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Abstract 

For a single user scheme with frequency dependant channel, a generalized 

maximum likelihood sequence estimation (MLSE) algorithm was demonstrated to 

improve the performance over the single antenna method. It achieved almost perfect 

combining using blind joint data and channel estimation by means of combining of 

metrics from two antenna diversity. The dominant cause of errors was due to the 

presence of two trellises with almost identical metrics and these trellises were related 

being the same sequence delayed by plus or minus one sample period. This was 

especially prone to happen when the estimated model order was not the true order. 

Another difficulty with this algorithm was the reduction in the number of choices for 

trellises entering a state as the trellises tended to converge to the best one; this provided a 

larger exhaustive search at the beginning of the algorithm than later when fading affected 

the channel. 
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Chapter 1 Introduction 

1.1 Motivation. 

In many digital communication applications wireless is preferred as shown by the 

success of the cellular telephone, which allows the users to be mobile. The wireless 

environment is complicated by the effect of multi-path on the received signal and the 

cellular environment is characterized by interference caused by all the other users. Multi-

path effects are frequency selective fading that cause inter-symbol interference (ISI) or 

complete loss of the signal. Movement by the users and of the objects reflecting the 

signal to the receiver causes the path to change.  

Outside of the communications field geo-science and image restoration could 

also be targets for this blind data and channel estimation technique. 

To counteract these effects the multi-path can be estimated and MLSE used. 

Some of the recently developed detectors are described as blind. They do not need a 

training sequence from the transmitter (TX), which means the receiver (RX) can adjust 

itself, without interrupting the transmission of data to other users, without waiting for the 

next training sequence or when the signal has been recovered after fading.  

By generating specific results with some numerical simulations the effectiveness 

of this joint blind data and channel estimation with diversity technique was 

demonstrated. Elements of the simulations in this thesis were based on the commercial 

standard 1xEVDO. 1xEVDO, also known as High Data Rate, or IS-856. This was chosen 

by the designers because it was a high-performance and cost-effective Internet solution.  
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For the user of this technique the advantages enjoyed would include these. At the 

transmitter there would be no need for the training sequence or preamble to be 

transmitted. This would allow a higher user data transfer rate by reducing overhead and 

longer battery life by reducing the time taken to transmit the data. The receiver may also 

recover after a deep fade during a frame, rather than wait for the next training sequence. 

These advantages come at a price; there would be a great increase in processing 

and for diversity an extra antenna with filtering, frequency conversion and sampling 

would be required. Even so errors can still be caused by a problem called slippage. 

Slippage was discussed in this thesis as a problem which limited the performance of the 

technique. Slippage was likely to occur and caused frequent errors in the received data 

output if the estimated channel impulse response (CIR) order was not the true one or the 

true CIR had small magnitudes at its beginning or end. 

1.2 Goal of this thesis. 

The new contribution described in this thesis was the demonstration of the 

effective use of diversity with joint blind data and channel estimation, by extending 

Seshadri’s [Ses94] work to diversity with Seshadri’s algorithm (DSA), using the 

combination of two inputs in an optimal manner to considerably reduce bit error rate. 

Some difficulties were also pointed out. 

In Section 2.2 the background to the combination of two inputs with the use of 

the sum of the squared errors was developed to drive a type of generalized Viterbi 

algorithm (VA). This hypothesis was tested in some experiments by the use of numerical 

simulation, described in Section 2.1.4. The results for the non-fading multi-path CIRs for 

a single user scheme were shown in Chapter Three. Since a blind receiver would not 
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know the true CIR order, lower and higher estimated CIR orders were compared to the 

real path order for bit error rate (BER) performance in Section 3.3. Observations about 

the resulting performance in terms of BER were synthesized into a conclusion in Chapter 

4.  

1.3 Discussion of previous work and references. 

The digitally implemented adaptive equalizer concept was introduced by Lucky 

of Bell Laboratories [Luc66], and has been extended over the last 36 years to include a 

multitude of algorithms. These were useful for high data rate mobile communication 

systems. Proakis [PrNi91] defined blind reception as a signal processing technique that 

recovers the input sequence applied to a linear time-invariant non-minimum phase 

channel from its output only. The algorithms were essentially adaptive filtering 

algorithms designed in such a way that they did not need the external supply of a desired 

response to generate the error signal.  

According to Chen and Hoeher [ChHo01] there were three categories of these 

blind reception techniques, first those based on statistical properties of the received 

signal, second those that exploited the algebraic structure of over-sampled systems called 

the deterministic or sub-space approach, and third those that used trellis-based 

techniques.  

Examining the first category, these were techniques based on the statistical 

properties of the received signal. Sato was the first to publish a paper on blind 

equalization [Sat75]. The most widely used algorithm was attributed to Godard [God80], 

sometimes called the constant modulus algorithm. These were based on the steepest 

descent and being basically a least mean square (LMS) type of algorithm they were 
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limited by their relatively slow convergence and potential to converge to a local 

minimum with poor performance. Both the Sato and Godard algorithms could be 

regarded as special cases of the Bussgang algorithm as formulated by Bellini [Bel86]. 

The Bussgang algorithm applied a memoryless nonlinearity, that was a kind of slicer, at 

the output of the equalization filter in order to generate the desired response. This output 

took the place of the desired response for the LMS adaptation algorithm. The term 

Bussgang [Bus52] was used to indicate the class of stochastic processes that satisfy the 

condition, ( ) ( )[ ] ( ) ( )( )[ ]kk −=− nygnyEnynyE , where y was the equalizer output, E was 

the expectation operator, g was the zero memory non-linearity function, n was an integer 

index to the samples of y and k was the index shift for correlation. That means the 

process had an auto-correlation function equal to the cross-correlation of the process and 

the output of the memory non-linearity produced with that process. This was relevant 

since the blind equalizer was driven by the error of the difference between the equalizer 

output, y(n), and the output of the zero memory non-linearity, g(y(n)), and for the 

algorithm to converge the error should tend to zero so the expected values should tend to 

be equal. 

Still within the first category, there were higher-order statistics, which were 

described in terms of cumulants and their Fourier transforms known as polyspectra. 

Polyspectra provide the basis for the identification of non-minimum phase channels 

because they preserved phase information from the channel output unlike the auto-

correlation or power spectral density. From the estimate of the fourth-order polyspectra, 

called the triceptrum, the identification of the channel could be done and then an 

equalizer made by inverting the channel. Hatzinakos and Nikias [HaNi91 and HaNi94] 
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published this algorithm. These were much more computationally intensive than the 

Bussgang type, but both suffered from slow rate of convergence, compared to the 

conventional adaptive filter with a training sequence. 

In the second category another statistical property was used, its cyclostationary, 

which meant the auto-correlation of the received signal was periodic in the symbol 

duration. Tong et al. [ToXuKa91] was credited with the first application of this to blind 

reception.  His idea was to use over-sampling of the received signal. This was also called 

fractionally spaced equalization, as described by Gitlin and Weinstein [GiWi81] for the 

non-blind case. Over-sampling may have been replaced by using multiple antennas each 

sampled at the symbol rate. For an example of this technique by Tong et al. [ToXuKa94] 

the auto correlation matrix Rx of the received signal was used to estimate the noise 

variance and length of the CIR. They considered a vectorized process and its correlation 

matrix, 

                 
( ) ( ) ( )
( ) ( ) ( ),

,
kRZkZRkR

nnZsnr

n
H

sx +=

+= η
                                                  

where r was the received signal sequence, Rs was the correlation matrix of the desired 

signal, Rn the correlation matrix of the noise, s was the data symbol, η was the noise, Z 

was an matrix of the over-sampled CIR where v was the number of samples within 

the length of the CIR and w was the number of samples left after v were taken away from 

the total samples used. These estimates were used to correct the estimate for noise and an 

estimate of Z could then be found from the singular vectors and singular values which 

came from the singular value decomposition of R. Once Z was found the CIR could be 

recovered from it and used to extract the data by equalizing or maximum likelihood 

techniques.  

( )
( )2.3.1

1.3.1

wv×
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In a way this second category could be considered similar to the recursive least 

squares (RLS) algorithm in that it used a correlation matrix, as opposed to the LMS used 

in the Bussgang techniques. The major advantage over the first category was the use of 

second-order statistics rather than higher-order statistics, however the processing still 

needed to be carried out at a higher rate because samples were taken faster than the 

incoming symbol rate and single value decomposition of correlation matrices needed to 

be found. It was also necessary to find the signal to noise (S/N) ratio and channel order 

as well, compared to the maximum likelihood algorithm used in this thesis where it turns 

out that only knowledge of the channel order would be required. 

An advantage of using MLSE rather than equalization was that the inverse of the 

CIR was not found which avoided the noise enhancement on those channels with 

spectral nulls. 

For the third category the maximum likelihood criterion was extended, so that 

according to Biglieri et al. [BiPrSh98] for a Gaussian channel the joint probability 

density function, P, of the received data vector r = [r1 r2 … rN]T for a block of N data was 

( )
( ) 










−−= ∑ ∑

= =
−

N

n

L

k
knknN dCIRrdCIRrP

1

2

0
22 2

1exp
2

1,
σπσ

,              ( )3.3.1

where d was the data vector d = [d1 d2 … dN]T , L was the length of the true CIR and σ2 

the noise variance. Since neither d, nor σ2 nor CIR was known one way to maximize the 

probability was to determine an estimate of CIR for every possible sequence. It was 

possible to do because every possible sequence came from a finite alphabet with known 

statistics, independent and identically distributed. Then the sequence was selected that 

minimized  
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                                                  ∑ ∑
= =

−−
N

n

L

k
knkn dCIRr

1

2

0
                                          

for each CIR, which maximized the probability, however this was an exhaustive search 

with computational complexity that grows exponentially with the length N. If N = L there 

will be one CIR estimate for each surviving path of the VA search through the trellis, 

this was the approach of Raheli et al. [RaPoTz95] and of Chugg and Polydoros 

[ChPo96]. Seshadri’s [Ses94] scheme was similar but used a generalized VA that 

retained M ≥ 1 best estimates at each state of the trellis along with corresponding CIR 

estimates. Up to the first 

( 4.3.1 )

( )M2log 2+=N O stages in the trellis search were exhaustive, 

where O was the order of the estimated CIR, and from then on the limit M made the 

process practical. He showed good performance was achieved by setting M to four and 

this was used in this thesis for the study of performance using two antenna diversity.  

Raheli et al. [RaPoTz95] proposed per-survivor processing (PSP). This technique 

cancels the effects of (ISI) within the calculation of the metric used in the VA, based on 

the data sequence that lead to the survivor. They pointed out that the technique was not 

confined to unknown CIR but also carrier phase or symbol timing error, and suggested 

that PSP was the generalized interpretation of reduced state sequence estimation (RSSE). 

PSP was related to RSSE and decision feedback sequence estimation (DFSE) by the use 

of tentative decisions when there was uncertainty in any channel parameters while RSSE 

and DFSE treated particular parameters, both reduced order and mis-adjustment of CIR 

or just reduced order CIR respectively. DFSE was described by Duel and Heegard 

[DuHe85]; it reduced the number of states by using a remaining ISI correction. RSSE 

was also described by Eyuboğlu and Qureshi [EyQu88]; it was a generalized case of 
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DFSE, where the reduced states were chosen by reducing the number of possible 

transitions from any state. This was relevant when the modulation scheme uses more 

than one bit per symbol. In this thesis the algorithm reduced the number of trellises to M 

rather than one as with RSSE. As illustrated by Seshadri and Anderson [SeAn88] the M 

algorithm deleted all but M states, using the lowest accumulated metric to choose them, 

then the trellis with the lowest accumulated metric was used to give the best estimate of 

transmitted symbol. They also mentioned that use of decision feedback introduces error 

propagation. 

By making the number of states variable rather than set to M, Simmons [Sim90] 

called this the T-algorithm, although this would have been a possible improvement it was 

not included to allow comparison of the use of one antenna or two antenna diversity to 

be evident.  

Zervas, Proakis and Eyuboğlu [ZePrEy92] had suggested a similar algorithm to 

Seshadri but avoided the estimation of the CIR by LMS for each state. Rather a CIR was 

assumed and the optimum sequence for this CIR found, then the CIR was modified and 

the optimization repeated using the same data sequences, this modification of the CIR 

improved the CIR estimation.  

Since 1994 there has been some work published that references Seshadri’s paper 

[Ses94]; these following authors were those that developed his idea. The majority that 

reference his work did so to illustrate the high computational load and they then went on 

to suggest some less intensive algorithms; see appendix D for the load of the algorithm 

used in this thesis. 
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Non-linear channels were addressed by Jeng and Yeh [JeYe97] with blind 

clustering for non-linear channels which would have been useful to account for those 

non-linearities from TX power amplifiers. Clustering was mentioned by Seshadri but in 

the context of finding the noise free constellation and subsequently applying his 

algorithm.  

The technique of using a finite alphabet was combined with the second category, 

sub-space approach, by van der Veen, Talwar and Paulraj, [VeTaPa97]. This addresses 

the multi-user and multi-antenna case with an extremely complex algorithm using over 

sampling as the sub-space approach did. Their algorithm relied on the finite alphabet to 

perform the multi-user separation.  

Chen and Luk [ChLu99] proposed a two-stage approach to optimizing the joint 

data and channel estimate, similar to the algorithm proposed by Zervas, but coefficient 

annealing was used to modify the CIR. Coefficient annealing was a class of guided 

random search by adjusting the CIR coefficients differently for the LMS or RLS 

algorithms. 

Chen and Hoeher [ChHo01] used two different techniques compared to Seshadri, 

they used RLS instead of LMS to the CIR update, and coefficient annealing to avoid 

converging to a local minimum. They also mentioned slippage, calling it shift ambiguity 

and suggested the solution is to maximise the S/N ratio but this would require some 

further processing; see suggestions for further work Section 4.2. Another solution they 

provide was to rely on coefficient annealing to make the CIR move from a local 

minimum to the global minimum or true CIR. 
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Regarding the use of PSP with code division multiple access (CDMA) systems 

such as 1xEVDO Hong, Joo and Lee [HoJoLe01] suggested the use of the pilot available 

on the reverse link with these systems. This showed how multi-user separation could be 

achieved but did not address the use of antenna diversity; see Section 4.2 further work 

for suggestions on combining the two.  

This thesis stayed with the least complicated algorithm to demonstrate the 

performance of the diversity combining technique. The ideal situation would have been 

to make M so large that no paths were discarded until the CIR was learnt however the 

attraction of Seshadri’s work was to use a low value of M to make the process practical. 

Choosing a value of M made an ad hoc solution so some or all of the above variations 

could have been applied and would have improved performance at the cost of more 

processing. 
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Chapter 2 System Description 

2.1 Diagram and explanation.  

By defining the path CIR as a finite impulse response (FIR) filter with the 

number of coefficients being the order of the filter L, the following model allowed 

simulation by computer, which assumed a linear channel. The object of the up-sampler 

was to raise the sampling rate so the TX filter could be applied without aliasing the 

wanted signal, it was implemented as shown in Section 2.1.4. 

TX Antenna RX Antenna 1  R1

RX FIR 
filter  

Down-
Sampler  

Data Up-
sampler 

TX FIR 
filter  

Path 1 

Noise1  

RX Antenna 2  R2 

RX FIR 
filter  

Down-
Sampler  

Path 2 

Noise2  

 

Figure 2.1-1 Diagram of complex baseband model. 

For the parts of a practical RX that were not modelled the assumptions used were 

that synchronization of frequency, phase, and symbol have been achieved, and a level 

control technique was used to set the power level of the signal entering each sampler to 
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avoid weighting the diversity combiner. To restrict the bandwidth of the transmitted 

signal and to try to avoid inter-symbol interference, square root raised cosine filters were 

used for both the transmit and receive filters. For all the simulations an excess bandwidth 

of 25% was used, the number of coefficients per transmitter filter was 33, see Appendix 

A for more details. Samples from the down-sampler were then passed to the estimation 

algorithm sampled at symbol rate. Even though sampling at the symbol rate caused 

significant information loss as the information bandwidth is not less than half the 

sampling frequency, here the method used by Seshadri was followed. As Gitlin and 

Weinstein [GeWi81] pointed out fractionally-spaced sampling can deal with timing 

uncertainty and more generally can deal with delay distortion. Improved performance 

could be expected with fractionally-spaced sampling but in the interests of simplicity to 

compare single and diversity antenna algorithms it was not used. 

To compare the performance of the DSA, the matched filter bound was used, 

forming a lower bound on the expected performance, the best possible receiver 

unimpaired by ISI, Wozencraft et al. [WoJa65]. The matched filter bound was obtained 

assuming the data symbols suffered neither ISI nor interference, only additive noise, 

Lucky et al. [LuSaWe68]. 

When the channel was invariant, discussed in Section 2.1.2, the received complex 

baseband signal r(t) was represented by 

( ) ( )

( ) ( ) ( ),

,k
k

k

ttmtr

TtCdtm

η+=

−= ∑
∞

−∞=                                                 
( )
( )2.1.2

1.1.2
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where dk was a data symbol from the finite alphabet +1 and -1, m was the signal coming 

out of the CIR, C included the transmit and receive pulse shaping filters and the CIR, and 

T was the symbol period. 

2.1.1  Signal to noise definition 

The S/N was defined by measuring the average signal power at the receiver 

antenna in the system diagram below. From the signal power and the required S/N, the 

variance of the noise was adjusted to get the required average noise power.  

∑

∑
ℵ

=

ℵ

=
∆

×
ℵ

×
ℵ==

1

*

1

*

2

2

1

1

i
ii

i
ii mm

m
N
S

ηηη
,                                   ( )1.1.1.2

where η was the noise signal coming out of it’s TX filter, ●* was the complex conjugate 

of ●, and ℵ  was the number of samples.  

TX antenna RX antenna

Data up-sampled 
and filtered by 
TX filter. 

Path CIR 
to receiver 
filtering  

m

η S/N 
defined 
here 

Gaussian white 
noise filtered with 
identical TX filter. 

 

Figure 2.1.1-1 Illustration of S/N definition. 
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The bandwidth of the signal m was set by the transmit filter and CIR. The noise 

was a Gaussian wideband signal that was band-limited by an identical filter to that used 

in the transmitter. This choice was probably better than the real life case as the wideband 

noise would be filtered by the tuned circuits and filters of a real receiver which would be 

wider than the transmit filter until it got to the receive filter in Figure 2.1-1, however the 

choice of what bandwidth and roll off to use is more complicated than justified for this 

work and this choice reduces the number of variables to be taken into account.  

In the diversity case the S/N was set equal at both RXs. The signal and noise 

powers were the same at each antenna. The same signals and noise were applied to the 

single antenna simulations and each antenna in the diversity simulation. At each antenna 

the noise was assumed to be independent, this was valid as long as it was assumed that 

there was no common dominant source of noise such as interference from outside the 

receiver or a common local oscillator in the receiver. There was an issue regarding the 

S/N definition with the diversity case as the received signals did not have a cross 

correlation of zero due to them being the same source passed through different filters, 

however using the same signals seemed to reflect the practical model of placing the 

antennas. In the work by Schlagenhaufer et al. [ScPeSe99] the S/N was defined as the 

sum of the S/N at each antenna. This was not used as it would have required the S/N at 

the two antennas to be changed to compare the single antenna and diversity techniques at 

the same S/N. That would have implied a different physical configuration and raised the 

question of how that would be in practice. This thesis assumed the antennas were in the 

same position and received the same signals which were unaffected by the presence of 

the other antenna. 
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2.1.2  1xEVDO information used. 

By generating specific results with some numerical simulations modelling 

elements of the commercial standard 1xEVDO, also known as High Data Rate, or IS-

856, some idea of the performance with modern applications was gathered. The 

1xEVDO standard had a pilot available in all reverse modes, the slots were synchronized 

and used a preamble in the reverse access mode; to look at the recovery from fading 

none of these was used in this thesis. The access point or base station had a pilot-aided, 

coherently demodulated reverse link, which was assumed for synchronization. 

From the 1xEVDO specifications produced by the 3GPP2 organization in 

document C.S0024 [1xEVDO] the characteristics shown in Table 2.1.2-1 were used in 

this thesis based on the reverse channel and the highest data rate. 

Characteristic Value 
Data rate  153.6 kb/s 
PN chip rate  1.2288 Mchips/s 
Modulation type BPSK 
Path delay spread   5.5 µs 
Coherence time   1 ms, (carrier 1.9 GHz, velocity 100 km/h) 
Coherence bandwidth   36 kHz 
CIR [ 1 1 0 0 0 0 0.7] 

Table 2.1.2-1 1xEVDO characteristics used in numerical simulations. 

Application of the DSA was done before de-correlation of the CDMA signal in 

this case as de-correlation using a known spreading code removed the object of the blind 

scheme, because the spreading code period was longer than the CIR. This also meant that 

multi-user CDMA environment was not possible with this algorithm as used in the 

numerical simulation, so the chips were the data symbols as the multi-user coding was 

not required. However some results on the convergence of multiple CIR estimates are in 

Appendix G.  
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Comparing the coherence bandwidth with the PN chip rate, where PN was 

pseudo noise, showed that the signal would suffer some distortion in frequency response. 

However the coherence time and PN chip period indicated that the distortion would stay 

constant for approximately 1200 chips, which should allow the estimated CIR to 

converge, and was used as the number of samples in all the trials. If fading had been 

included and it was slow it was expected that the algorithm would track the true CIR. 

2.1.3  Application of the generalized VA by Seshadri to include diversity.  

Define the state of the trellis as the data applied to the coefficients of the CIR. Q 

was defined as the number of signalling levels, Q was two for BPSK. M was defined as 

the number of trellises kept per state. N was the total length of the trellis kept. O was the 

length of the estimated CIR.  

From Seshadri’s paper [Ses94] the optimal blind sequence estimator used every 

single sequence that could be transmitted, however the error metrics used depend on the 

estimation of the CIR which are inaccurate at the beginning so ideally no trellises should 

be dropped until the correct CIR has been converged to. This is the reason why the 

number of paths leading to each state should not be left at one as in the VA, by saving as 

many paths as possible for as long as possible the probability of still having the correct 

trellis is improved even though the CIR estimates may be inaccurate at the beginning. To 

keep all the trellises until the CIR had converged would have taken approximately 10L 

samples, the trellis matrix would be 10L x Q11L , this is the classic stumbling block of 

this technique as the size increases rapidly with L. The novel part of Seshadri’s 

algorithm was that each of the states had more than one surviving trellis but less than 

Q10L; it was reduced to manageable size by RSSE techniques. As Seshadri suggested the 
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M algorithm was employed where M ≤ QL and M trellises were kept for each state, along 

with their associated error metric and path estimate. As in the normal VA the length of 

the trellis was truncated at 10L to allow data to be recovered without waiting for the 

whole message to be received. 

For each path in the trellis the algorithm estimated the next received symbol and 

generated the error metric. The metric was found by comparing the estimate to the actual 

received signal for each candidate. A metric similar to the VA was used to choose the 

surviving trellises. For the case of M = 1 the metrics J would be: 
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where Jk
n was the accumulated metric with diversity for state k and sample n, r1 was the 

signal received from antenna 1 and r2 was the signal received from the diversity antenna 

2,  was for the path to receiver 1, and  was for the path to receiver 2, k was 

the index to the state. Extending this to M > 1 was achieved by choosing to 2 from 4 or 4 

from 8 and so on. Then the M trellises with lowest Jk were chosen for each state, and the 

CIR estimate was done using the LMS algorithm as shown in Figure 2.1.3-1. Once the 

first 10O samples were received the differential data was detected by using the oldest 

two data in the trellis which had the lowest accumulated metric. Using the relatively 

slow, but robust, LMS algorithm was justified here as the channel was found to be slow 

fading compared to the high data rate. 

1R̂IC 2R̂IC
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LMS update CIR 
path 1   

Calculate error between 
received sample and all 

candidate states with 
associated CIR estimates 

 R1  
 
 

Sort best accumulated 
metrics for each state, 
and associated trellises 
and CIR estimates. Add 

next state to trellis 

  
Differential 

data out 
Calculate new 

metric  
Calculate error between 
received sample and all 

candidate states with 
associated CIR estimates 

R2  

LMS update CIR 
path 2 

 

Figure 2.1.3-1 DSA flow diagram for two antenna diversity. 

In all the simulations the input data distribution was assumed to be symmetric so 

no clue could be gained as to the sign of the transmitted sequence. Therefore there was 

ambiguity between the data sequence d with it’s CIR and the sequence -d with –CIR, so 

differential coding was used to overcome this problem. 

It was thought that a reduction in the number of trellises, and their associated 

metrics and path estimates could be done by recognizing that when a particular data 

sequence had been assigned as that leading to a state in the trellis its complement would 

automatically be assigned the complement path estimate and so the same metric, thus the 

complementary trellis, metric and path estimate would not have to be stored. However 

this was not what occurred as the algorithm ran recursively. An example using O = 3 

showed how the complementary states were generated naturally and why they needed to 

be followed individually.  
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If 3 bits per state were used the total number of states would be Q3 = 8 of which 

only Q3/2 = 4 states were non-complementary and needed to be considered, 

                   

111
111
111
111

−−+
+−+
−++
+++

,                                                                      (2.1.2.1)       

the other possible combinations are all complements of one of these rows. 

The next possible states for each of those previous states are 

111,111
111,111
111,111
111,111

111
111
111
111

−−−+−−
−+−++−
−−++−+
−+++++

⇒

−−+
+−+
−++
+++

,                                      (2.1.2.2)   each 

of the previous states had it’s corresponding path estimate and sequence of data and 

metrics leading up to it, and those should be passed along with the surviving trellises but 

looking at the lower two rows these have next states which did not form part of the set 

being used. The swapping with the complementary row would get around that but the 

path estimate and metrics were not the same or complementary as they came from 

different states. Preserving all the possible states unique or complementary with their 

metrics and path estimates was the way to ensure all trellises were considered. 

Unlike the conventional VA, here each trellis had its own CIR estimate, this 

meant the algorithm would try to match the trellis to the received sequence by finding a 

CIR that made them fit, how this happened depended on the order of the estimate as 

described in Section 3.3 and one type of match that caused errors is discussed in Section 

3.5. by considering the mis-adjustment of the CIR.  

Computational requirements were shown in Appendix D; the structure was made 

of parallel calculations of metric and CIR updating for each state, then sorting was 



 20

required. The choice of the LMS step to avoid instability was set for all the simulations 

at 0.1, and was briefly addressed in Section 3.6. 

At the very beginning of the DSA an exhaustive search was made whilst the 

trellis filled to O + log2(2M) samples long. If the CIR had been known the metrics 

should have indicated the correct trellis, since this was a blind estimation this time was 

used to start the training of the CIR. During the exhaustive search period all possible 

trellises are present, including the correct and delayed versions of it, called slipped here. 

Then trellises started to be discarded, but the correct and slipped versions were not 

compared to each other because they would be different states, unless the correct trellis 

had a sequence of O + 1 identical data. This was especially serious if the trellis with no 

slip delay was lost but two survivors are those with slip +1 and -1 sample period. With 

the CIRs chosen for simulations the coefficients lost from slip +1 and -1 contributed the 

same error to the metric. The correct trellis with no slip may be lost at the beginning of 

the algorithm because the errors from the first samples may be large while the LMS is 

learning and may be larger than those errors from another trellis. That other trellis would 

have a different estimated CIR so it would be unlikely to continue to give good 

approximations of the following received samples. 

As the DSA continued it would have been good to continue to have 2M different 

trellises compared per state however as shown in Section 3.4 this was not the case and 

the effectiveness of this algorithm against fading was questioned. 
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2.1.4 Steps in the simulation sequence 

Each simulation was made of various trials, and each trial used the same data to 

generate signals arriving at both antennas. In Table 2.1.4.1 the variables initialized for 

each simulation are shown. 

O = 5 The estimated CIR order was the same as the true 
order, for CIR1 and CIR2 of Section 3.1. 

M = 4 Reported as a good compromise between exhaustive 
search size and good performance in finding correct 
CIR reported by Seshadri [Ses94]. 

µ = 0.1 As used by Seshadri. 

N = 10 O = 50 10 times the model order is the usual upper limit for 
VA convergence. 

EXBW = 25 % A compromise between bandwidth efficiency and 
distortion introduced by the CIR. 

number of data 
samples to generate 

= 1200 + 50 + 36  

= 1286. 

1200 was the number of bits expected to be within the 
coherence time, see Section 2.1.2. 50 was the length of 
the trellis which was the delay from starting the 
algorithm to getting the first data out. 36 was a delay 
introduced to allow the transmit and receive filters to 
pass a significant portion of the signal.  

number of trials = 30 See Section 3.6 

S/N = [3, 6, 8.5, 10, 
12.5, 15, 20, 30] 

Sequence covered interesting portion of BER 
performance. 

Trellis Matrix initially all zeros of size 2M2O x N, filled with 
+1s or -1s. 

Metrics Matrix initially all zeros of size 2M2O x N, filled with 
real numbers. 

CIR estimate Matrix initially all zeros of size 2M2O x O, filled with 
complex numbers. 

Table 2.1.4.1 The values used for the experiment in Section 3.2  
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All the signals were complex, although the data only had a real part, 

corresponding to BPSK. 

 

For each trial using a particular S/N value:- 

A. Put data through complex baseband model for each CIR:- 

a. A data sequence for this trial was generated and stored for checking performance 

later. The data was generated by random selection of +1 or -1. 

b. The data sequence was up sampled by two using insertion of one zero between 

each +1 or -1.  

c. The up sampled sequence was passed through the square root cosine TX filter, 

see appendix A for this filter’s details. 

d. The filtered data sequence was then filtered by the CIR taken as a FIR filter. This 

gave the distorted signal arriving at the RX antenna, see appendix E for some eye 

diagrams.  

e. To apply the correct noise power and set the signal power as described earlier the 

distorted signal power was measured and an adjustment made by multiplying 

each sample by a correction factor. 

f. A noise sequence of length 2 x 1286 was generated using Gaussian distributed 

samples of mean zero and variance one, this sequence was filtered by the TX 

filter, the output of which was used to find the initial noise power which was 

adjusted to achieve the required S/N for this trial. 

g. Distorted data and noise were added together sample by sample to create the 

signal entering the RX. 
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h. The receiver filter was used on the signal entering. 

i. From the output of the receiver filter down sampling by a factor of two produced 

the sequence supplied to the algorithm, and it was stored for use with the DSA, so 

the DSA had the same values to work on. 

 

Each down sampled signal was used to drive the algorithm for each CIR wanted 

and the diversity combination of them:- 

 

B. Exhaustive search segment 

1. Start with sample 36, see delay comment above, the error between the received 

signal sample r and the estimated signal was found, , where i was 

the index to the row in the trellis matrix. The estimated signal 

ii rrerror ˆ−=

r̂  was found for 

each of the 2M2O trellises by using the current CIR estimated for that trellis and 

the state. r . If the DSA was being used the error from the 

signal at the other antenna was also found using the CIR estimates for that 

antenna but the same candidate sequences. 

( ) ( )jstatejCIR i

O

j
ii .ˆ

1
∑
=

=

2. In the exhaustive search segment the trellis was being filled by starting with one 

column filled by +1 in the top half and -1s in the rest. At each sample another 

column was appended, and a column of zeros removed from the other end. The 

columns appended were filled with +1s and -1s, 2M2O long, so that all possible 

combinations were finally present after O + log2(2M) samples.    

3. The metric for each 2M2O trellises was found by taking the product of the error 

and it’s complex conjugate. For the diversity combination the products of both 
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errors was added, see Section 2.2. This column of metrics was concatenated to 

the Metrics matrix, and a column of zeros removed from the other end. 

4. Using the errors each CIR estimate was updated by the LMS algorithm,               

,                                     (                                   

the CIR for each antenna in the DSA were updated with their own errors but the 

same state. 

( ) ( ) ∑
=

+=+
O

n
ininii stateerrornCIRnCIR

1
..1 µ )1.4.1.2

5. This sequence 1 to 4 was repeated for O + log2(2M) samples, while the trellis 

matrix was still filling up, then trellises had to be discarded. 

 

C. Fill trellis segment 

6. For each row in the metric matrix the sum was found, which was the accumulated 

metric as required from Section 2.2. 

7. The debugging was made easier by keeping the trellises in order, with all 2M of 

those in state 1 1 1 1 1 at the top down to the 2M trellises of state -1 -1 -1 -1 -1 at 

the bottom of the matrix. In practice it may have been more computationally 

efficient to just use pointers. Then the indices to trellises were sorted according to 

their accumulated metrics and the M indices with lower metrics identified. Those 

indices were then placed in a column matrix indicating where the state they 

represented would go in the next step of the trellis. The rows of the three 

matrices, Trellis, Metrics and CIR estimate were then swapped into position for 

the next step. To fill the trellis a column of new data for each state was appended 

and a column of zeros removed. 
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8. With the next received sample the error was found as in the exhaustive search 

segment. 

9. Metrics were calculated as in the exhaustive search segment. 

10. CIR updates were made as in the exhaustive search segment. 

11. This sequence 6 to 10 was repeated for N samples until the trellis and metrics 

matrices were full non zero values. 

 

D. Get data segment 

12. The differential data output dout was taken by looking at the two oldest values in 

the row of the Trellis matrix that had the lowest accumulated metric of all the 

rows. If the values were the same a 1 was appended to the data out matrix if not a 

zero was appended. 

13. Steps 6 to 12 were repeated until all the samples in r were used. 

 

E. Check differential data segment 

14. The data stored from step a of the complex baseband model was converted to a 

differential sequence din. 

15. By using convolution of the two differential data sequences din and dout the best 

offset between then was found, see Sections 3.5 and 3.6 for a discussion of why 

this was required. The convolution showed a peak and the difference between the 

sample number of the peak and the center of the convolution gave the offset. 

16. The number of correct data bits recovered was found by comparing bit by bit the 

two sequences using the best offset. Where an error was discovered its index in 



 26

the sequence was stored for investigation and the total number of errors for this 

trial was returned. 

 

Segments A to E were repeated for another CIR and then the same down sampled 

signals from both CIRs were used to drive the DSA with segments B to E. For that trial 

the results for the total number of errors for each CIR alone and the DSA were stored. 

This was repeated for the number of trials set for the S/N being used, then with 

the total number of errors for each of the trials an average BER was plotted for each CIR 

alone or the DSA on the Figures of BER versus S/N. 

 For the next S/N value all the above was repeated again to create the curves for 

each CIR alone and the DSA. 

 

2.2 Incorporation of diversity 

2.2.1    Derivation of metric calculation.  

By considering the probability of the transmitted candidate sequence when the 

received sequences from the antennas were those sampled, the most probable was 

selected,  

P(true transmitted sequence = candidate sequence | receive sample estimates for 

candidate CIR to antenna 1 = received samples from antenna 1 ∩ receive sample 

estimates for candidate CIR to antenna 2 = received samples from antenna 2).  

Using the Bayes’ rule ( ) ( ) ( )
( )1

1
1

|
|
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STxPSTxrrP
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where Tx was the transmitted sequence, S was the candidate sequence or trellis and r1 

was the received sequence at antenna 1. Thus the comparison could be made in terms of 

received signal sequences given transmitted sequences. There were two observations that 

simplify the comparison of the set of candidate sequences, first the probability that the 

received sequence r1 is P(r  = r1) was the same for all the candidate sequences and so 

makes no difference and could be ignored. Second the candidate sequences in the set 

were all different but the probability of transmitting any one was equal to the probability 

of transmitting any other by definition so for the purposes of comparison P(Tx=S) could 

also be ignored. These observations left P(r=r1|Tx=S) to be compared for all candidate 

sequences, and in this case there were two antennas so the comparison was for 

P(r=r1∩r2|Tx=S). 

Since the receiver had no memory the probabilities for each sample in the 

sequences could be separated, 

P(r = r 1∩ r 2| Tx =S) = P(r = r 11∩ r 21| Tx =S1) P(r = r 12∩ r 22| Tx =S2) 

 …P(r = r 1N∩ r 2N| Tx =SN),                         ( )2.1.2.2

where N was the number of samples in the truncated sequence. Then assuming the 

antennas were arranged to give uncorrelated samples the probability can be split into:- 

P(r = r 1∩ r 2| Tx =S) = P(r = r 11 | Tx =S1) P(r = r 21 | Tx =S1)  

P(r = r 12 | Tx =S2) P(r = r 22 | Tx =S2) 

   … P(r = r 1n | Tx =Sn) P(r = r 2n | Tx =Sn).     ( )3.1.2.2

Assuming that the effect of all the corruption on the wanted signal was Gaussian 

noise the terms could be expanded in the form:- 



 28

( ) ( )









 −−
=== 2

2
11

111 .2
exp

..2
1|

n

ii

n
iii

Sr
STxrrP

σσπ
,                        ( )4.1.2.2

here S1i was the mean or noise-less sample at time i from passing that transmitted 

sequence through the CIR. This value was found by applying the candidate sequence to 

the estimated CIR for that candidate. Since all the terms had the  
nσπ ..2

1  factor it did 

not need to be considered in the comparison. Now the probability contained a product of 

exponentials, taking natural logs of both sides of the comparison allows it to be written 

as the sum of the terms:- 
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By definition a probability was less than or equal to one so the natural logarithm 

was zero or a negative number, as indicated by the negative signs in –( r 11-S1)2, to get 

the best possible probability the sum should be nearest zero which meant that the choice 

would be for the candidate sequence with the maximum total sum of –( r 11-S1)2 terms. 

Since all the terms have the minus sign this could be ignored in the comparison 

and the minimum total sum used. The result could conveniently be used in a recursive 

routine by adding together the squared errors of each sample at both antennas. This could 

be extended to multiple antennas by simply adding all the errors squared to get the 

overall metric at every sample. 
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2.2.2 Different orders for each path 

The estimated CIR order did not have to be same for both antennas, because the 

number of trellises, which were candidate transmitted sequences, depended on the order 

of the CIR the larger order would set the size of the matrices to be handled. However the 

metric combined both of the antenna metrics by adding the errors as shown above but 

there would not have been the same number of metrics to sum. This could have been 

overcome in two ways, illustrated in Figure 2.2.2-1, firstly keeping extra trellises per 

state to make up the difference in the smaller order calculation and using the metrics and 

estimated CIR from the extra trellises to improve the metrics by not discarding the 

information. Or secondly repeating those trellises, metrics and estimated CIRs selected 

to survive twice or more, matching the lower order candidate sequences to the last 

samples in the candidate sequences of the higher order trellis. 

 

Extra Trellis per State 
Lower Order CIR

Repeated Lower 
Order CIRHigher Order CIR 

Estimated CIR Estimated CIR Estimated CIR
Metrics Metrics Metrics 

Trellises Trellises Trellises 
xxxx1 1 1 1 1 1   1 1 
xxxx0 1 1 0 1 0   1 0 
xxxx1 1 0 1 0 1   0 1 
xxxx0 1 0 0  0 0 0 0  
xxxx1 0 1 1  1 1 
xxxx0 0 1 0  1 0 
xxxx1 0 0 1  0 1 
xxxx0 0 0 0  0 0 

Figure 2.2.2-1 Illustration of how to deal with CIRs of different orders. 
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It would have been expected that the shorter CIR to converge faster than the 

longer one, if they had the same S/N ratio, so the most errors would have been caused 

from the longer CIR. This would have involved a more complicated simulation which 

may be required for further work in controlling the order of the CIR estimation. In 

Section 3.3 it was shown that as long as the estimated order was equal to that for either 

CIR good results could be achieved.   
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Chapter 3 Results of Computer Simulation of Single User 

Scheme. 

3.1   Selection of channel impulse responses used for simulation. 

The numerical simulation needed some CIRs to work with and four were chosen, 

shown in Figure 3.1-1, and tabulated in Table 3.1-1  

CIR1 0.227 0.466 0.688 0.466 0.227 
CIR2 -0.2 -0.5 0.7 0.36 0.2 
CIR3 1.56+0.11i, -0.40-0.34i,  -0.04-0.22i, 0+0.16i, -0.06-0.15i 
CIR4 1 1 0 0 0 0 0.7 

 

Table 3.1-1 Coefficients of the CIRs used for performance simulations. 

The first two were used by Seshadri [Ses94] and Proakis [Pro83], the third was a 

randomly generated CIR with exponential roll off, the fourth was that recommended in 

the test specification [HRPD0032] for 1xEVDO for channel simulator configuration 4 in 

Table 11.4.1-1.  

The third CIR was used to compare higher-order estimated CIR and the fourth 

one for comparing lower-order estimated CIR. Difficulty of CIR may be reflected by the 

presence of nulls in the frequency response, the spread of eigenvalues of the auto-

correlation matrix, and inter-symbol interference shown by the impulse response.  

 



 32

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

Magnitude of CIRs

Symbol time

M
ag

ni
tu

de

CIR1
CIR2
CIR3
CIR4

0 1 2 3 4 5 6 7 8
−4

−3

−2

−1

0

1

2

3
Phase of CIRs

Symbol time

R
ad

ia
ns

CIR1
CIR2
CIR3
CIR4

 

Figure 3.1-1 Channel impulse responses used for computer simulation. 
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 Figure 3.1-2 Frequency responses of CIRs used. 



 33

The frequency responses showed the presence of nulls and non-linear phase 

distortion of the CIRs. Figure 3.1-2 shows that CIR1 has a serious null, and CIRs 1 2 and 

4 have phase distortion.  

It appeared that noise was useful in reducing the eigenvalue spread, this was 

relevant to the time constant for convergence of the LMS algorithm that was used in the 

discussion of the convergence of all M trellises in Section 3.4. 
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Figure 3.1-3 Eigenvalue spread of the CIRs used in the simulations. 

As Haykin [Hay96] suggested a large eigenvalue spread of the correlation matrix 

R led to a directional convergence of the LMS algorithm, so in some trials it could be 

faster than other trials, this affected the performance, as shown in later sections. The 

CIRs chosen covered a range from reference CIR = 1 with spread of 1 to a spread of over 

100.  
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Using pairs of CIRs for two diversity channels the correlation should be low 

according to the assumption in the definition of signal to noise ratio of Section 2.1.1, 

cross correlation coefficient ρc is given by, 
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rrE
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where r1 and r2 the received signals. For CIR1 and CIR2 ρc was 0.42 and for CIR3 and 

CIR4 ρc was 0.40. 

In the Appendices there were some more details of the CIRs; appendix E for eye 

diagrams of CIR2 and Appendix F for the zeros of the CIRs. 

3.2 Consequences of the optimal combining of a second antenna. 

Incorporating the combination of two path diversity as shown in Section 2.2.1 

with the simulation as described in the steps of Section 2.1.4. The 1 antenna CIR2 trace 

in Figure 3.2-1 showed a peak at an S/N of 30 dB; this was the effect of two of the thirty 

trials having 122 and 194 errors which was significantly greater than the other trials by 

two orders of magnitude; these are due to slippage as described in Section 3.5. Similarly 

the two antenna CIR1 and CIR2 trace shows a peak at S/N equals 15 dB due to one trial 

with 58 errors. For a BER of 5 x 10-3 a 4 dB improvement over the better channel was 

achieved. Conventionally the overall gain due to diversity was the sum of two 

components, the combining gain due to two signals giving a 3 dB gain and the diversity 

gain. For these simulations diversity gain due to fading was not applicable. However, 

some improvement above 3 dB combining gain could be seen before the start-up and slip 

errors dominated creating a BER floor at higher S/N. 
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Figure 3.2-1 Improvement of BER performance by optimal diversity combining. 

The most important characteristic of DSA should be its speed; this can be seen in 

Figure 3.2-2 by considering the first 100 data samples where the two antenna diversity 

produced better performance than either of the single channels alone. This plot was 

generated with the same data as Figure 3.2-1 the number of errors with indices less than 

101 were also returned along with the total number of errors as described in Section 

2.1.4. 

To ensure the effect of the M trellises kept per state is included the start up was 

defined as the first 100 detected data, see Section 3.4, as a compromise between having 

the correct CIR learnt and not loosing the effect of M trellises per state as well as having 
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a fixed size to do the comparison with. The use of diversity appeared to allow the 

detector to pick the correct trellis more quickly because it produced lower errors after 

learning for the same time. This was due to the way the metrics, made of the squared 

errors, are combined from both antennas, because the noise at each antenna is assumed to 

be independent the chances of both channels being corrupted at the same time is reduced. 
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Figure 3.2-2 Start up performance with diversity. 

The floor to the BER at higher S/N ratios may have been due to the slippage as 

described in Section 3.5 or if slippage was not the cause as there were only 100 samples 

per trial a few errors in each trial would suffice. For CIR1 the BER floor seemed to be 

about 0.2, for CIR2 the floor seemed to be 0.02 and for the diversity combination the 
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floor seemed to be 0.004. Those would correspond to CIR1 having 20 errors per trial, 

CIR2 having two errors per trial and the diversity combination four errors in every ten 

trials. The data detector considered the oldest sample in the trellis and even after ten 

times the CIR order, 50 samples, the data in all the trellises had not converged to be the 

same, as would be expected using the VA with a known CIR.  This was because the 

selection of which trellis to keep is started when the number of samples collected is only 

O + log2(2M). This was limited by the typical problem with this type of algorithm that 

was the number of computations needed as pointed out in Section 1.3. Therefore in the 

example plotted the first trellises were discarded after 5 + 3 = 8 samples are received. To 

survive after these eight samples the correct trellis should have had a lower accumulated 

metric than four out of the eight trellises that are compared at the state. So the correct 

trellis made a better estimate of the CIR than four of the eight to get a lower error for the 

estimated received signal. Thus the noise did not distort the received signal too much to 

drive the error higher at the eighth sample or the noise did not drive the estimated CIR 

away from the true one during the previous seven samples. Using the LMS algorithm to 

find the CIR only seven samples would not have been expected to be sufficient to get a 

good estimate of the true CIR however this was not what was used, rather the 

accumulated metric only has to be lower than most of the other trellises leading to state. 

This would be expected to be true since using the wrong training sequence for the LMS 

algorithm should produce the wrong CIR which in turn produced the wrong estimate of 

the received sample in turn leading to larger error and larger accumulated metric.  

When the first samples were received and the LMS algorithm started to learn the 

CIR the initial coefficients are all zeros and noise on the first samples pushed the 
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estimate of the CIR for the correct trellis away from the true CIR leaving another trellis 

with a lower accumulated metric, by definition any other trellis had at least one error. In 

Figure 3.2-3 the distribution of errors over the sample number was shown and there were 

indeed significantly more errors at the beginning of the trials. The simulation as 

described in Section 2.1.4 was changed to fix the S/N as 15 dB using only CIR2 and 

returning the index of the errors for 100 trials. The error indices were then grouped into 

bands of 20 wide to plot on the histogram. 
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3.3   Effect of model order mismatch, between the true and estimated 

model. 

Since the receiver was unlikely to know the correct CIR the effect of the 

mismatch between the true and estimated CIR order was investigated and found to be 

significant. The simulation as described in Section 2.1.4 was changed slightly to fix the 

S/N at 15 dB for all trials but vary the O parameter, the results were stored and averaged 

to give the following Figures in the same way as when the variable was S/N. 

 
1 2 3 4 5 6 7 8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Estimated CIR order mismatch
CIR1 0.227, 0.466, 0.688, 0.466, 0.227

and CIR2 −0.2, −0.5, 0.7, 0.36, 0.2

Order of CIR estimate

B
E

R

S/N 15 dB

1 antenna CIR1
1 antenna CIR2
2 antenna CIR1 and CIR2
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When the true orders of the CIRs were equal the addition of the second antenna 

improved the performance to be better than either of the two antennas taken alone, as 

seen in the previous section. If the order of the estimated CIR was higher than the true 

order the performance was drastically reduced, this was due to slippage as described in 

Section 3.5. The improvement in diversity performance with a third-order estimate was 

due to the relation between the true fifth-order response of CIR2 and the close 

approximation to it by a third-order estimation, which happened to be [-0.5 0.7 0.36] the 

middle three coefficients .  

The third order estimation of CIR2 seemed to give a sufficiently good guide to 

push the estimation of CIR1 to a better estimation than it could find alone because the 

same trellis was used for each path with this diversity combining technique. I think it 

was chance that turned up this result and the probability of having a CIR that could be 

well modelled by a lower order may not be high, also the problem remained to find the 

correct lower order, this was suggested as further work in Section 4.2. However it would 

have been an advantage for the diversity technique. 

Another example of finding the right lower order model was illustrated by the 

randomly generated CIR in Figure 3.3-2. Here a first or second order CIR estimate was 

sufficient and in fact using the true order with S/N of 15 dB produced more errors. Since 

the DSA chose the lowest accumulated metric from all the possible states it was 

sufficient for the lower order CIR estimation with the correct trellis to give better 

estimates of the received signal than the incorrect trellises because the incorrect trellises 

have driven their CIR estimates away from the optimum and so their estimates of the 

received signal to worse values. 
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Figure 3.3-2 Performance with different true CIR orders. 

The most significant other trellis was the correct one but slipped one sample 

period as described in Section 3.5. Therefore the slipped CIR would have lost 

coefficients that had larger magnitudes which led to larger errors in estimates of received 

sample. The expected error after learning the CIR as in Section 3.5 was, 

, to which was added the error from the omitted CIR coefficients which 

make up the error in the estimation, and the received noise variance was added to find 

the total mean square error,  

(∞+= exJJJ min )
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where MSE was the mean squared error, and σ2 was the noise variance. Assuming the 

best possible CIR was the one with the largest CIR coefficients in it, and the second best 

was the slipped version. By comparing the errors from the best possible CIR and the 

second best some indication of the chances for making an error could be gained.  

S/N 
15 dB 

CIR2 
-0.2 -0.5 0.7 0.36 0.2  

Order 
2

1

* σ++= ∑
+=

L

Oi
iiCIRCIRJMSE

best possible CIR 

2

1

* σ++= ∑
+=

L

Oi
iiCIRCIRJMSE  

second best CIR 
5 0.047 0.087 
4 0.087 0.087 
3 0.127 0.217 
2 0.257 0.377 
1 0.507 0.747 

Table 3.3-1 Mean errors for various estimated CIR orders using CIR2. 

In Table 3.3-1 the orders with best possible CIR error about half the second best 

CIR error had much better BER performance than the others which had the second best 

CIR error closer to the best one. The fourth order case had the same errors, one CIR was 

[-0.2 -0.5 0.7 0.36] and the other [-0.5 0.7 0.36 0.2]. Because the coefficients were the 

same at the beginning and the end, the errors from omitting one or the other are the same 

and performance is limited by slip errors. 

For CIR1 in the order 3 line of Table 3.3-2 the assumption that the best CIR was 

the largest was not true, it could converge to something like [0.6 0.6 0.45] which had a 

similar frequency response and would switch between this and [0.49 0.68 0.46]. 
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S/N 
15 dB 

CIR1 
0.227 0.466 0.688 0.466 0.227  

Order 
2

1

* σ++= ∑
+=

L
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iiCIRCIRJMSE  

best possible CIR 

2

1

* σ++= ∑
+=

L

Oi
iiCIRCIRJMSE  

second best CIR 
5 0.043 0.095 
4 0.095 0.095 
3 0.146 0.311 2 cases 
2 0.363 0.363 
1 0.580 0.837 

Table 3.3-2 Mean errors for various estimated CIR orders using CIR1. 

In the case of CIR3 where the best possible CIR error was half or less than the 

second best good performance was found in the BER plot of Figure 3.3-2 

S/N 
15 dB 

CIR3 
1.56+0.11i, -0.40-0.34i, 

 -0.04-0.22i, 0+0.16i, -0.06-0.15i
 

Order 
2
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* σ++= ∑
+=

L

Oi
iiCIRCIRJMSE  

best possible CIR 

2

1

* σ++= ∑
+=

L

Oi
iiCIRCIRJMSE  

second best CIR 
5 0.143 0.169 
4 0.169 0.194 
3 0.194 0.243 
2 0.243 0.521 
1 0.521 2.703 

Table 3.3-3 Mean errors for various estimated CIR orders using CIR3. 

S/N 
15 dB 

CIR4 
1 1 0 0 0 0 0.7  

Order 
2

1

* σ++= ∑
+=

L

Oi
iiCIRCIRJMSE  

best possible CIR 

2

1

* σ++= ∑
+=

L

Oi
iiCIRCIRJMSE  

second best CIR 
7 0.119 0.609 
6 0.609 0.609 
5 0.609 0.609 
4 0.609 0.609 
3 0.609 0.609 
2 0.609 1.609 
1 1.609 2.609 

Table 3.3-4 Mean errors for various estimated CIR orders using CIR4. 
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This possibility of lower order modelling should be tempered by the final CIR, 

the mean errors in Table 3.3-4 for CIR4 showed that the true CIR order was required; 

this seemed to be because of the significant coefficients at the beginning and end of the 

CIR. In the case of order 2 I think the size of the error itself for the best CIR was the 

cause of the bad performance, rather than the relation to the second best CIR. However 

these four CIRs were only a selection from the whole range of possibilities and further 

work would be required to draw general conclusions. 

Summarizing; use of the diversity combining technique could improve BER 

performance when the correct CIR was used, otherwise the performance may even be 

slightly worse than the single antenna techniques, and that performance was about 2 

orders of magnitude worse than using the true CIR order.  

3.4 Convergence of M trellises per state. 

To avoid loosing the correct data in the form of the correct trellis, only the M best 

trellises were saved for every state rather than an exhaustive search. Definition of 

convergence: when the M trellises of the state with the minimum accumulated metric 

were the same. Consequences of this may be the loss of correct trellis and so the 

performance would be lowered when fading occurred. Convergence happened in this 

manner, assuming M = 4 was chosen and L = O = 3,  and letting 1 be the correct data and 

0 be the wrong data, then considering only the state that had the correct data four trellises 

were chosen from the eight calculated. Assuming that the best metric would be from the 

correct trellis, and the second best metric from the trellis with the oldest incorrect data. 

The oldest incorrect data would have led to a lower accumulated metric than newer 

incorrect data in two cases, first where the CIR was being learnt the newer error could 
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have a larger error compared to an older estimate made with an inaccurate CIR, or 

second noise and the mis-adjustment of the CIR estimate in the newer error metric could 

have outweighed the older string of error metrics. The data in the last positions of the 

eight trellises would be, 

111000
111100
111010
111110
111001
111101
111011
111111

,                                                                               (3.4.1)       

all the last three columns are ones as this was the same state which was the correct data. 

The lowest metrics for trellises should correspond to these trellises which were chosen to 

survive, because they have only one error which could have driven the CIR estimates off 

target to increase the error in the next estimated sample, 

111011
111101
111110
111111

.                                                                               (3.4.2)        

At the next sample these were joined in the correct state by some trellises from a state 

that had at least one error previously, 

111011
111101
111110
111111

,                                                                                (3.4.3)       

from the correct state last sample. Joined with, 
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110011
110101
110110
110111

,                                                                                (3.4.4)       

where 0 1 1 was the state that must be the other previous state leading to the next state 1 

1 1, at the next sample the correct state would therefore have trellises 

1110011
1110101
1110110
1110111
1111011
1111101
1111110
1111111

,                                                                            (3.4.5)       

here the trellises with the minimum and oldest errors were chosen to survive again. 

These are the trellises which survived from the previous sample, but the position of the 

error has effectively moved back one place. If this were repeated 50 times the errors 

would have got to the end of the trellis that is stored and would then be lost, leaving the 

four trellises the same. 

This did not happen so cleanly in practice as shown in Figure 3.4-1. The relation 

between S/N and convergence for a 5th order CIR with 5th order estimate is shown for 

CIR1 and CIR2 and compared to the DSA. The simulation as described in Section 2.1.4 

was changed slightly return the sample number when all M trellises with the lowest 

accumulated metric were the same instead of the number of errors. This sample number 

was averaged and plotted for each CIR and the DSA. The two antenna case converges at 

lower S/N ratios but not any faster than the one antenna. Convergence happened in the 

shortest time around 10 dB S/N ratio which was reflected in the BER performance by the 
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S/N ratio where the BER stopped reducing and flattened off as S/N ratio increased. It 

would have been expected that the DSA would converge more rapidly as S/N increased 

which would have resulted in less noisy received samples and lower errors for the correct 

trellis following the average time constant for the LMS algorithm [Hay96] 

( )
av

avmse µλ
τ

2
1

, ≈ , where µ was the LMS step size set to 0.1 for all the simulations and λav 

was the average eigenvalue of the received correlation matrix.  
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Figure 3.4-1 Convergence of all M trellises kept per state to the same trellis. 

However there seemed to be another effect coming into play to increase the 

convergence time for the M trellises and that was trellises from the 0 1 1 state, if one of 
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these was surviving that would be sufficient for the M trellises not to converge. Before 

convergence at least one of the M trellises that came from the correct state had at least 

one error by definition. One error in the trellis would provoke a chain of larger errors in 

the estimation of the next sample as the error in the trellis worked its way through the 

CIR and the LMS tried to correct for it and then readjust as the correct trellis followed. 

So one of the M trellises had a string of larger metrics, which may have been placed 

much further away in the trellis.  

The trellises from the 0 1 1 state also had a string of larger metrics but if it had 

the correct trellis leading up to that state the comparison is just about the difference in 

the two larger metric strings, and the newer error from the 0 1 1 state has only three (the 

length of the CIR) larger metrics compared to those during the correction of the CIR by 

the LMS algorithm in the correct trellis, so it would have been more likely to change to a 

trellis with a newer error, thus preserving a different trellis. For this to be true the metrics 

from the error in the trellis should dominate those when the correct trellis is used, this 

would have been the case when the estimated CIR was very close to the true one as 

expected at higher S/N ratios. 

For the diversity case the easier to learn CIR seemed to be able to help the more 

difficult CIR learn by keeping the correct trellis as in the mismatched order Section 3.3. 

Although the trellises were the same the metrics and path estimates were not the 

same but took some more time to equalize.  

To compare the effect of using diversity to increasing the value of M Figure 3.4-2 

showed how diversity improves performance at lower S/N and M can reduce the BER 

floor. The simulation as described in Section 2.1.4 was changed to add two extra sets of 
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results both with CIR2, one was with M = 1 and the other with M = 16. New data was 

generated for all five curves so they did not show the same slip errors as Figure 3.2-1. A 

trade off between computing M extra trellises and adding an extra diversity receiver 

could be made in this manner. The first 100 samples were used to avoid loosing the M 

different trellises.  
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Figure 3.4-2 Comparing diversity to computing M trellises.  

If the easier CIR was used with one antenna increasing M to 16 would achieve 

similar performance to a two antenna diversity with M = 4, one antenna would have 

required double the processing compared to two antennas which have double the 

hardware, but the diversity system still has better performance at low S/N ratios due to 
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the increased signal received. As M was doubled the exhaustive search increased by one 

sample allowing the CIR estimate of the correct trellis to converge, while the CIR 

estimates from the incorrect trellises stayed noisy, except for those slipped trellises 

described in Section 3.5. 

3.5   Consideration of “slippage”. 

Slippages were defined as the change in selection between two versions of the 

correct trellis, where the only difference in the versions was the delay by one sample 

period of one trellis compared to the other. The corresponding CIR estimates were also 

offset by one sample period. To illustrate this Figure 3.5-1 was from one trial showing 

the CIR which had the minimum accumulated metric at each sample time.  

The trial was set up as in Section 2.1.4 using only one antenna, the true CIR was 

fifth order with coefficients [-0.2, -0.5, 0.7, 0.36, 0.2], the S/N was 10 dB. The CIR 

corresponding to the trellis with the lowest accumulated metric was stored at each 

sample, a portion was displayed in the Figure with the corresponding data and the error. 

The horizontal axis was the sample index indicating time from left to right. The top row 

was the true transmitted data sequence. Row 2 was a sequence to indicate errors by 0 for 

good and 1 for bad. Row 3 was all zeros to separate the errors from the CIR coefficients. 

The estimated seventh order CIR was on rows 4 to 10, the magnitude only was displayed 

to avoid the confusion with the complements which were allowed, see Section 2.1.3. 

Following the colour change in the rows 4 to 10 to see when slippage occurred, from the 

left hand side the LMS algorithm was at the end of learning the CIR. The correct CIR 

had a peak indicated by orange colour for 0.7 in row 6, when the orange colour moved to 

row 7 a slip had occurred. It appeared that there was always a slip when there was an 
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error but not always an error when there was a slip. This was due to the data being 

compared actually being the same from a string of either +1s or -1s. 
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Figure 3.5-1 Illustration showing slippage in the CIR estimate.  

It was easy to understand the way that the LMS algorithm could converge to both 

a slipped and non-slipped CIR when the estimated CIR order was greater than the true 

order, but the results from the BER simulations using the correct CIR order also showed 

this slip effect.  



 52

To illustrate the effect of slippage on the BER performance the number of errors 

per trial was examined. This would be expected to have the characteristic of an 

exponential reduction in number of errors, which were most trials with a low number of 

errors, fewer with medium number of errors and the least trials with high errors.  
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Figure 3.5-2 Example of the distribution of number of errors in 20 trials. 

The simulation was set up as in Section 2.1.4 but S/N was fixed at 15 dB, only 

one CIR was used and 20 trials were done. A histogram was plotted with the number of 

errors returned that were divided into bands of 20 errors wide. Figure 3.5-2 showed the 

results that there were indeed most trials with low errors between zero and 20, three trials 

with between 40 and 60 errors, and one trial with between 100 and 120 errors, these 



 53

would have fitted the exponential characteristic but there were also two wild results with 

much bigger errors. These results could be explained by the slippage effect at work. 

Since it was actually the correct trellis used it may have taken a lot of samples for the un-

delayed trellis and CIR to get a better accumulated metric again. 

The MLSE algorithm should have converged after 5 to 10 times the order of the 

CIR this should track one CIR not both to avoid this slippage. However, unlike the 

conventional VA, every trellis stored had its own CIR estimate; those trellises which 

were slipped, had CIR estimates which were offset in time as shown in Figure 3.5-1. The 

decision to keep a trellis was taken state by state, depending on the accumulated metric 

and this metric depended on the error between the received sample and the expected 

signal estimated from the CIR for that state. The slipped and non-slipped trellises would 

be in different states. So they would not be directly compared until the states were the 

same which occurred when the data sequence had a string of ones or minus ones. It 

appeared that it was possible for the combination of noise on the received sample and 

mis-adjustment of the CIR estimate from the LMS algorithm on the expected signal to 

allow the slipped trellises to survive. In general it was not possible to say if a trellis with 

delay δ samples was correct and that trellis with delay δ +1 was wrong. Error detection 

in the simulation took the data output sequence and found the delay which matched most 

closely the input data sequence as described in Section 2.1.4, so it did not matter if the 

data sequence was delayed by δ or δ +1. The problem was that the detection of data was 

done by using the trellis with the minimum accumulated metric, presumably the one with 

the best match to the best CIR estimate, but when two trellises had survived the data may 

be taken from either as they must have been giving about the same accumulated metric 
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for them both to survive. This switching from slipped to non-slipped was what causes the 

errors at the detector output.  

The metrics that were accumulated were the squared errors between the received 

signal and the estimation of the next sample. When the estimated CIR order was the 

same as the true CIR order, , where ri was the received sample, 

 was the estimated CIR, (statei) was the convolution operation and i was the 

sample index. For the correct data sequence statei = dataIni the error could be expressed 

as, 

( iii stateCIRrerror
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where dataIn was the transmitted sequence, CIR was the true CIR, MCIR was the mis-

adjustment of the CIR estimate and noisei was the sample of the noise. For the case of a 

slipped sequence the received sample was the same but the dataIn and it’s estimated CIR 

coefficients were offset in time, 
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where δ was the offset in time that was a positive or negative integer, CIRslip was the 

estimated CIR corresponding to the offset data sequence, and it’s corresponding mis-

adjustment was MCIRslip. If these errors were the same some insight can be gained, 

since the true CIR and data was used for errori the errors are the best that could be 

expected; 
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This meant that when the estimate from the ‘correct data’ trellis equalled the 

estimate from the slipped data trellis the errors will be the same, which was to be 

expected. However it did not specify that the estimates CIR  and CIRslip alone gave the 

equality but the mis-adjustment of both must be taken into account.  

∧

From the theory of the LMS algorithm the mean squared error at any sample n 

was J(n) = trace(RK(i)) + Jmin, made of a transient part trace(RK(i)) from the LMS 

implementation plus constant Jmin the minimum mean squared error from the Weiner 

solution, [Hay96].  

The part from the LMS implementation trace(RK(i)), where R  was the 

correlation matrix of the received signal and K(i) was the weight-error correlation matrix 

which could be found using some numerical trials. K(i) was found from   

( ) ( ) ( )( ) RJRIiKRIiK min
21 µµµ +−−=+ .                                ( )4.5.3
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0min neEJ = ,                                                                       and  ( 5.5.3 )
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the excess mean square error was the final value of the trace(RK(i)) term where i = ∞. 

( 6.5.3 )

The minimum mean squared error could be written as, 

pRpJ H
d
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−−=σ ,                                                                   ( )7.5.3
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where σd
2 was the variance of the desired signal, p was the cross-correlation between the 

input to the estimated CIR and the desired signal, and R was the correlation matrix of the 

input to the estimated CIR. Considering an example of the case with no delay then with 

the true CIR = [-0.2 -0.5 0.7 0.36 0.2], S/N of 10 dB and including the transmit and 

receive filters the σd
2 was 0.29. The results were shown in Figure 3.5-3 along with the 

case with a delay of 1. From the complex baseband segment of the simulation in Section 

2.1.4 the received signal was taken and R found from the inverse Fourier transform of 

the power spectral density of the received signal.  

( )( ) ( )( )( )( )( )*//1 NrFNrFFNToeplitzR −ℜ= ,                                       ( )8.5.3

where Toeplitz(.) meant the operation of generating a Toeplitz matrix from a vector (.), 

(.) was the operation of finding the real part and F(.) the discrete Fourier transform 

implemented by the fast Fourier transform method with F-1(.) being it’s inverse. To find 

the results for the slipped case the desired signal variance was the same and R the 

correlation matrix of the input to the estimated CIR was the same as well but the data 

used to generate the p matrix was shifted by one. 

ℜ

 The first CIR had a slipped error that comes much closer to the no slip error 

indicating that it would be easier to mistake the slipped data sequence when working 

with the first CIR, which was illustrated by the worse BER performance in Figure 3.2-1. 

From the histogram in Figure 3.5-2 the number of errors was found to extend up to about 

675 errors this would be past the transient in the LMS learning process and the 

possibility of slippage would depend on the final values of the mean squared error.  
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Figure 3.5-3 Evolution of expected value of error for two CIRs showing  

difference between no slip and slip of one sample delay.  

Figure 3.5-4 showed how these vary with S/N ratio, again the difference in error 

for the first CIR was much less indicating it was much more likely to suffer slippage 

over all S/N ratios. This was generated by solving for Jmin and Jex(∞) over the usual range 

of S/N values using the complex baseband model of the simulation described in Section 

2.1.4. 
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Figure 3.5-4 Final mean squared error from LMS algorithm with two CIRs using 

 data with no slip and slip of one sample delay. 

To demonstrate this occurred in the simulation two trellises were used to generate 

Figure 3.5-5, the first trellis was the non-slip version of the transmitted data and the 

second the trellis with one sample delay. The simulation allowed the LMS algorithm to 

learn each CIR and the centre and right hand plots showed where the accumulated metric 

was less for the slipped trellis compared to the non-slipped one. As described earlier in 

this section not all trials had slip errors, the simulation was run until this result was 

found. 
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Figure 3.5-5 Accumulated metric from one trial showing two slippages at the  

start up and later in the trial. 

Another way of looking at this was to compare the operation of estimating the 

next sample. In the case of the sequence with no delay the data and CIR were lined up 

as:- 









54321
54321

CIRCIRCIRCIRCIR
datadatadatadatadata

,  

While the delayed data case had led the LMS algorithm to generate the same 

coefficients corresponding to the four data from the un-delayed case but the CIR0 

coefficient corresponding to the older data tended to zero to reduce the error. 
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
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


43210
43210

CIRCIRCIRCIRCIR
datadatadatadatadata

 

The difference between the estimates of the next sample was in the difference 

between the estimate CIR0 and CIR5. During start up when the CIR was being learnt the 

both CIR0 and CIR5 may have been equal.  

If the S/N ratio was such that the noise was larger than the effect of CIR0 and 

CIR5 their values did not influence the error between the next sample estimates. 

Serious errors per trial occurred when the DSA could choose between two or 

more trellises; the worst case was when the two trellises were those with slip delay +1 

and -1 sample periods. It was so bad because CIR1 and CIR2 both had the first and last 

coefficients the same magnitude, which means the metrics from slip delay +1 and -1 

would be almost equal. This was illustrated by changing the last coefficients of CIR1 and 

CIR2 as shown in Figure 3.5-6, other wise the simulation was set up as in Section 2.1.4 

and the results from Figure 3.2-1 put in for comparison. 

For the equal first and last coefficients, as the S/N ratio was increased this did not 

improve the BER as the accuracy of the slipped CIR estimates improved keeping the two 

accumulated metrics almost the same. This came from the loss of the trellis with zero 

delay, which may have occurred during start up as the first decision to discard trellises 

was taken after only O + log2(2M) samples as described in Section 3.2. The correct CIR 

was not regenerated because those trellises with slip delay have propagated to occupy all 

the stored trellises, CIR estimates and metrics. 
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Figure 3.5-6 CIRs without first and last coefficients equal. 

It was observed to be particularly often the cause of errors using the two antenna 

diversity. By using two antenna diversity it appeared that both slipped versions were 

more likely to survive than using only one antenna, this was attributed to the link 

between the antennas being the metric used to choose the survivors. When linked 

together the CIR that had lower error at the beginning, whether the true or slipped one, 

made the metric lower for that trellis and so more likely to survive. This in turn ensured 

the other CIR estimate works on the correct or slipped trellis. 

There appear to have been two conflicting requirements, first data rich enough to 

teach the LMS algorithm the CIR quickly and second strings of ones or minus ones to 
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get the selection algorithm to select either the correct or slipped trellis allowing only one 

to propagate. The length of the strings needed to be O + 1. As the estimated order was 

made higher this would have been more unlikely to occur during the LMS learning 

period. 

This explained the bursts of errors when the correct order of CIR had been 

chosen and when the estimated order was greater than the true order. The other major 

source of errors was from the start up or learning stage, which would have been expected 

to have formed the ‘floor’ to the BER versus S/N plots.  

With the application of diversity in Section 3.2 the BER performance was 

significantly better as seen by the lower floor of the BER, the possibility of slippage was 

reduced with diversity because the second signal path had to have a slippage at the same 

time as the first, since this was not the case it achieved a lower accumulated metric from 

both paths. 

3.6 Comments on assumptions and sources of error  

Both the simulations and derivation of the optimal combining of diversity 

antennas assumed the noise was uncorrelated. This would be true in practice in a number 

of scenarios. If the noise contribution from the receiver electronics before the sampler 

dominated the noise and interference. If the interference was dominant over the receiver 

generated noise and the interference was uncorrelated at each antenna, since the desired 

signal is assumed uncorrelated and there would be a number of interferers. Finally if the 

sample times were different at each antenna due to the operation of the symbol timing 

recovery, the noise samples would be uncorrelated. It therefore seemed a reasonable 

assumption to use. 
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One CIR could have been delayed more than the other, if delay was more than O 

sample periods the CIR for one channel would always produce major errors, however 

assuming coincidence of CIRs seems a realistic reflection of the practical positioning of 

antennas.  

Using the trellis with the lowest accumulated metric as the data detector 

attempted to avoid the issue of confusing two or more surviving sequences from slipped 

versions of the trellis, by assuming the trellis with no slip was present and would have 

the lowest metric. Another way which was found more prone to errors was taking a 

majority decision from all the trellises.  

The error detector found the offset which best matches the transmitted data over 

the whole trial, this masked the effect of slippage where no change in the delay took 

place; if the same trellis with slip was used for the whole trial zero errors could be 

produced.  

The number of trials was to be controlled by a number of errors target of 100, but 

any slippage introduced a burst of the order of 100 and so would stop the simulation, 

therefore a fixed number of trials was used to give a fair chance at each S/N point. 

In the simulations the DSA started when the signal had been present for 36 

samples, in practice the receiver would need time to perform carrier synchronization etc 

see Section 2.1. There would also be some framing somewhere in the communication 

system so the first samples to be received after recovering from a deep fade or starting 

the receiver would probably not be the first symbols of a frame, and these would be 

discarded during later processing. The error detector worked with the all the data 

received to show the fast operation, which was a desirable feature, that was possible to 
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achieve with this DSA. So at start up the CIR estimates and metrics were set to be zero, 

however if the DSA was started before a signal was present the CIR estimates were 

small random values as were the metrics this would have increased the possibility of 

loosing the correct trellis, because the random CIR for the correct trellis may produce 

worse estimates of the received signal than another trellis and so be discarded. It was 

assumed that the synchronization discussed in Section 2.1 was able provide a trigger to 

start the DSA. 

Synchronization seemed to be the most severe assumption, as the eye diagrams in 

appendix E indicated; Meyr et al. [MeMoFe98] detail optimal joint detection and 

synchronization as suggested by Raheli et al. [RaPoTz95]. It was common in the 

literature to find synchronization assumed and the technique in this thesis should be 

compatible with the extension suggested in Section 4.2.1. However Meyr et al. 

[MeMoFe98] made the observation that it was possible to make maximum likelihood 

detection by maximizing P(r|d) without any synchronization, using fractionally spaced 

sampling.  

Similarly to synchronization the automatic level control (ALC) was required to 

get the magnitudes of the metrics at both antennas the same and avoid weighting one 

more than the other. This annulled one of the advantages of Seshadri’s single antenna 

system that it had some built in level control. To get around this in practice 

normalization could be used and the received power measured during synchronization in 

the digital domain or the classic ALC loop could be linked to the analog part of the RX 

between the antenna and sampler. An analog implementation may have been necessary 

to allow the sampler to operate at its optimum dynamic range. 
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Chapter 4 Conclusions and Future Improvements 

4.1 Performance  

4.1.1  Improvement by the optimal combining of a second antenna. 

When the true order of the CIRs was used and they were equal, the addition of 

the second antenna improved the performance better than either of the two antennas 

taken alone. In Figure 3.2-1 for a BER of 5 x 10-3 a 4 dB improvement over the better 

channel was achieved. Diversity gain above the gain from increased received power at 

the second antenna was difficult to define due to the different performance of the CIRs at 

each antenna and the presence of the slip and start-up errors. In the case that the CIR of 

the second antenna had a different order to the first CIR the diversity combination with 

the estimated CIR order equal to either of the true CIR orders equalled or exceeded the 

single antenna performance for that CIR. To reduce the number of computations it would 

have been convenient to be able to use the estimated CIR order less than the true one and 

achieve good performance, this appears to be possible in some cases but not all, these 

cases may be uncommon see Section 4.2.1 for further work.  

With a wrong order of estimated CIR the DSA performance may even be slightly 

worse than a single antenna, and that performance was about two orders of magnitude 

worse than using the true CIR order. When the order of the estimated CIR was greater 

than the true order, the DSA succeeded in finding the true CIR but errors were 

introduced by allowing the slipped CIR and trellis to exist.  
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4.1.2  Operation during start up. 

Errors were not evenly spread over the trials with the two antenna diversity. 

Rather than that most trials had zero or less than ten errors, while one trial had of the 

order of two hundred errors, and that high error would dominate the BER producing 

peaks even though the S/N ratio was high. Slippage was the cause of these high errors, 

due to the non-convergence of the trellises into one. This effect could be reduced either 

by diversity or by increasing M. It was due to the survival of two or more trellises since 

the beginning of the DSA. At the very beginning of the DSA an exhaustive search was 

made whilst the trellis filled to O + log2(2M) samples long. During the exhaustive search 

period all possible trellises were present, including the correct and slipped versions of it, 

and then trellises started to be discarded. This is especially serious if the trellis with no 

slip delay is lost but two of the survivors are those with slip +1 and -1, because the CIRs 

chosen for simulation both had lost a coefficient with the same magnitude which 

contributed the same error to the metric. By using two antenna diversity it appeared that 

both slipped versions were more likely to survive than using only one antenna, this was 

attributed to the link between the antennas being the metric used to chose the survivors. 

When linked together the CIR that had lower error at the beginning, see Section 3.5, 

whether the true or slipped one, made the metric lower for that trellis and so more likely 

to survive. There appeared to be two conflicting requirements neither of which are under 

the control of the receiver, the first was data rich enough to teach the LMS algorithm the 

CIR quickly and the second was strings of ones or minus ones to get the selection 

algorithm to select either the correct or slipped trellis allowing only one to propagate.  
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4.1.3   Performance after convergence of M trellises. 

As shown in Section 3.4 the M trellises kept per state gradually converged to be 

the same. If the DSA was left running and the signal suffered fading the performance of 

the M trellises kept per state would have been lost unless the trellises could have been 

reset in some way to introduce the extra paths into the states. In practice the longer the 

DSA was running the more likely the CIR would be to change and more need to be able 

to track it. This seemed to be a serious difficulty with the DSA. 

4.2 Suggestions for Future Improvements 

4.2.1  Control order of CIR estimate to avoid “slippage” 

An ad hoc solution would be to make a detector of slippage. However it may be 

better to look at the underlying problem and investigate use of some form of “tap-

centering” as suggested by Foschini [Fos85] or maximizing the S/N ratio. 

The possibility of having a CIR that can be well modelled by a lower order, from 

Section 3.3, would allow a lower number of computations. This could be checked while 

some of the synchronization required is being achieved, by examining the correlation 

matrix of the received signal. This could also be used to optimize the LMS update step, 

by finding the eigenvalues of the correlation matrix, each antenna should have optimized 

its own µ value to match the CIR it was suffering.  

Those four CIRs used in the simulations were only a selection from the whole 

range of possibilities and further work would be required to generalize conclusions. 

As shown in Section 3.4, there was a trade off between M and diversity, to 

control the number of slip errors at high S/N more antenna diversity with four or more 
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antennas may avoid having to increase M. Using M has been shown to only work at the 

beginning of the DSA, it would not be elegant to have to reset the M trellises to regain 

this performance during fading. 

Fading is a common feature of radio channels, it is often characterised by a 

Rayleigh distribution. By including a Rayleigh fading model the consequences of the 

convergence of the M trellises could be explored. 

To enable a practical receiver the combination of optimal joint detection and 

synchronization detailed by Meyr et al. [MeMoFe98] may be incorporated. Or the 

fractional spaced sampler technique mentioned in Section 2.1 could be employed. 

4.2.2  Multi-user version for CDMA use 

As shown in Appendix G the CIRs for multiple users could be extracted by 

making a new definition of the error and CIR update. Since the error is not assigned to 

individual CIRs for this extraction, the maximum likelihood algorithm for each user 

would require the development of another stage to remove the contributions to each CIR 

from the others, which should not be too difficult. The trellises would be made up of 

each possible chip sequence which was fixed in some known way, so a way of defining 

the set chip patterns needs to be identified to assemble the trellises. 
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Appendixes 

A. Transmit and receive filter frequency response 

This was sampled at twice the symbol rate. 
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Figure A.1 Transmit and receive filter coefficients and frequency response. 

To confine the transmitted signal in the frequency spectrum a filter was applied 

to the data waveform. Further to avoid inter-symbol interference from the filtering 

identical square root raised cosine shapes was chosen at the TX and RX. The transfer 

function was defined by Rappaport [Rap96], 



 73

( )

( )
( ) ( ) ( )

( )









+>

+≤<−




















 +−
+

−≤≤

=

.210

2121
2

12
cos1

2
1

2101

s

ss
s

s

Tf

TfT
fT

Tf

fH

α

αα
α

απ

α

( )1.A  

where the roll off factor α was defined in terms of percentage by the excess bandwidth 

EXBW. EXBW % = α/100. 25 % excess bandwidth was used for all the simulations as a 

trade off between spectral restriction and the number of significant coefficients. Having 

the frequency response gave the impulse response by the inverse Fourier transform. The 

impulse response was truncated to 33 points. The frequency response shown was 

generated by the fast Fourier transform of the 33 point impulse response padded with 

zeros to achieve a smooth curve. 

. 
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B. Algorithm performance with reference CIR 

To check the operation of the simulation a reference CIR = [1] was used for both 

the one antenna and DSA.  
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Figure B-1 Results for reference CIR = 1, using single and diversity antennas. 

This simulation was set up following the steps of Section 2.1.4 but O was set to 

one, and the same CIR was used for both antenna channels so only one single antenna 

curve was used to compare to the diversity channel. Considering the single antenna trace 

in Figure B-1, it would have been expected to fall on top of the matched filter bound. 

Since my DSA used differential data it gave two errors for one error in the raw detected 
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data. The next Figure B-2 shows the single antenna error rate above divided by two. 

Considering the diversity results it appeared to have better than matched filter 

performance, this was due to the combining of the metrics taking the effect of exactly the 

same received data from the transmitter over two paths of CIR = 1 but different noise, 

this effectively increased the S/N by 3 dB as expected, see Section 3.2. In Figure B-2 the 

diversity antenna error rate was shifted to the right 3 dB and divided by two. Above 8 dB 

S/N the results diverge again as start up errors dominated. 
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Figure B-2 Corrected reference BER performance for reference CIR. 



 76

 

C. More results 

One variable was the length of the trellises kept until a data decision taken, which 

was the truncation of the MLSE. The simulation was set up as in Section 2.1.4 but 

instead of running the single antenna algorithm with each of the CIRs the DSA was run 

three times for each received sequence with N set to 25, 50 and 100. These results 

confirmed assumption that truncating the trellis after 10O samples was sufficient to find 

the best trellis.  
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Figure C-1 Variation of trellis length. 
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The presence of two trials at 10 dB S/N with slip effects showed in all three 

lengths of trellis, which suggested that the propagation of two distinct trellises was 

difficult to stop. There was some marginal improvement with 20O and since the only 

cost was some extra memory that may be worth while. 
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Figure C-2 Variation of µ in LMS algorithm for CIR updating for two antenna  

diversity. 

Another variable was the LMS step, µ, for CIR updating, the simulation was set 

up as in the previous experiment but here N was fixed again at 50 and the DSA run four 

times with 01.0  and,05.0,1.0,2.0=µ  for each received sequence. The presence of 
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slip appeared in all trials as did the start up errors. With a smaller value of µ the errors 

were lower as would have been expected for a more accurate estimate of the CIR, but the 

BER floor at high S/N had an optimal value. This optimal value was where the trade off 

between slow convergence allowing two trellises to exist which lead to slip errors and 

the better prediction of received symbols minimized the overall BER. It appeared to 

between µ = 0.1 and 0.05 was where the optimum lay for that experiment; see Section 

4.2.1 for further work to optimize this. It appeared that the µ value had some control over 

the number of slip errors as the peak for µ = 0.2 at 15 dB S/N which was due to one trial 

with 222 errors was not reflected in any of the other µ values that were offered the same 

received signal, but they did all have slip errors at 30 dB S/N.  

For the performance after start up, that was after 100 samples until sample 1200, 

which removed the effect of errors early in the CIR learning process. This experiment 

took the results from Figure 3.2-2 and subtracted them from those in Figure 3.2-1 leaving 

the after start up errors. Although this appeared to show the performance of the DSA 

approached the matched filter bound, there were two factors to be taken into account, 

first the DSA performance should have achieved 3 dB improvement due to the extra 

signal and second in practice by sample 1200 the channel would have started to 

encounter fading. In the CIR2 trace the effect of the slip errors for S/N 30 dB could still 

be seen see Section 3.5. 
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Figure C-3 Performance with start up errors removed. 
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D. Number of complex calculations per sample 

Where A was the number of antennas, but finding the differential data output or 

doing the sorting were not included in these numbers. 

Task Multiplications Additions 

Error for each state and M trellises per state AO2M2O A(O+1)2M2O 

Metrics A2M2O 2M2O 

Accumulate metric zero 2M2O2  * 

CIR update A2O2M2O A(O+1)2M2O 

Total A2M2O(3O+1) 2M2O(2A(O+1) +3) 

* The newest column of metrics would be added and the oldest subtracted.  

Table D-1 Number of complex calculations required per sample. 

 

Taking M = 4, O = 5 and A = 2 the number of complex calculations were:- 

Task Multiplications Additions 

Error for each state and M trellises per state 2.5.2.4.25 = 2560 2(5+1)2.4.25 = 3072 

Metrics 2.2.4.25 = 512 2.4.25 = 256 

Accumulate metric 0 512 

CIR update 2.2.5.2.4.25 = 5120 2(5+1)2.4.25 = 3072 

Total 8192 6912 

 

Table D-2 Example of number of complex calculations. 
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The number of multiplies dominated and since digital signal processing chips 

often offer multiply and accumulate function in one cycle 8192 could be used to find the 

processing power required. Using the PN chip rate from Section 2.1.2, the sampling rate 

would be 1.2288  and the minimum number of cycles per second required would be 

= 10 Gs/s. Texas Instruments offer the C64x chip 16 bit fixed point with 

4.8 Gs/s. Since the structure was applicable to parallel processing it could have been 

implemented as an array of processing chips. Using the Xilinx Virtex-II Pro 1000 Gs/s 

were advertised! So the DSA would be pushing the state of the art. 

Ms/s 

2288.18192×
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E. Eye diagram 

Eye diagram
Pulse shaping filters,

no ISI, no noise
CIR −0.2 −0.5 0.7  0.36 0.2  

no noise
Shaping and CIR
with S/N 15 dB

 

Figure E.1 Eye diagram for CIR2, 15 dB S/N ratio and 25 % excess bandwidth. 

The diagrams were made by sampling eight times per symbol and taking 500 

trials of the outputs of the three situations; first on the left the transmit and receive filters 

alone cascaded, second the transmit filter then CIR and then receive filter, and third on 

the right the transmit, CIR and receive filters with noise added. The resulting waveforms 

from all the trials were superimposed to form the diagrams. These assumed that the 

display was triggered with the exact symbol timing. 
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F. Zeros of the CIRs used 
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Figure F.1 Zeros of CIRs used showing which have non-minimum phase. 

The values plotted are the complex roots of the CIRs, since the paths were 

assumed to be a FIR type of filter, the roots are the zeros of the transfer function. 
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G. Learning CIRs for multiple users  
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Figure G.1 Resulting CIR estimates for 3 active user codes and 47 unused codes. 

The CIRs for multiple users could be extracted by making a new definition of the 

error and CIR update. Separate errors for each user would be required to do the MLSE 

and one way may be to separate the CIRs as illustrated. Here the error has to be taken 

globally rather than in a state by state situation,  
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where U was the number of possible chip sequences. The LMS update step needed to be 

optimized taking this into account and converged significantly slower. Since the error 

was not assigned to individual CIRs during this extraction to run the MLSE on each user 

the development was required of another stage to remove the contributions to each CIR 

from all the others, which should not be too difficult. The trellises would be made up of 

each possible chip sequence at all possible delays.  
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