘν(D). (H.10)

Since Θ(D) is anticausal and has a lower triangular DC-matrix with zeros on the

main diagonal, Θν(D) = [Θ(D)]ν is also anticausal and has a lower triangular DC-

matrix with zeros on the main diagonal. As a result, [ΨH(D−∗)]−1 has ones on the

main diagonal for all D, and its DC-coefficient matrix Ω[0] is lower triangular with

ones on the main diagonal.

Let us now continue with some observations on Equation (H.7). Firstly, we note

that the k-th diagonal element of H [0] is equal to hkk[0] = hre
kk[0]+ jh

im
kk[0]. Secondly,

G is a diagonal matrix with real elements. Thirdly, both Ψ[0] and Ω[0] have ones on
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the main diagonal. As a result, hkk[0] is given by

hkk[0] = 1− [G]kk (H.11)

where [G]kk is the k-th diagonal element of G. Since the right hand side of the above

equation is real, one finds hkk[0] = hre
kk[0]. It is also known from Equation (4.65) that

[G]kk is equal to the MMSE Jk. Thus, the bias coefficient of the MMSE MIMO DFE

is given by

hre
kk[0] = 1− Jk,c,mmse, ∀k ∈ IN . (H.12)

H.3 Relationship for the ZF MIMO Equalizers

Substituting Equations (4.51), (4.52) into (4.117) and using (4.16), it follows that

the total transfer function of the ZF MIMO LE is H(D) = IN . Hence, H [0] =∫ 1

0
H(e−j2πf̌ ) df̌ = IN and the bias coefficients are hre

kk[0] = 1, ∀k ∈ IN .
For the ZF MIMO C-DFE, one may substitute Equations (4.109), (4.110) into

(4.117) and apply (4.16) in order to obtain H(D) = Ψx(D). Therefore, H [0] =∫ 1

0
H(e−j2πf̌ ) df̌ = Ψx[0]. According to Section 4.3.3, Ψx[0] has ones on the main

diagonal and it follows immediately that hre
kk[0] = 1, ∀k ∈ IN . The same relationship

also holds for the ZF MIMO NP-DFE since this structure is equivalent to the C-DFE.

In conclusion, the bias coefficients of all ZF MIMO equalizers are equal to unity, i.e.

hre
kk[0] = 1, ∀k ∈ IN . (H.13)



Appendix I

Algorithm for Matrix Spectral

Factorization

The objective of this section is to describe a numerical algorithm which performs the

matrix spectral factorization

Q(D) = Ψ(D)G−1ΨH(D−∗) (I.1)

under practical considerations such as stability and finite impulse responses. As in

previous Chapters 4 and 5, Ψ(D) is a causal and stable N ×N matrix function with

Ψ(D) =
∑∞

n=0Ψ[n]D
n. Ψ[0] is constrained to be an upper triangular matrix with

ones on the main diagonal. G−1 is a diagonal N ×N matrix independent on D. If all

of the following conditions are met, it will be possible to perform a matrix spectral

factorization on the N ×N matrix function Q(D) according to Equation (I.1) [43]:

• Q(D) is Hermitian, i.e. Q(D) = QH(D−∗),

• Q(D) is positive definite on the unit circle D = e−j2πf̌ , and

• Q(e−j2πf̌ ) is in the ring of absolutely convergent Fourier series.

All those conditions can be shown to be fulfilled for the matrix spectrum as defined

in Equation (4.18).
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Although it is generally possible to factorize Q(D) according to Equation (I.1),

it is in most cases very difficult to find the purely causal factor Ψ(D) as polynomial

expression in closed-form. Let us, therefore, instead focus on finding a finite impulse

response (FIR) approximation1 ΨFIR(e
−j2πk/L) of Ψ(D), where

k ∈ SL, (I.2)

SL � {0; 1; 2; 3; . . . ;L− 1} (I.3)

and L is an odd integer2, which describes the length (number of samples) of the

FIR approximation. Formally, the FIR approximation is obtained by evaluating the

matrix functions Q(D) and Ψ(D) on the unit circle D = e−j2πf̌ and then sampling

them at L discrete frequencies f̌ = k/L, ∀k ∈ SL.

The motivation for applying an FIR approximation is that numerical methods

exist that determine Ψ(e−j2πk/L) givenQ(e−j2πk/L), whereas finding the matrix poly-

nomial Ψ(D) is usually very difficult and may be possible only in special cases. The

method is justified because the FIR approximation can be made arbitrarily accurate

by increasing the number of samples, L. In fact, in the limit L → ∞, ΨFIR and Ψ

are identical. Moreover, the FIR approximations of the causal and anticausal factors

as well as their inverses are guaranteed to be stable. Thus, instead of solving (I.1),

let us concentrate on performing the matrix spectral factorization

Q(e−j2π k
L ) = ΨFIR(e

−j2π k
L )G−1ΨH

FIR(e
−j2π k

L ), ∀k ∈ SL (I.4)

where ΨFIR(e
−j2πk/L) is a causal matrix sequence (k ∈ SL) with ΨFIR(e

−j2πk/L) =∑(L−1)/2
n=0 ΨFIR[n]e

−j2πkn/L. ΨFIR[0] is constrained to be an upper triangular matrix

with ones on the main diagonal. G−1 is a constant diagonal matrix.

1In conjunction with frequency-domain functions, the term “FIR approximation” has to be un-
derstood in the sense that the inverse Discrete Fourier Series (DFS) of ΨFIR(e−j2πk/L), ΨFIR[n] =
F−1

dd {ΨFIR(e−j2πk/L)}, is a FIR matrix filter which approximates the inverse D-transform of Ψ(D),
Ψ[n] = D−1{Ψ(D)}.

2For convenience, L should be an odd integer since this simplifies the numerical algorithms
described subsequently.



Algorithm for Matrix Spectral Factorization 346

In order to be able to apply the following algorithm, the formulation of the spectral

factorization has to be changed slightly. It is easy to show that the matrix spectral

factorization (I.4) is identical to

Q(e−j2π k
L ) = ΦFIR(e

−j2π k
L )WΦH

FIR(e
−j2π k

L ), ∀k ∈ SL (I.5)

where ΦFIR(e
−j2πk/L) is a causal matrix sequence (k ∈ SL) with ΦFIR(e

−j2πk/L) =∑(L−1)/2
n=0 ΦFIR[n]e

−j2πkn/L and ΦFIR[0] = IN . W is a positive definite, Hermitian ma-

trix. Hence, W can be decomposed via Cholesky factorization into W = JG−1JH,

where J is an upper triangular matrix with ones on the main diagonal and G−1 is a

real, diagonal matrix. It can now immediately be seen that the relationship between

ΨFIR and ΦFIR is

ΨFIR(e
−j2π k

L ) = ΦFIR(e
−j2π k

L )J , ∀k ∈ SL (I.6)

The iterative algorithm by Harris and Davis [43], which numerically performs a

matrix spectral factorization (I.5) is described in the following two sections.

Section I.1 outlines the procedure exactly as described by Harris and Davis for a

continuous-frequency notation. This formulation can not be computer programmed,

however, its presentation is clearer and gives a better overview about the general

algorithm. The difference between the equations presented in the next section and

the ones of the original publication [43] is that the former are adapted to the notation

of this dissertation.

Section I.2 describes the exact procedure for performing the matrix spectral fac-

torization (I.5). This algorithm can be programmed on a digital computer. It has

been used to determine all simulation results shown in this thesis which required a

spectral factorization.
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I.1 Algorithm for Continuous-Frequency Spectra

The objective is to find the causal factor Φ(e−j2πf̌ ) of a given N×N matrix spectrum

Q(e−j2πf̌ ) according to

Q(e−j2πf̌ ) = Φ(e−j2πf̌ )WΦH(e−j2πf̌ ) (I.7)

where Φ(e−j2πf̌ ) is a causal matrix function with Φ(e−j2πf̌ ) =
∑∞

n=0Φ[n]e
−j2πf̌n and

Φ[0] = IN . W is a positive definite, Hermitian matrix.

Harris and Davis [43] have described the following algorithm which performs the

above matrix spectral factorization. It consists of an initialization step and an itera-

tion that will be stopped if the approximation Φm(e
−j2πf̌ ) in the m-th step satisfies

Equation (I.7) with sufficient accuracy. Since all matrix functions are periodic in f̌

with period 1, all steps have to be performed over the range 0 ≤ f̌ < 1.

1. Initialization.

Φ0(e
−j2πf̌ ) = IN . (I.8)

2. Iteration. For each iteration, starting with m = 1, each of the following

steps has to be performed in the order given:

Step 1: Calculate the matrix spectrum

Am(e
−j2πf̌ ) = Φ−1

m−1(e
−j2πf̌ )Q(e−j2πf̌ )Φ−H

m−1(e
−j2πf̌ ). (I.9)

Step 2: Determine the causal part of Am, A
0+
m (e−j2πf̌ ):

• Perform an inverse Discrete-Time Fourier Transform (DTFT) onAm(e
−j2πf̌ )

Am[n] = F−1
dc

{
Am(e

−j2πf̌ )
}
=

∫ 1

0

Am(e
−j2πf̌ )ej2πf̌n df̌ . (I.10)



I.1 Algorithm for Continuous-Frequency Spectra 348

• Form the causal sequence A0+
m [n] according to

A0+
m [n] =


 Am[n], for n ≥ 0

0, for n < 0.
(I.11)

• Perform a DTFT on A0+
m [n]

A0+
m (e−j2πf̌ ) = Fdc

{
A0+

m [n]
}
=

∞∑
n=−∞

A0+
m [n]e−j2πf̌n. (I.12)

Step 3: Determine Wm with

Wm = Am[0]. (I.13)

Step 4: Calculate the new approximation of the causal factor

Φm(e
−j2πf̌ ) = Φm−1(e

−j2πf̌ )A0+
m (e−j2πf̌ )W−1

m . (I.14)

Step 5: Determine the accuracy of the latest approximation Φm(e
−j2πf̌ ) and decide

whether to stop the algorithm or to continue with another iteration. For this,

calculate the error estimate

ε∞,m = max
0≤f̌<1

{
1

N

∥∥∥IN −Q−1(e−j2πf̌ )Φm(e
−j2πf̌ )WmΦ

H
m(e

−j2πf̌ )
∥∥∥
∞

}
(I.15)

where ‖S‖∞ is the H∞-norm of the matrix S, i.e. the absolute value of the

element of S that has the largest magnitude. If the error estimate ε∞,m is

smaller than a preselected value ε̄∞, the algorithm will be discontinued and

Φm(e
−j2πf̌ ) will be taken as sufficiently accurate approximation of the causal

factor Φ(e−j2πf̌ ). Otherwise, one will increment the step number m by one and

proceed with Step 1 for another iteration.
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I.2 Algorithm for Discrete-Frequency Spectra

This section describes the version of the algorithm by Harris and Davis which de-

termines an FIR approximation for the causal factor of a matrix spectrum Q(D).

The method works with discrete samples in both the time-domain and the frequency-

domain. Therefore, it can be directly translated into computer language codes, which

makes it useful for simulations.

Consider the givenN×N matrix sequenceQ(e−j2πk/L), which consists of L matrix

samples (k ∈ SL). It may be directly available or it may be determined by evaluating

Q(D) at the discrete points D = e−j2πk/L. The following algorithm calculates an

approximation of the causal factor ΦFIR(e
−j2πk/L) (∀k ∈ SL), which is defined by

Equation (I.5).

Note that all of the following steps have to be performed for all values k ∈ SL.

1. Initialization.

ΦFIR,0(e
−j2π k

L ) = IN . (I.16)

2. Iteration. For each iteration, starting with m = 1, each of the following

steps has to be performed in the order given:

Step 1: Calculate the matrix spectrum

Am(e
−j2π k

L ) = Φ−1
FIR,m−1(e

−j2π k
L )Q(e−j2π k

L )Φ−H
FIR,m−1(e

−j2π k
L ). (I.17)

Step 2: Determine the causal part of Am, A
0+
m (e−j2πk/L):

• Perform an inverse Discrete Fourier Series (DFS) on Am(e
−j2πk/L). Note

that this operation may be performed efficiently with an inverse Fast

Fourier Transform (IFFT).

Am[n] = F−1
dd

{
Am(e

−j2π k
L )
}
=

1

L

L−1∑
k=0

Am(e
−j2π k

L )ej2π
nk
L . (I.18)
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• Form the causal sequence A0+
m [n] according to

A0+
m [n] =


 Am[n], for 0 ≤ n < 1

2
(L+ 1)

0, for 1
2
(L + 1) ≤ n ≤ L− 1.

(I.19)

• Perform a DFS (or an FFT) on A0+
m [n]

A0+
m (e−j2π k

L ) = Fdd

{
A0+

m [n]
}
=

L−1∑
n=0

A0+
m [n]e−j2πnk

L . (I.20)

Step 3: Determine Wm with

Wm = Am[0]. (I.21)

Step 4: Calculate the new approximation of the causal factor

ΦFIR,m(e
−j2π k

L ) = ΦFIR,m−1(e
−j2π k

L )A0+
m (e−j2π k

L )W−1
m . (I.22)

Step 5: Determine the accuracy of the latest approximation ΦFIR,m(e
−j2π k

L ) and de-

cide whether to stop the algorithm or to continue with another iteration. For

this, calculate the error estimate

ε∞,m = max
k∈SL

{
1

N

∥∥∥IN −Q−1(e−j2π k
L )ΦFIR,m(e

−j2π k
L )WmΦ

H
FIR,m(e

−j2π k
L )
∥∥∥
∞

}
.

(I.23)

where ‖S‖∞ is the H∞-norm of the matrix S, i.e. the absolute value of the

element of S that has the largest magnitude. If the error estimate ε∞,m is

smaller than a preselected value ε̄∞, the algorithm will be discontinued and

ΦFIR,m(e
−j2πk/L) will be taken as sufficiently accurate approximation of the

causal factor ΦFIR(e
−j2πk/L). Otherwise, one will increment the step number m

by one and proceed with Step 1 for another iteration.


