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Abstract

In recent years the importance of polarization in lightwave systems has grown as
a result of two developments. First, the optical amplifier has dramatically increased the
optical path lengths with single-mode fiber. Second, polarization effects have become
important in that transmitter and receiver technologies have pushed the capacity of optical
fiber to its limit, even in relatively short spans. Polarization mode dispersion (PMD) is
one of the major limitations for the high capacity of optical fiber systems.

The aim of this thesis is to present an analysis of the impairments due to first-order
PMD. Using numerical simulations by correlation, the impulse response of the channel
with PMD was computed. The coefficients of equalizers are calculated by the LMS
algorithm. The bandwidth of the optical channel is accounted for and fractional-rate tap
spacing equalizers are used for compensation. The effect of first-order PMD
compensation will be demonstrated using bit error rates and eye diagrams. This method

is easy to extend to any order of PMD in optical linear systems.
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Chapter 1
INTRODUCTION

1.1 Background and Motivation for This Thesis

With the increasing number of transmission systems operating at 10 Gbit/s channel
rate (OC-192) and with the intention to move to 40 Gbit/s rates within the next few years,
polarization-mode dispersion (PMD) of the transmission fiber may become one of the
limiting effects for high-bit rate transmission due to pulse waveform degradation [1,2],
especially when chromatic dispersion is reduced by state-of-the-art techniques like
compensating fibers or chirped gratings [5]. Optical amplifiers have dramatically
increased the optical length, as a result, small effects such as PMD can accumulate in a
span to the point where it becomes an important consideration of lightwave system
developers. The second reason that polarization effects have become important is that
transmitter and receiver technologies have pushed the capacity of optical fiber to its limit,
even in relatively short spans [1]. This has occurred through dramatic increases in bit
rates in digital systems. The largest distortions generally arise from first-order PMD,
which creates a delayed echo of the original signal in the fiber due to the differential
group delay (DGD) of the two principal states of polarization [3]. Though modemn single
mode fibers exhibit negligible PMD, with average DGD of the order of 0.1 ps/(km'?) 2],
some of the older fiber cables can show large PMD effects with average DGD up to 2

ps/(km'?) [2]. Moreover, the instantaneous DGD in such high-PMD fibers generally



fluctuates randomly with time [25,4], and hence can temporarily exceed values of more
than 100 ps for transmission distances of only a few hundred kilometers, which may lead
to a complete eye closure even in a 10-Gb/s signal [8].

Thus, within the last years, increasing attention has been paid to PMD
compensation in general [27] and optical and electrical compensation schemes in detail as
it has become evident that some embedded commercial fiber cables may have PMD
values unacceptable for certain network scenarios [1]. Assuming negligible polarization

dependent loss and no nonlinear effects, Poole proved the existence, at any frequency w,

of a set of two orthogonal states of polarization (SOPs) allowing a convenient
decomposition of input and output fields, in other words, light propagation in an optical
fiber can be described by a 2x2 complex transfer matrix [3]. He also proved there exist
principal states of polarization (PSPs) which have the maximum possible group delay
difference (DGD). However, PMD is intricate to tackle because it may vary as a function
of time or fiber temperature [25]. Ongoing strategies for reducing PMD in fiber focus on
reducing the intrinsic PMD of the fiber by altering the manufacturing process [1]. This
has lead to exceptionally low and stable values of PMD in the new generation of single-
mode fibers being manufactured. In the optical domain, previous work to compensate
PMD has focused on selecting PSPs of the transmission line by input polarization control
[51] or implementing a compensator consisting of a small number of DGD sections,
separated by polarization transformers [13]. Other optical compensation of first-order
PMD is accomplished by introducing a variable time delay between two adjustable or

orthogonal polarization states in the optical signal [43]. But residual DGD appears due to



misalignment, if the PSPs vary with the signal wavelength [34]. In the electrical part of
an optical receiver, PMD can be equalized by transversal filters [18], since the
photocurrent is proportional to the squared field vector magnitude. However, not all
PMD distortion can be compensated electronically and it is not bit rate independent [8].
Even if the first order PMD is compensated, the second order is still a problem in some
high capacity optical systems [2,15].

In this thesis, a method is proposed using a coherent optical transversal filter
[6] based on channel estimation to compensate PMD. Hardware implementations and
algorithms will be discussed. The actual simulations are carried out by the software
package Matlab and its toolboxes [41]. The aim of the numerical study is to show that
this system can achieve PMD compensation and demonstrate the efficiency of this
compensator scheme. The major contribution of this thesis is to compensate first-,
second-, and higher-order PMD simultaneously.

Often it is difficult to summarize the research of other people in a few sentences
since many omissions can occur. It is believed that this summary is sufficient to justify

the thesis contributions that follow.

1.2 Thesis Contributions
The contributions described below are PMD analysis and suppression techniques
for symbol-rate tap spacing and fractional-rate tap spacing equalizers operating in the

presence of PMD and additive white noise.



The first result is the baseband impulse response of a fiber with first order PMD.
Jones matrices and birefringent waveplate models are used to simulate PMD.

The second result is that the optical impulse response can be obtained from
channel estimation, which will be used to calculate the coefficients of the equalizers.

The third result is that this technique can compensate second-order or even high
order PMD not just first-order PMD. The main assumption is that the optical system is a
linear system.

The fourth result in this application is that equalizers with taps spaced at fractions
of the symbol period will have better performance than equalizers with symbol-rate taps.
The difference comes from the excess bandwidth of the transmitted signal.

The fifth result is using an optical transversal filter to compensate PMD which
must be done optically because of the large bandwidth used in optical waveguides.

The sixth result is that this method works even when the eye of the received signal

is closed.

1.3 Thesis Organization

This description of the thesis organization follows the table of contents.

In chapter 1, the motivation, background, and literature survey put the thesis
contributions into perspective. This section describes how this thesis is organized to make
those contributions.

Chapter 2 details the model of transmitter, the origins of the PMD, and the optical



transversal filter used to compensate PMD with its large available bandwidth.

Chapter 3 shows the mathematical model of PMD. Based on the waveplate model
of PMD, the impulse response of an optical fiber with first-order PMD may be obtained.
The eye diagram will be compared before and after the distortion caused by PMD.

In chapter 4, there are discussions through analysis and simulation regarding how
to obtain the optical fiber’s impulse response by correlation. Bandwidth issues and
processing gain will be mentioned. The two types of equalization are symbol-rate tap
spacing and fractional-rate tap spacing.

Chapter 5 is concerned with calculating the coefficients of the equalizer and
evaluating the performance of equalizers. These evaluations take place in terms of eye
diagrams and bit error rate.

In chapter 6 the thesis is concluded, followed by a discussion of potential future

work.



Chapter 2
System Model

Fig. 2.1 provides a block diagram of the major components of the optical system:
the transmitted data a(n), the transmitter impulse response h(t), the impulse response of
the fiber with PMD h(t), the interference v(t), and the received data a(n). The dummy
variables t and n denote the indices in time. At the end of this chapter, an optical

equalization filter is introduced.

Raised Optical fiber

cosine impulse
filter response
s(t) g - -
{a(n)} hy(t) h(t) —>@——> Receiver —> {a(n)}
Transmitted Received
data data
v(t)
Interference

Figure 2.1 Optical System Model

2.1 Transmitter

A variety of signal generators and line coders are used to modulate optical sources

[16]. The input data is a random data sequence, possibly coded to achieve a particular



spectral shaping. For this thesis, the simulations are driven using pseudorandom (PR)
sequences with binary values 0 and 1, and sequence lengths are sufficient to analyse the
effect of intersymbol interference (ISI) from PMD. Currently, non-return to zero (NRZ),
return to zero (RZ), and Manchester are the commonly used schemes in lightwave
communications. NRZ codes are simple and easy to implement, so they are adopted in
this simulation. In the system considered, a raised cosine filter [31] is used to shape the
optical pulse at the transmitter. The transmitted waveform in the electrical domain is of

the form

s(t) = i&h,(t— kT), Q2.1

k=1

where a, is the PR data stream, having the properties of being zero mean, unit variance,
and mutually uncorrelated in time; the symbol rate is 1/T and N is the length of the PR

sequence. h(-) is a bandlimited raised cosine pulse and defined to be

h(t) = (sinc (2Wt))(l—°_‘31§%f—vwv-%),

where parameter « is called the rolloff factor, 0<a<1, and it indicates the excess
bandwidth over the minimum bandwidth W in Hz; «=0 indicates no excess bandwidth.
To simulate a 10 Gb/s optical communication system, the parameters are given as
follows:
a=1 rolloff factor,

¢=2.998x10% m/s light velocity,



B=10 Gb/s bit rate, and

W=5 GHz minimum bandwidth.

The baseband electrical signal amplitude at the transmitter should be greater than

Data Sequence 10101100011110

1.5
3 1 1
2
(@ &
£ost i
o 'l A 1
0 2 4 6 8 10 12 14
Waveform after shaping
1.5 L4 L
o 1} -
3
® 5
£ost ]
0 I 1
0 0.5 1 1.5
Time x10°

Figure 2.2 Data Generator Output Waveform Simulation

or equal to zero for the optical system. Fig. 2.2 shows the simulated value of the data
generator output. The upper diagram shows the NRZ sequence 1010110001110; the

lower diagram is this sequence after the transmitter pulse shape filter h(t) [16].



2.2 Channel

The channel can be simulated by utilizing ensemble models of PMD. In a single-
mode fiber, an optical wave of arbitrary polarization can be represented as the linear
superposition of two orthogonally polarized HE,, modes {1]. In ideal fiber, the two HE,,
modes are indistinguishable (degenerate) in terms of their propagation properties owing
to the cylindrical symmetry of the waveguide. Real fiber, contain some amount of
anisotropy owing to accidental loss of circular symmetry. This loss occurs either through
a noncircular waveguide geometry or a nonsymmetrical stress field in the glass. In either
case, the loss of circular symmetry gives rise to two distinct HE,, polarization modes with
distinct phase and group velocities. All polarization effects in single-mode fiber are a
direct consequence of this accidental loss of degeneracy for the polarization modes [1].

When subjected to a uniform perturbation in a short section of fiber, a single mode
fiber becomes bimodal owing to a loss of degeneracy for the two HE,, modes. This can

be expressed as a difference in the local propagation constants for the modes (B,, B,),

Bs—PBr= %(ns -nr), 2.3)

where B, and [, are propagation constants for the slow and fast modes; w is the angular
frequency of the light, c is the speed of light in vacuum, and n, and n, are the effective
indices of refraction for the slow and fast modes respectively. The differential phase
velocity indicated by Eq. (2.3) is usually accompanied by a difference in the local group
velocities for the two modes which can limit the bandwidth of a fiber by broadening the

pulse.
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Fortunately, polarization effects do not accumulate in long fiber spans in a linear
fashion. Instead, because of random variations in the perturbations along a fiber span and
the mode coupling, the effects of one section of a fiber span may either add to or subtract
from the effects of another section. As a result, PMD in long fiber spans accumulates in a

random-walk-like process that leads to a square root of length dependence [9]. Fig. 2.3 is

Intrinsic Fiber Birefringence
+
Random Polarization Mode Coupling
+
Birefringent Components in Transmission Line

Figure 2.3 Origins of Polarization Mode Dispersion

a summary of origins of polarization mode dispersion.

The end-to-end system including the modulators and the demodulators is shown in
Fig. 2.4. It is convenient to view this linear system as a two-input port two-output port
optical network and characterize it by a 2x2 matrix impulse response or its matrix Fourier
transform, which is the overall system frequency response (see chapter 3). h,(t) and

h,,(t) represent the co-polarized impulse responses, while h,,(t) and h,,(t) represent the
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cross-polarized impulse responses due to mode coupling {11].

cos(0,)
t
() —® hy(t) 3
> h()
> hy () F—
sin(0,,)
®
() —g—>| hy®) > &

Figure 2.4 Channel model

The input is decomposed as two synchronous data signals: s,(t) and s,(t) which denote

vertical and horizontal channels. These are given as (see Fig. 2.4)

sn(t) = ianhx(t —kT)cos(Bn),

su(t)= 3 bt~ KT)sin(B) (2.4)

k=l

where 0, is the angle between input pulse and horizontal channel describing the input
direction of the linear input polarization. h(t-kT) was described in section 2.1.

It is now easy to verify that the relationship between the input and output can be
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expressed as follows

gn(t) = sv(t)® hu2(t) + su(t)* hu(t),

gv(t) = sv(t)* h2z2(t) + sn(t)s hai(t), (2.5)
where * denotes convolution. g,(t) and g,(t) denote the received horizontal and vertical

optical signal at the receiver. In a compact form, it can be written as

g(t)=h(t)*s(t) = Th(t -1)s(t)dr, (2.6)

where the vector

_ | sn(t)
s(t)= Lv (t)} .7

is the input optical signal vector and the vector

(2.8)

g(t)= [gh(t)] ’

g«(t)

is the received optical signal. h(t) is the 2x2 matrix optical channel impulse response and

is given by

_ hu(t)  hi(t)
h(t)'[hﬂ(t) hn(t)]’ (2.9)

and the * between the matrix h(t) and the vector s(t) denotes matrix convolution.

To accommodate coupling between the polarized channels, one pair of impulse
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responses (h,,(t), hy,(t)) associated with the co-channel and the other pair (h,,(t), h,,(1))

associated with the cross-channel, are used to completely characterize the PMD fiber

medium.

2.3 Receiver

In a lightwave system, the electronics following the photodetector first amplify and
shape the incoming signal and apply it to a decision circuit. The signal is also disturbed
by thermal noise and shot noise due to the preamplifier, postamplifier, and timing
circuits. The simulation discussed here accounts for the shaping of the received signal
and the added thermal noise. The receiver is modeled as a filter with additive Gaussian
noise at the input. The baseband filter is a second-order Butterworth filter with a 3-dB
bandwidth equal to 0.65 times the modulation rate (Fig. 2.5). The receiver degradation
depends on the relative power coupled into the polarization states, and the worst case
degradation occurs when the two PSPs have equal power. It is well known that shot
noise and thermal noise are the two fundamental noise mechanisms responsible for

current fluctuations in all optical receivers even if the incident optical power P, is
constant. With direct detection, noise in the electrical signal is primarily due to thermal
noise in the receiver because of the limitation of the detectors. With coherent detection,
the shot noise is due to both the received and local oscillator signals. If the local
oscillator is strong enough, the shot noise dominates the thermal noise. The thermal

noise variance o,> becomes

2 4kBT8
=(—)Af 2.10
or’=( R ) (2.10)
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and the variance of the shot noise 0.2 is given by

c.2=2q(, + L)Af, 2.11)
where Af is the effective noise bandwidth; q is the electron charge. kj is the Boltzmann’s
constant, T, is the absolute temperature, and R, is the load resistor. [ and I, are the
current from the received optical signal and the dark current respectively [17]. It is well
known that the high intensity shot noise can be modeled as additive Gaussian noise [26].
Consequently, we do not need to consider the received optical signal from a quantum
physics point of view. Thus, for simplicity we will assume that the noise v(t) in the

electrical signal is additive Gaussian-distributed white noise.

0.8}
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o
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Figure 2.5 Magnitude Response of the Butterworth Filter
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The block diagram in Fig. 2.1 does not show details of the receiver. Fig. 2.6

shows the detail including the optical transversal filter used to compensate for ISI. The
optical transversal filter will be described in section 2.4, and channel estimation will be

discussed in chapter 4.

/

g(t) Optical Transversal 2 N j -
Linear Equalizer Photodetector 10 —r—> a(n)

Channel
Estimation|

Figure 2.6 Optical Transversal Linear Equalizer Receiver

The input to the receiver is the signal g(t) which enters the linear optical
equalizer’s filter. This filter has an impulse response h (t), and the output of the filter is
the optical signal g(t) which satisfies:

g(t) =g(t)*h«(t). (2.12)

At the receiver, the noise is proportional to the receiver bandwidth and can be reduced by
using a low pass Butterworth filter. The optical equalizer is used to compensate ISI from
PMD. The received electrical signal a(t) after the photodetector (from Eq. 2.14) is then

fed to the sampler, which operates at the symbol rate, 1/T. The output of sampler is the
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signal a[n].

2.4 Optical Transversal Filter

Optical signal processing is expected to effectively handle high-speed broadband
signals in advanced optical point-to-point communication systems and networks. In
particular, optical signal processing using waveguides as a delay medium has the
advantage of being able to process broadband signals because of the large available
bandwidth of optical waveguides [6].

Optical transversal filters using coherent interference can express arbitrary tap
weighting coefficients and can process signals without inherent combining loss. This
filter can process optical signals without converting them into electrical signals. The
filter therefore has a theoretical operating bandwidth of up to half of the optical carrier
frequency. However, the actual filter has a bandwidth limitation due to the operating
bandwidth limit of its optical components, especially the directional coupler.

Transversal filters have three essential functions: delay, multiplication, and
summation. A coherent optical transversal filter block diagram is shown in Fig 2.7.
Using tunable optical power splitters and phase shifters, arbitrary complex tap
coefficients can be expressed by electrically controlled amplitude and carrier phase. The
light phase in each tap is shifted either 0 or =, thus it can synthesize negative tap
coefficients optically. At the output of the filter, these split signals are coherently
combined. Various transfer functions of the transversal filter can be obtained

appropriately by controlling the tunable splitter and phase shifter. The number of taps m



17

and unit delay time t determine the resolution in the frequency domain. The greater m,

’a ]

5 T
Input Tunable splitter @) Tunable splitter —G === Tunable splitter

Phase shifter Phase shifter Phase shifter

N\

) J

Output

Figure 2.7 Configuration of The Coherent Optical Transversal Filter

the more detailed the frequency characteristics, the shorter t , the higher the time-domain

resolution in processing the input waveform. For the symbol-spaced equalizer, t is100
ps. For the fractionally spaced equalizer, the tap spacing is T/2, which is 50 ps.

The theoretical impulse response of the transversal filter in the time domain is

h(t) =3 w(k) "5t - ko). @.13)
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where w(k) is the splitting ratio of the k-th splitter, p(k) is the phase shift of the k-th
phase shifter, which is either 0 or . 8(t) is the Dirac delta function, m is the number of
taps and t is the unit delay time [24]. The frequency response is obtained by taking the
Fourier transform of h (t) from Eq. 2.13.

By definition, the Fourier transform of the signal h(t) is given by the integral

Hi(f) = j' he(t)e  **dt. (2.14)

The impulse response of the transversal filter has a periodicity which corresponds
to the inverse of the time delay t. w(k) can be obtained from channel estimation (see
chapter 4).

In real time, the tunable splitters can be programmable optical couplers, or erbium
doped fiber amplifiers (EDFA) [45], or Mach-Zehnder modulators [17] to change the
weight of the optical filter taps. The phase shifter may be a LiNbO;-based phase
modulator which is used to get a bipolar impulse response {17]. The optical transversal
filter is different from a traditional electrical filter due to its large bandwidth. It should be

operated adaptively via a microprocessor to compensate for the time varying PMD.
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Chapter 3

Polarization Mode Dispersion

This chapter will present, in detail, the mathematical description of the PMD
model. This model based on principal states was first introduced by C.D. Poole (3]. The
distortion caused by PMD is demonstrated in the form of eye diagrams. Understanding

PMD is fundamental in order to compensate for it.

3.1 PMD Waveplate Model

For each frequency w, it has been shown that there exists a pair of orthogonal input
and corresponding output states of polarization, referred to as principal states
polarization. Signals transmitted in either of these two states have no first-order PMD,
but the two states have, in general, different time delays. Thus, a signal transmitted with
arbitrary polarization can be described using these PSPs as basis functions [3]. A single-
mode optical fiber with PMD can be modeled by a 2x2 complex transfer matrix h(w),

which, assuming no polarization-dependent loss, is given by

@3.1)

h((n))= eﬂ(u)U(w) - ep“")[u'(m) Ug((!)) ] ’

-ui(@) ui(e)

where w is the optical frequency, U(w) is a unitary Jones matrix; u,(w) and u,(w) are

elements of the Jones transfer matrix and f(w) is determined by the polarization-
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independent phase shift and loss of the fiber given by
Blw)=-7Ap+ jy(a)], (3.2)

where z is the transmission distance, p represents the fiber loss and y(w) is the

propagation constant; the superscript * denotes complex conjugate, and

|u(o )|: +|ulo )r =1, for all w. The difference in arrival times, is defined as

At = 2,/|u,'|2+|uz'|2 . (3.3)

where the primes denote differentiation with respect to angular frequency.
Thus. the output optical field E» with a monochromatic optical input field Eiis
given by
Es = h(0)E . (3.4)
Thus. provided the source spectrum satisfies the narrow band assumption, the time

varying output electrical field vector Eb of a long fiber will have the general form [1]:

Ev = c,g,Ea(H )+ c g Ea(t+1_). (3.3)
where E_ is the electrical signal input to the transmit laser, ¢_ and ¢_are the fraction of the
input signal into each of the PSPs, -8-..,5 _ are unit vectors specifying the output

polarization states of the two components which are referred to as output principal states.
The difference of arrival time At = t. - t_ is the DGD, which gives rise to pulse

broadening at the output of a fiber when energy is split between the two principal states at
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the input. In general, the amount of broadening depends on the power splitting ratio
between the pulses determined by the coefficients c, and ¢, as well as the difference in
the delays, At. Both the PSPs and DGD are assumed to be independent of frequency if
only first-order PMD is being considered.

An immediate consequence of the property of polarization invariance with
frequency is that an optical pulse that is aligned with a principal state at the input of a
fiber will emerge at the output with its spectral components all having the same state of
polarization. This in turn implies that the only distortion on the pulse that can occur is a
pure phase distortion, which, to first order, does not change the shape of the puise but
only shifts it in time. Thus, an optical pulse that is aligned with a principal state at the
input of a fiber thus emerges both polarized and unchanged in shape to first order.

To numerically compute the statistics of both first- and second-order PMD, we
simulate a real singl=-mode fiber by randomly concatenating a sequences of segments,
each with different random PSPs (see Fig. 3.1) [23, 33]. Applying this model, the output
pulse at the end of the fiber is obtained by successively multiplying the single segment

matrices, each with different (random) PSPs, but with fixed delays of

(41)
Tk = =t k=1,23,.. K (3.6)
JK
where 1, is the DGD introduced by the k-th segment of the fiber and K is the number of
segments. At is the mean DGD value.

The overall transfer matrix is then
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K
Uwi= [] M), 3.7)
k=1

where M, (w) is k-th transfer matrix [51] given by

jot

cos(pk) sin((pk):l [eT 0 j|
, (3.8)

—sin(px) cos(pk) || 0 e Jﬂmj‘k

Mk(w) = [

where {@,, k=1,2,3,....K} are a set of independent identically distributed random variables

denoting random polarization and phase of the k-th segment. Their probability density

functions are

1
3 <Pk S T,
P(px) = . (3.9)
0 otherwise.

7 W S
a7 A oA
(pl (pZ (p3 (pK

Figure 3.1 Modeling PMD in Single Mode Fiber
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The received signal in the time domain is given by
h(t) = F ' {h(® —ax)}, (3.10)

where w, is the angular carrier frequency, and F' denotes the inverse Fourier transform.

The inverse Fourier transform is defined as

h(t) = j H(f)e?™df . G.11)

Optical digital information bearing signals are transmitted by some type of carrier
modulation. All the previous equations are based on a passband model. The channel
over which the signal is transmitted is limited in bandwidth to an interval of frequencies
centred about the carrier or adjacent to the carrier. The carrier frequency is on the order
of 100 THz while the bandwidth of the channel is about a few GHz (OC-192). With no
loss of generality and for mathematical convenience, it is desirable to reduce all passband
signals and channels to equivalent baseband signals and channels. The term baseband is
used to designate a band of frequencies representing the original signal as delivered by a
source of information. The conversion from passband signal to baseband signal is

defined as

- j2=rfet

he(t) = (h(t)e ywe(t),
Hu(f) = H(f + £)We(f), (3.12)
where h,(t) is the baseband impulse response, f_ is the optical carrier frequency [48,47],

w((t) is the impulse response of the low pass filter that is used to pass the frequency
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components at 0, but to filter out the high frequency components at f, and beyond. W (f)
is the Fourier transform of w(t) and the one-sided bandwidth of W((f) is B,.

To sum up, the procedures to obtain the impulse response of optical channel with

PMD channel is as follows:

1. Select the average DGD, <At>.

2. Generate @,, @,,...,0¢ Which are uniformly distributed between [0, 27).

3. Calculate 1, 15, T; ... T by Eq. 3.6, note 1,= t,=1,= ...= 7, K is the number of the
segments.

4. Pick w,.

5. Calculate M,(w,), Ms(w,), M;(w)), ... , My(w)).

6. Calculate h(w,).

7. Repeat 4), 5), 6), for w,, w,...,w, ..., Wy. Where w, is the k-th sample frequency and
let M denote the number of frequency samples contained in frequency interval of B;.

8. Convert signals and channels from passband to baseband to obtain hy(t).

The baseband impulse response of the optical channel with PMD (DGD=45 ps,
vy=0.41) is shown in Fig. 3.2 after taking the inverse Fourier transform. In this case, h,,(t)
and h,,(t) represent horizontal and vertical channel respectively, while h,5(t) and h,,(t)
represent the coupling between the horizontal and vertical channel, which indicates the
channel is depolarized. If there is no PMD, the impulse response of h,,(t) and h,,(t)
should equal 0, which means there is no cross polarization.

For a fiber much longer than the characteristic length of the mode coupling, the



25
DGD is known to have a Maxwellian probability density function (PDF) in the form [42],

2 2
PDF(AT) =3,/ 2% exp(-—2"). 3.13)
T ATms 2ATms

where At is the quadratic mean value of At (At,,.= ( At?)'?) and has a square root

dependency with length [1].
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Figure 3.2 Impulse Response of Channel With PMD

In high-bit rate systems, because of the sensitivity to the environment, PMD can
lead to fading of the baseband signal in many ways analogous to multipath fading in radio

systems. Such fading would affect both coherent and direct detection systems [4]. A
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time-varying model for PMD is given using a model based on Brownian motion [46],

which is not included in this thesis.
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Figure 3.3 Numerical Simulation of First Order PMD in an Optical Fiber

Fig. 3.3 compares the Maxwellian probability density function of PMD with the

numerical simulation measured data DGD by randomly changing the coupling parameters

¢,. The points from the simulation differ from the theoretical values because of the

limited number of statistically independent samples. The simulations had 3500 samples

with 150 randomly coupled sections.
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3.2 PMD Induced Distortions

Digital lightwave systems rely on undistorted transmission of an optical pulse
through long lengths of fiber. Dispersive effects such as PMD cause pulse spreading and
distortion and thus can lead to system penalties [29,10].

Experiments show PMD induced variations in bit error rate performance are
subjected to ambient temperature changes in a field environment [52]. The correlation
between rapid fluctuations in bit error rate and steep changes in ambient temperature
during sunrise and sunset illustrates how performance variations related to PMD can be
directly tied to environmental conditions. A system designed with adequate margins for
normal conditions may have unacceptable penalties under rare conditions of extremely
high PMD [1].

Therefore PMD is a time-varying, stochastic effect and the system penalties are
also time varying. Thus, the equalizer should be adaptive.

In this section, the pulse shape is analysed by computing the mean transmit time
and root mean square (RMS) of the output pulse. Since the previous analysis has
revealed that the various degradations due to first-order PMD induce splitting and
broadening, we expect the system penalties to be closely related to the variations of the
mean transmit time and RMS pulse width [2].

We define the mean transmit time and the RMS width of the output pulse by
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Tnl;,, (m)dn
o : (3.14)
[, (mdn

which is the normalized mean transit time and

-

B, (mdn

RMS*=Z——-(n), (3.15)
[P, (n)n

which is the normalized RMS width; the pulse power at the receiver output can be

computed from

Pu(m) = fa(n)" (3.16)

where a(n) is the received electrical signal. The shortest mean transmit time means the
SOP of the input signals is aligned with the fast PSP at the central frequency [13]. Thus
PSPs can be obtained by varying the input SOP and searching for the maximum relative
delay between the two output sequences, with the minimum distortions on the isolated
“1” bits [15].

A useful tool to evaluate the combined effect of impairments on the overall system

performance is the so called eye pattern [31] which is defined as the synchronized
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superposition of all possible realizations of the signal of interest viewed within a
particular interval. The interior region of the eye pattern is called the eye opening. An
eye pattern provides a great deal of useful information about the performance of a data
transmission system such as the sensitivity of the system to timing error and the noise
margin. When the effect of intersymbol interference is severe, traces from the upper
portion of the eye pattern cross traces from the lower portion, with the result that the eye
is completely closed. In such a situation, it is impossible to avoid errors due to the
combined presence of intersymbol interference from PMD and noise in the receiver.

The performance criterion considered is the optical signal power penalty due to
interference, which is the increased optical signal power required to maintain the same
eye opening with intersymbol interference. The optical signal power penalty can be
derived from the minimum eye opening over all input bit sequences. The minimum eye
opening is the minimum sampled signal values for a “1” minus the maximum sampled
signal value for a “0”, with no noise at the receiver. Thus, if the difference between the
signal levels for a “1” and a “0” without ISl is Y, the eye opening relative to the

maximum eye opening is denoted by eye and is given by

_ min(eye opening)
= v .

eye @G.17

The optical power penalty is given by [26]

penalty =10log,,(eye) for direct detection, and

penalty =20log,,(eye) for coherent detection, (3.18)
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since the received current is proportional to the optical power with direct detection and
the received current is proportional to the magnitude of the optical field with coherent
detection.

The eye patterns in Fig 3.4 demonstrate the impact of the DGD distortion. From
Fig. 3.4(a) and Fig. 3.4(b) it is clear that the pulse transmitted from one of the PSPs has
the minimum distortion and the eye is open widely, even when the DGD is 96 percent of
a symbol period. However, a pulse received in the worst polarization, shown in Fig. 3.4

(c), has a closed eye. It agrees well with the theory provided by C.D.Poole {3]. Thus

Eye-Pattern Diagram
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Figure 3.4 Simulated Eye Diagram of 10 Gb/s Signal Transmitted in
Principal States of Polarization (PSP) with 96 ps DGD
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some people have used this idea to compensate for PMD by adjusting the input to one of
its PSPs [51]. The interference is so severe that the eye is almost closed when the input
power splitting ratio between the fast PSP and slow PSP is 0.5, which is the worst case
(see Fig. 3.4(c)).

Fig. 3.5 shows the distortion induced by various DGDs for the worst case of power
splitting, y=0.5. These DGDs are 0 ps, 58 ps and 92 ps, respectively. The power penalty

for 58 ps of DGD is 2.21 dB (from Eq. 3.18), while the power penalty is 9.2 dB when the
DGD is 92 ps. In these two cases, the power penalty is much more than 1 dB to be
accepted by the system. Thus, ISI from PMD should be reduced. Some methods will be

discussed in chapter 4.
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Chapter 4

Channel Estimation by Correlation

This chapter will discuss a technique for channel identification. A channel

estimation algorithm is presented for estimating a channel impulse response from a
known training sequence whose power is much lower than that of the information-bearing
signal, and these two signals are added together at the transmitter. The performance of

the technique is also investigated.

4.1 Adaptive Equalization

In digital optical communications a considerable effort has been devoted to the
study of data transmission systems that utilize the available channel bandwidth
efficiently. The objective is to design a system that accommodates the highest possible
rate of data transmission, subject to a specified reliability that is usually measured in
terms of the bit error rate or eye pattem. The transmission of digital data through a linear
optical communication channel is limited by two factors [46], intersymbol interference
(IST) and noise. ISI is caused by distortion such as chromatic dispersion and polarization
mode dispersion. Chromatic dispersion is not discussed in this thesis. Noise is generated
by the receiver in its front end. Thermal noise and shot noise in the receiver are
considered as Gaussian noise in this thesis.

For bandwidth limited channels, ISI is the chief determining factor in the design of
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high data rate optical transmission systems.

To overcome the intersymbol interference problem, control of the time sampled
received signal is required. In principle, if the characteristics of the transmission medium
are known precisely, then it is virtually always possible to design a pair of transmit and
receive filters that will make the effect of ISI (at sample times) arbitrarily small. This is
achieved by proper shaping of the overall response of the channel in accordance with
Nyquist’s classic work. In practice the channel ISI from PMD is time varying, due to
variations in the transmission media and temperature, which makes the received signal
nonstationary. Accordingly, the use of a fixed pair of transmit and receive filters,
designed on the basis of an average channel characteristic, may not adequately reduce ISI.
This suggests the need for an adaptive equalizer that provides precise control over the
time response of the channel.

A device well-suited for the design of an adaptive filter is depicted in Fig. 4.1.

The impulse response of the adaptive filter is

he(t) =) wid(t-kT), 4.1)
k=1

where 6(t) is the Dirac delta function; w, is the k-th tap weight and the delay T is chosen
equal to the symbol period.

Suppose that the adaptive filter is connected in cascade with a linear system whose
impulse response with PMD is h(t). Let p(t) denote the impulse of the equalized system.

Then p(t) is equal to the convolution of h(t) and h(t), as shown by
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p(KT) = ) wih(t)*3(t ~ kT),

! 4.2)
= » wxh(t—-kT).
k=1
Thus, for no intersymbol interference p(kT) should satisfy
(KT) = 1 k=0,
PED=10 k=0 “.3)

The task of the thesis is to obtain the impulse response of the optical fiber channel with
PMD by channel estimation, then calculate the coefficients of the equalizer filter to
compensate for PMD.

Optical transversal filters (see section 2.4) can equalize any type of linear

a(n) Linear system 5| Adaptive filter| 5(n)a
h(t) h,(t)

Figure 4.1 Adaptive Filtering Scheme
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distortion and can easily be made adaptive [27]. This chapter will discuss how to obtain
the impulse response of the PMD channel. Thus, the next question is how to calculate the
coefficients of the optical transversal filter. Calculating the coefficients will be discussed

in chapter §.

4.2 Bandwidth Issues

The bandwidth of a signal provides a measure of the extent of significant spectral
content of the signal for positive frequencies. When the signal is strictly band limited, the
bandwidth is well defined. When, however, the signal is not strictly band limited, which
is generally the case, we encounter difficulty in defining the bandwidth of the signal. The
difficulty arises because the meaning of “significant”, attached to the spectral content of
the signal, is mathematically imprecise. Although many mathematical definitions exist,
there is no universally accepted definition of bandwidth.

One definition of bandwidth is the null-to-null bandwidth, which is the width of
the main lobe for positive frequencies.

A popular definition of bandwidth is the 3-dB bandwidth. Specifically, if the
signal is low passed, the 3-dB bandwidth is defined as the separation between zero

frequency, where the amplitude spectrum attains its peak value, and the positive

frequency at which the amplitude spectrum drops to1/ V2 of its peak value.

In this thesis, we use “excess bandwidth” which indicates the bandwidth over the

ideal solution. In an OC-192 system, the ideal bandwidth is approximately 5 GHz. A
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rolloff factor of 1 for the raised cosine pulse is used in this thesis meaning 100% excess
bandwidth. Specifically, the transmission bandwidth B is defined by

Br=W(l+a), (4.4)

where W is the minimum ideal bandwidth and « is the rolloff factor.
Fig. 4.2 shows the spectral content of the received electrical signals, with and
without PMD distortion. Comparing the spectrums of the received signal without PMD

and with PMD (DGD=78 ps, worst case y=0.5). it indicates clearly some distortion from
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and Without PMD Distortion
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PMBD and it is the excess bandwidth that makes a fractional rate tap spacing equalizer

necessary to compensate the distortion beyond 5 GHz.

4.3 Hardware Consideration

The PMD equalizer is realized with an optical tapped filter based on channel
estimation (see Fig. 4.3). These are the steps:
©. Add an optical training information signal d(n), also called a training sequence, with

the optical information bearing signal a(n) at the transmitter, and let

Pl
l0log=—=30dB , 4.5)

where P2 is the power of the training information d(n) and P1 is the power of the
optical information bearing signal a(n). P2 is 30 dB lower than P and does not
affect the bit error rate (BER) at the receiver.

® . Calculate the properties of the fiber by using correlation. The same training
sequence, but time reversed, is used at the receiver in synchronism with the
transmitter to correlate the received signal so that the channel response h(n) in
the time domain may be obtained. The algorithm used in channel estimation is
based on a minimum square error (MMSE) criterion [7]. This channel estimation
is the critical part of this thesis.

@ . Set the coefficients of an optical filter to compensate for the fiber. Suppose the

frequency response of the optical fiber channel is H(f), and the frequency response
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of the optical equalizer is H(f). To eliminate ISI from PMD completely,

H(f)H(f) should equal 1. After h(n) is obtained from the channel estimation, we
can calculate the coefficients of the optical filter using deconvolution or an inverse
filter. It must be noted that the optical filter must be adaptive to compensate for the
time varying PMD.

O . Every 0.2 ms (2x10° bits), we update the coefficients of the optical filter to make
this scheme adaptive.

These functions, such as channel estimation by a training sequence and equalizer
coefficient calculation are performed by microcomputer. Fig. 4.3 shows the proposed
hardware implementation for this PMD compensation. There are two important issues to
make sure this implementation is a success. One is the quality of the training signal,
which means its autocorrelation should be similar to a delta function. The other is the
power issue, since the training signal is much lower in power than the information
bearing signal. A long sequence is needed to obtain an accurate estimate of the impulse
response. With these two issues, the longer the sequence, the better the performance. In
the ideal case, if the training sequence is infinite, we can get the exact the impulse
response. But as mentioned before, the distortion caused by PMD is a time varying
process and the time for it to change is on the order of several seconds [25]. We need to
complete the equalizer calculation within this time. Thus, an extremely long training
signal is not desirable. Itis a tradeoff. We will consider these issues in the following

sections.

Fig. 4.3 shows the required hardware implementation. The training sequence at
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the receiver is the same, but time reversed, as the training sequence at the transmitter.
The optical filter is described in section 2.4, chapter 2, and it is used to compensate for
PMD. A computer is used to calculate the coefficients after sampling the incident optical

signal.
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Figure 4.3 Channel Estimation Based on Coherent Detection

For the purpose of channel estimation, coherent detection is needed to keep the
phase information of the channel. Consider the electrical field associated with the
received optical signal and write it as {17, 50]

Es = Asexp[—i(axt + ¢s)], (4.6)
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where w, is the carrier frequency, A, is the amplitude, and ¢ is the phase. The optical

field associated with the local oscillator is given by a similar expression

Eio = Avoexp[—i(aot + ¢ro)], 4.7

where Ao, Wy, and ¢, are the amplitude, the frequency and the phase of the local

oscillator, respectively. The received power at the photodetector is given by

Pou = k|Es+ Erd|’, (4.8)

where k is a constant. The photocurrent is given by

I(t) = 2RAsA0 cos(ds — Puo) » 4.9)

where R is the detector responsivity. Then, we get the important relationship

I(t) < As. (4.10)

This is the situation in direct detection where I(t) is proportional to A,’. With Eq.
4.10 we can see that in coherent detection I(t) is proportional to A,, which is the
amplitude of the optical signal distorted by PMD after transmission. Thus the phase
information is preserved for use in channel estimation. This is the reason coherent

detection is needed in channel identification.

4.4 System Identification from Correlation
Suppose there is a linear time-invariant system (see Fig.4.4), with known input
d(t), unknown impulse response h(t), and output y(t), in this case, a matched filter d(-t) is

not yet considered. d(t) is a noise like random process. The statistics of d(t) and y(t) are
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known; y(t), h(t) and d(t) are related by the convolution integral [37]

y(t)= Th(u)d(t —u)du,

or y(t+1)= Th(u)d((tn)-u)du. 4.11)

Multiplying both sides by d*(t) gives

d(t)
——)LT_?_—;— &) >

Impulse response
of the channel Matched filter

Figure 4.4 Channel Estimation By Correlation

d*(D)y(t+t)=d "‘('c)Th(u)d((t +t)-u)du. 4.12)

Taking expectations over the ensembles gives
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E[d*(1)y(z + 1)] = E[d*(r)[ h(u)d((z + t)- u)ldu. 4.13)
This can be rearranged to give
E[d*(r)y(z+0)] = [ h(uE[d*(:)d(x +(t - w)ldu. (4.14)

-0

But those expectations can be replaced by the definitions of auto-correlation, R,,(t) and

cross-correlations R, (t) to get

Rey(t) = J' h(u)Raa(t — u)du,

or Ray(t) = h(t) * Raa(t). (4.15)

Taking the Fourier transforms with respect to t gives
Say(f) = H(f)Saa(f) . (4.16)

where S, (f) is the cross-spectral density of d(t) and y(t), Su(f) is the power spectral

density of d(t), and H(f) is the frequency response of h(t). Rearranging gives

_ Say(f)

H(f) = Sad(f)

4.17)

If d(t) is a white random noise process, then S, (f) is a constant and it makes the



calculation of the frequency response come directly from Eq. 4.17.
Eq. 4.17 is true for continuous and discrete time signals. Considering discrete-

time, we add a discrete matched filter d(-n) and the discrete output y(n) may be rewritten

as

y(n)=d(n)*h(n)*d(-n),

=d(n)*d(-n)*h(n), (4.18)
N

= [Z d(n-k)d(k)}- h(n) 4.19)
k=1

where N is the length of the training sequence and the first term in square brackets of
Eq. 4.19 is actually the autocorrelation of the training sequence. d(n) will contain only
{-1 1}. d(-n) means it is the time reversed form of d(n). d(-n) is also called a matched

filter, which is matched to d(n). d(n) is designed to have the property

0 k=0,

1 k=0, (4.20)

E[(d(n-k)d(n)]= {

Thus, if the length of sequence is infinite, the autocorrelation of the training sequence is

just a scaled Kronecker delta function (see Fig. 4.5). We will obtain the important result

y(n) = Nh(n). (4.21)

Because an optical communication system is a unipolar system, it means the transmitted

signal bits are selected from the set of {0 1}. We still use reversed sequences in the form
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{-1 1} for correlation which means that {-1 1} corresponds to {0 1} at the receiver. The
difference with correlation using unipolar data is that we need twice the sequence length

to get the same performance as the bipolar system. Eq. 4.21 will become

y(n)%h(n). 42)
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Figure 4.5 Convolution of the Training Sequences
and Its Matched Filter
Fig. 4.6 demonstrates the channel identification by correlation. Comparing the
original normalized impulse response of the channel with the estimated normalized
impulse response of the channel by correlation, using 4096 training bits, they are similar.
As N approaches infinity, they become identical. In real time, the number of training bits

is limited, thus some error will result. This error will be discussed in section 4.6.
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Figure 4.6 Demonstrate the Channel Identification by Correlation

4.5 Spread Spectrum

A major issue of concern in the study of digital communications is that of
providing for the efficient utilization of bandwidth and power. The primary advantage of
a spread-spectrum communication system is its ability to reject most interference whether
it be unintentional interference or intentional interference.

The output signal-to-noise ratio, SNR,, in terms of input signal-to-noise ratio,
SNR,, can be expressed as [31]

10log 1(SNR)o = 10log1(SNR): + 3 +10log1(PG). 4.23)
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where PG=N. (4.24)
The 3 dB term on the right-hand side of Eq. 4.23 accounts for the gain in SNR that is
obtained through the use of coherent detection (which presumes exact knowledge of the
signal phase by the receiver). This gain in SNR has nothing to do with the use of spread
spectrum. Rather, it is the last term, 10log,(PG), that is defined in Eq. 4.23, that is
referred to as the processing gain. Specifically, it represents the gain achieved by
processing a spread-spectrum signal over an unspread signal. Note that both the
processing gain PG and the spread factor N are equal to the PN sequence length. Thus,
the longer the PN sequence, the larger the processing gain. In the discrete case, N is just
the number of training bits.

We need to consider the processing gain because the power of the training signal is

much lower than the information-bearing signal (see section 4.3). For the purpose of
obtaining the impulse response of the channel, the information-bearing signal is noise
which needs to be suppressed. Fig. 4.7 demonstrates this idea. In this demonstration, the
power of the noise is 24 dB more than the power of the training sequences. In Fig. 4.7(b),
N equals 4096, corresponding to a processing gain of 36 dB. It is clear that the impulse
response is much different than the original impulse response of the channel. We owe
this error to the processing gain which is not big enough to suppress the noise; the error
comes from only 12dB gain above noise after correlation. This situation changes if the
training sequence length is increased to 65,536. Fig. 4.7(c) is much more similar to Fig.
4.7(a). The number 65,536 corresponds to a 48 dB gain. The signal is 24 dB above the

noise after correlation. That is the reason for the improvement. Ideally, if N is infinite,
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there should be no error because we have infinite processing gain.
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Figure 4.7 Effect of Processing Gain on System Identification

4.6 Quality Measure of Channel Estimate

There are some sources that cause the channel estimation error. One is the noise

from the photodetector and information-bearing signal. The second source comes from
the error between the autocorrelation of the PR training signal and a delta function. The
third is the time-varying characteristic of the channel. The fourth is the phase noise. We

will discuss them in detail.
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Most of the problem lies in the fact that the PMD fluctuations relate to
environmental changes, such as nonuniform stress and temperature variations, which
occur on a time scale ranging from seconds to microseconds [17]; it is necessary to
perform the channel identification within this time. In the simulation, the channel
identification occurs in 0.2 microseconds, and the processing gain over 60 dB is also
enough to suppress noise from the information-bearing signal and photodetector. In
general, the longer the training sequence, the smaller the misadjustment. For a time-
varying PMD channel, there is also a lag error, and the longer the training sequence, the
worse the lag error becomes. It is a tradeoff.

Phase noise in the local oscillator is not a problem. From Eq. 4.9, we know

In(t) o< cos(ds — ¢Lo) . (4.25)

Because coherent detection is used to obtain the impulse response of the optical fiber
channel with PMD, the phase difference between ¢, and ¢, contributes to another form
of time variation. The phase noise is not a problem because the local oscillator can be
made sufficiently stable in order that the time variation caused by PMD is more
significant.

To predict the performance of detectors that require an estimate of the channel
response, an appropriate measure of the channel estimation error itself must be

determined. The channel estimation error vector can be expressed as [7]

er(n) = h(n)- h(n), (4.26)

where E(n) is the estimated impulse response of the channel with PMD by correlation.
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One measure of the quality of a channel estimate is the ratio of total energy in the channel
response to total mean squared estimation error. The signal-to-estimation error ratio

(SER) evaluates to

ml 2
2 [bw)
— k=
SER=-£l— (4.27)
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Figure 4.8 Normalized SER’ Against the Length of Training Sequence



51

where m1 is the number of taps of the optical channel impulse response with PMD. Thus

a normalized SER can be defined, and is given by

SER
SER'= ——, 428
SNR (4.28)
where SNR is signal-to-noise ratio. This normalized SER is a convenient measure for
comparing the quality of different training sequences. Generally, the higher the SER’, the
better the sequence for channel estimation purposes.
Fig. 4.8 shows the SER' against the length of training sequence. In this case, the

SNR is 24 dB. The channel estimate’s quality is considered to be good if SER’ is greater

than 1. In other words, SER > SNR.

4.7 Symbol Rate Tap Spacing and Fractional Rate Tap Spacing

An equalizer tap spacing equal to the svmbol spacing has obvious advantages for
the digital implementation of the equalizer, since it permits operation of the entire
equalizer at the symbol clock rate, 1/T. However, unless there is no excess bandwidth,
the synchronous structure does not, by itself, realize the optimum linear filter. The fact
that the transfer function of the equalizer is periodic with period 1/T leads to two
problems [12,28]:

1). the equalizer cannot suppress noise at frequencies outside the Nyquist band,

Ifl<1/(2T).

2). adequate equalization is not possible for all symbol clock phases, since the equalizer
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cannot alter the relative magnitudes and phases of signal components which are more
than 1/T apart in frequency and which in the course of sampling the equalizer output
at clock rate 1/T become superimposed. A fractionally spaced equalizer (FSE) has
the ability to compensate for an arbitrary receiver sampling phase.

The limitations of the symbol rate equalizer are most easily evident in the

frequency domain. The signal spectrum of the equalizer is

Hr(f) =D wee 2T, (4.29)
k=1

It is clear from the above relationship that the symbol rate equalizer can only compensate
for the frequency characteristics of the aliased received signal.
Since the frequency response of the FSE (T'<T) is

Hr(f)=Y we- 27, (4.30)

k=i

we observe that the FSE compensates for the channel distortion in the received signal
before the aliasing effects due to symboi rate sampling. In other words, H.(f) can
compensate for any arbitrary timing phase. T/2-spaced equalizer is used in many
applications and we choose T°=T/2 in this thesis. It must be noted that although a FSE is

a T’-spaced equalizer, the output is still sampled at the symbol rate 1/T.
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Chapter 5

Equalization Analyses

This chapter will present the technique to calculate the coefficients of the equalizer

after the channel identification is obtained. Simulation results of equalization will be
given in terms of eye pattern and bit error rate. Quasi-analytical calculations are used to
estimate the bit error rate because they have an enormous saving in calculation compared

to exhaustive bit error rate simulations. A discussion will follow.

5.1 Equalization Coefficients

There are two methods to calculate the coefficients of the optical transversal filter

based on a known impulse response of the channel, the Wiener-Hopf equation and the
LMS algorithm. This inverse filtering problem may be stated as follows. Given the input
u(n) and the output of a filter h(n), which has a z transform of H(z), determine the inverse

filter h(n), such that
H(z)H(z)=1. 5.1)
where H,(2) is the z transform of h(n). The solution is to transmit a known sequence d(n)

into a channel h(n) followed by a filter h(n), to get the estimate of the signal d(n). The

performance criterion is the mean squared error (MSE)
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J = E[(d(n)-d(n))"]. (5.2)

Minimizing the MSE allows an efficient method to determine the optimum coefficients of

the equalizer [46]. Fig. 5.1 shows this problem, where D is the time delay.

>{ Delay, D
d@ _5{ Linear system_i(n)_> Adaptive filter dm .
h(n) h(n)

e(n)

Figure 5.1 Calculating Equalization Coefficients

5.2 LMS Algorithm

The other method used to obtain coefficients of the adaptive filter is the least mean
square (LMS) algorithm [31]. As in Fig. 5.1, the known input sequence u(n) applied to
this equalizer is produced by the transmission of a random binary sequence d(n) through a
known channel whose impulse response is h(n). From channel identification, the
question is how to get the coefficients of the equalizer filter h(n). To simplify notational

matters, we let
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dn =d(n),
da =d(n),and (5.3)
un -k =u(n-Kk). 5.4

Then, the output d(n) of the equalizer in response to the input sequence d(n) is defined

by the discrete convolution sum (see Fig. 5.1),

do = Wila-x, (5.5)
k=1

where w, is the weight of the k-th tap. The input sequence u, is assumed to have finite
energy.
Let e, denote the error signal defined as the difference between the desired

response d(n) and the actual response d(n) of the equalizer, as shown by

en= (- dn. (5.6)
Then, a criterion commonly used in practice is the mean-square error, defined by the cost
function

£ = E[e.?]. (5.7

The optimality condition for minimum mean square error may now be expressed

simply as

L 538
owe (58)
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In a corresponding fashion, we use the estimate \/N\/k(ﬂ) in place of the tap weight w,. A

recursive formula for updating the weights \/\\(k(n) of the equalizer is expressed as follows

Gvk(n +1)= G/k(n)+ Menlln -k . (5.9)

This algorithm is known as the least mean square (LMS) algorithm. Viewing n as the
index for the previous iteration, pe,u,, is the correction applied to it to compute the
updated value, and p is a small positive constant called the step-size parameter.

The LMS algorithm is summarized as follows.
1. Initialize the algorithm by setting Wi=0 , which means setting all the tap-weights of

the equalizer to zero at n=1.

2. Forn=1,23, ..., compute

dn = UnT\/bn,
€n= dn-an,
Wa -1 = Wa + perlln. (5.10)

3. Continue the computation until steady-state conditions are reached.

The LMS algorithm is often used first in a training mode followed by a decision-
directed mode. However, here the decision-directed mode is not needed. We are
interested in finding the optimal coefficients, w,. One complex method is to solve the
Wiener-Hopf equation. Alternatively, we are using the LMS algorithm to calculate w,

iteratively by feeding PR data into a filter whose impulse response is the known channel
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Figure 5.2 Demonstrating Inverse Filtering or Deconvolution

Fig. 5.2 shows the deconvolution or the coefficient calculation of the inverse filter
using the LMS algorithm. Fig. 5.2(a) shows the original impulse response of the channel
normalized to have unit energy. Fig 5.2(b) shows the calculated inverse filter coefficients
from the LMS algorithm, and the convolution of the channel and inverse filter is shown in

Fig 5.2(c). The leamning curve is shown in Fig. 5.2(d), u=0.025.
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5.3 Bit Error Rate Estimator

Over the past two decades, it has become increasingly common to resort to
computer aided techniques to estimate the performance of digital communication
systems. This trend has been particularly apparent in optical fiber communication. The
definition of performance almost universally used is the bit error rate (BER) or the bit
error probability. There are a number of ways such as Monte Carlo simulation and quasi-
analytical calculations to arrive at an estimate of BER, each with its own advantages and
disadvantages [20]. The Monte Carlo method is the least restrictive but the costliest in
terms of computer time. Because optical fiber communication is a very low bit error rate
system, which can be smaller than 10'°, the Monte Carlo method is not practical in
simulation. The quasi-analytical method combines a noiseless simulation with an
analytical representation of noise. Also, it is by far the most rapid and in a linear channel
is exact, insofar as the effects of Gaussian noise are concerned. Because of its speed, this
method is also suitable for sensitivity studies. The PDF statistics of the noise are not
sufficient in themselves to compute the BER because the system distortion from PMD
must be considered. In this approach, the simulation itself computes the effect of PMD
distortion in the absence of noise, and then superimposes the noise on the noiseless
waveform. To clarify the method, refer to Fig. 5.3. Fig. 5.3(a) shows a hypothetical
transmitted bit stream, while Fig. 5.3(b) shows the corresponding noiseless received
waveform at the input to the decision device. The value of this waveform at the k-th
sampling instant is denoted v,. When the noise is superimposed, the probability that the

resulting sum will produce an error is, P,, well approximated by:
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P« = Prob[noise > vi] = Ifndn w<0,
" (5.11)
=Prob[noise < vi] = jfndn vk >0,

where f, is the probability density function of the noise. For the Gaussian distributed

noise in this thesis, P, can be written as

P« = %—erfc(-&), (5.12)

N

where erfc stands for the complimentary error function, defined as

(@

Figure 5.3 Illustration of Quasi-analytical Method
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2 [ -]
erfc(x) = —= | exp(-y*)dy, 5.13
NS j' p(-y*Mdy (5.13)
and Q=&, (5.14)
c

where 0 is the variance of the noise at the receiver. The total (average) probability of

error is just

1 NI
Pe= — P 5
(Nl)kZﬂ: K, (5.15)

where N1 is the length of the sequences observed. Also implied in this procedure is the
independence of successive noise samples.

In this approach, as implied above, the simulation itself computes the noiseless
waveform, i.e. the sequence v,. Thus, the quasi-analytical description arises from the fact
that the individual computations (Eq. 5.11) can be expressed in a definite mathematical
form. If there are no fluctuations in the sampled signal amplitude, it would take exactly
one computation of the type (Eq. 5.11) to obtain the BER. If there is no knowledge of the
noise statistics, one would be obliged to use a Monte Carlo approach, and even with the
distortionless assumption on the signal we would still need to run a relatively lengthy
simulation to obtain the BER estimate. We can see, therefore, that assumption of the
noise statistics leads to a great reduction in computing efforts. Realistically, of course,

there will be fluctuations in signal amplitude, and these fluctuations will generally be a
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function of the particular sequence transmitted, as in the case of PMD. Thus, if the noise
introduced by the receiver is simulated as Gaussian noise with mean zero and variance o?,
performance estimates can be handled by a closed-form analysis. Short PR codes (on the
order of 1024 or 4096 bits) can be used to evaluate the combined effects of ISI from PMD

and Gaussian noise, thus minimizing the required computer time.

5.4 Simulation Results

The first set of simulations was performed for a moderate distortion, DGD equals
72 ps, less than the bit spacing 100 ps. For these simulations, the number of taps were
chosen large enough to reach the desired level of convergence. The number of training
bits is 2x10°. The number of samples per symbol is 10. The input signal is formed from
raised cosine pulses. The power of the training signal is chosen to be 30 dB lower than
the power of information-bearing signal. For the bandwidth considered, a T/2- tap spaced
FSE is used to compensate for PMD. The advantage of the T/2 spacing is that the
receiver performance is aimost independent of the receiver sampling phase.
The steps to obtain the simulation results are as follows.
1. Simulate the channel using PMD model detailed in chapter 3. In our simulation, we
use 500 segments to generate dispersion.
2. Obtain the impulse response of the channel using the correlation method described in
chapter 4.

3. Calculate the inverse coefficients of the optical filter using the LMS algorithm.
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4. Use the optical equalizer to compensate for the distortion. Results are displayed in
terms of eye patterns, pulse shapes and BER.

Fig. 5.4 shows the pulse before and after compensation. In this case, DGD=72 ps
and y=0.5 which is the worst power ratio between the fastest and the slowest PSPs. Fig.
5.4(a) is the input raised cosine, shown for 2° pulses at the transmitter. In Fig. 5.4(b), we
show the output pulses after the PMD distorted channel at the receiver. One can sce the
PMD distortion by comparing Fig. 5.4(a) with Fig. 5.4(b). After a 10-tap optical inverse

filter, we obtained the equalized pulses, shown in Fig. 5.4(c). Note that the process of
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Figure 5.4 Simulation of First-Order PMD Compensation in a
10 Gb/s Optical NRZ Signal (DGD=72 ps y=0.5)
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equalizing is completed in 0.2 ms, which is required in order to compensate for the effect
of time varying PMD.

The eye pattern technique is a simple but powerful measurement method for
assessing the data-handing ability of a digital transmission system. By superimposing the
pulses of Fig. 5.4, we calculate the eye diagram and the results are shown in Fig. 5.5
which shows the changes in diagrams. Fig. 5.5(a) is the eye diagram before the channel,

Fig. 5.5(b) is the eye diagram of the output pulse after PMD distortion, while Fig. 5.5(c)
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Figure 5.5 Eye Pattern Before and after Compensation
(DGD=72 ps y=0.5)
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shows the improvement after compensation. After compensation the eye is much more
open than before equalization. To compute the bit error rate at the receiver, a QA
approach, described in section 5.4, is used so that the amount of simulation time required
to obtain an accurate estimate for the probability of error can be reduced. The receiver
noise is modeled as Gaussian distributed. Short PR codes, 2048 bits are used to evaluate
the performance.

Fig. 5.6 shows the effects of compensation in the frequency domain. It consists of

the spectra of the launched signal. the received signal before compensation and the
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Figure 5.6 Simulation of RF Spectra of Received Signals Before and After
Compensation (DGD=72 ps y=0.5)
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received signal after compensation.

Fig. 5.7 shows the bit error rate before and after compensation. These are the bit
error rates for the cases of before compensation, after compensation and back to back,
meaning no optical channel present. From the diagram we can see the improvement. It
can be seen at a BER=10"?, the power penalty is about 8 dB before compensation; the
power penalty is reduced to 0.2 dB after compensation. Thus a penalty reduction of 7.8
dB is demonstrated. In this case the delay between the slow and fast PSPs is 72 ps and

the power splitting ratio is y=0.5.
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To demonstrate the ability of this technique to compensate large DGD, more than
100 ps, we simulated the severe distortion. In this case, the DGD is 114 ps and y=0.5.
Fig. 5.8(a) is similar to Fig 5.5(b) and Fig. 5.8(b) is similar to Fig 5.5(c) except for
the difference in DGD. We can see this technique also works when the eye is closed.
Before compensation the eye was closed; see Fig. 5.8(a). After a 15-tap optical filter, the
eye is open; see Fig. 5.8(b). Other parameters are same as the case when DGD=72 ps.
Fig. 5.9 is similar to Fig. 5.4 except that PMD distortion is much more severe.
Fig. 5.9(a) shows the input pulses at the transmitter. The distorted output pulses are

shown in Fig. 5.9(b) whose eye pattern is Fig. 5.8(a); the compensated output pulses are

Eye-Pattern Diagram
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Figure 5.8 Eye Pattern Before and After Compensation
(DGD=114 ps y=0.5)
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shown in Fig. 5.9(c) whose eye pattern is Fig. 5.8(b).

We need more equalizer taps when the distortion is worse, 15 taps are used in the
case of DGD=114 ps compared to 10 taps in the case of DGD=72 ps. It can be concluded
from the above simulations that this techrique works well no matter how much distortion

is present, provided we have enough taps.
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Figure 5.9 Simulation of First-Order PMD Compensation in a
10 Gb/s Optical NRZ Signal (DGD=114 ps y=0.5)

5.5 Discussion

From the previously described two cases of distortion, we demonstrated the
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success of compensation based on channel identification to compensate for the typical
PMD distortion. The results are general even though this thesis is confined to specific
values of DGD in the fiber simulation and a particular raised cosine shaped input signal.
To keep the phase information, coherent detection is used in channel identification. A
T/2 spaced equalizer sampling rate is needed, while the output sampling rate is still 100
ps. The drawback of an FSE is that more taps are needed compared with a symbol spaced
equalizer. The impulse response of the optical channel with PMD can change slowly due
to temperature variations on the order of a few seconds. In this case tracking of the

changes by the equalizer is not difficult.
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Chapter 6

Conclusions

6.1 Summary

This thesis has presented the ability of equalizers to compensate first-order PMD.

This technique can be easily extended to second-order or higher-order PMD, if the optical
fiber is assumed to be a linear system. In other words, this thesis proposed a method to
reduce ISI from first-order, second-order, or higher-order PMD simultaneously.

Through numerical simulation, the model of an optical fiber with first-order PMD
was studied. The eye patterns were analysed with various levels of PMD distortion which
showed clearly that this distortion heavily depends on PSPs and the power ratio between
the two PSPs. The statistics of DGD are also given. The difficulty of PMD
compensation arises from its time varying characteristics.

The details of how to obtain the impulse response of the optical channel with PMD
were discussed. This channel identification is based on correlation with the training
sequences. The requirement of the training with sequences in a limited time was also
considered. Successful compensation of PMD in terms of eye pattern and bit error rate
was proved. The price to be paid for the compensation is that coherent detection is
needed in the compensator to keep the phase information.

Deconvolution is needed to obtain the coefficients of the optical equalizer filter

after obtaining the impulse response of the channel. An LMS algorithm is used in
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implementing the deconvolution.

A fractional rate tap spacing rather than a symbol rate tap spacing equalizer was
used due to bandwidth considerations. The advantage of a fractional rate tap spacing
comes from its ability to compensate for an arbitrary receiver sampling phase. However,
it needs more taps than the symbol rate tap spacing filter.

Moreover, the benefit of using an optical transversal filter was studied because
of the large available bandwidth of optical waveguides. This filter was developed for

ultrahigh-speed real time optical signal processing.

6.2 Future Research

Throughout this thesis the influence of the chromatic dispersion introduced by the

fiber and polarization dependent losses were neglected. The influence of these factors
should be considered in a more thorough analysis.

The PMD model is restricted to first order. A second order PMD model is not
presented in this thesis.

This thesis is confined to specific values of DGD of the fiber simulation and to a
particular raised cosine shaped input signal. The impact of a change in these factors has
yet to be fully assessed. A time varying PMD model is too complicated to be investigated
in this thesis.

Although we showed successful compensation through simulation, the simulation

results need to be verified by future experiments.
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Appendix A

Appendix A presents the Matlab source code used for the simulation of PMD and
compensation. The entire system named “Sys.m” is used to simulate the distortion with
PMD and the effect of the equalization. The purpose of these two subroutines called
“Iden.m” and “Equali.m” is channel estimation by correlation and calculation of the
optical filter coefficients, respectively. An additional function “Pmd.m” is included to
model the impulse response of the optical channel with PMD. Finally the “DGD.m”

program permits the search for the PSPs and DGD calculation.



% ---------------- System.m (DGD=72 ps) ------------ .-
% Simulation of PMD, and its compensation based on channel estimation.

clear all;

global deltat;

deltat=72*1e-12; % 75ps

fsample=10*10e9;

t0=clock;

N=2A10;

Nin=2/20; % number of training sequence
fcutoff=2.*5e9;

beta=(15+45)*p1/180;

% ----------Model of PMD------=-----
[t,hr,hi]=pmd(fsample,N,deltat, fcutoff);
hrl 1=hr(1,:);

hr21=hr(2,:);

hr12=hr(3,);

hr22=hr(4,:);

inputh=((1))*cos(beta);

inputv=((1))*sin(beta);

outputho=conv(inputh,hrl | )+conv(inputv,hr21);
outputvo=conv(inputh,hr12)+conv(inputv,hr22);
normal=sqrt(sum(outputho.A2)+sum(outputvo.A2));
hrl 1=hrl 1/normal;

hr21=hr21/normal;

hri2=hrl12/normal;

hr22=hr22/normal;

a=randint(2/6-1,1,2);

a=[a’zeros(1,5)];
input=(rcosflt(a,10e9,10*10e9, normal’,1,1));
figure;

subplot(4,1,1);

plot(input);

inputh=((input))*cos(beta);
inputv=((input))*sin(beta);
inputhd=(sqrt(input))*cos(beta);
inputvd=(sqrt(input))*sin(beta);
outputho=conv(inputh,hr1 1 )+conv(inputv,hr21);



outputvo=conv(inputh,hr12)+conv(inputv,hr22);
outputhod=conv(inputhd,hrl I }+conv(inputvd,hr21);
outputvod=conv(inputhd,hr12)+conv(inputvd,hr22);
outputhe=outputho*cos(beta);
outputve=outputvo*sin(beta);
outputee=outputhe+outputve;
subplot(4,1,2);
plot(outputee);
outputd=outputhod.A2+outputvod.A2;
subplot(4,1,3);
plot(outputd(500:1200));
subplot(4,1,4);
eyescat(outputd,10e9/2,10*10e9);
a=randint(Nin-1,1,2);
a=[a’0};
inpute=rcosflt(a,10e9,10*10e9, normal’,1,1);
inputh=((inpute))*cos(beta);
inputv=((inpute))*sin(beta);
outputho=conv(inputh,hrl I )+conv(inputv,hr21);
outputvo=conv(inputh,hr12)+conv(inputv,hr22);
outputhe=outputho*cos(beta);
outputve=outputvo*sin(beta);
outpute=outputhe+outputve;
for k=1:Nin
hhl(k)=outpute(523+10*(k-1));
hh2(k)=outpute(528+10*(k-1));
end
clear outpute;
inputh=((1))*cos(beta);
inputv=((1))*sin(beta);
outputho=conv(inputh,hrl1)+conv(inputv,hr21);
outputvo=conv(inputh,hr12)+conv(inputv,hr22);
outputhe=outputho*cos(beta);
outputve=outputvo*sin(beta);
outpute=outputhe+outputve;
figure;
subplot(4,1,1);
stem(outpute(470:580));

% -----—-- Channel Identification
hidenhl=iden(hhl,a);
hidenh2=iden(hh2,3);
lenl=length(hidenhl);




hiden=[];
for k=1:lenl
hidenb=[hidenh (k) hidenh2(k)];
hiden=[hiden hidenb];
end
length(hiden);
index_max = find (abs(hiden)== max(abs(hiden)));
hiden=hiden(index_max-2:index_max+3);
hiden=hiden/sqrt(sum(hiden.?2));
subplot(4,1,2);
stem(hiden);
clear hhl;
clear hh2;

% ------- Equaliztion Coeffecicents-------
hiden=hiden.’,
maxh=find(abs(hiden)==max(abs(hiden)));
=maxh;
N=12;
wvector=equali(hiden,D,N);
subplot(4,1,3);
stem(conv(hiden’,wvector’));
wvector=wvector’,
a=[1 zeros(1,1)];
inm=rcosflt(a,10e9,10*10e9, hormal’1,1);
inm=[inm(5) inm(10) inm(15)]:
wvector=conv(wvector,inm);
wvector=wvector(1:10);

% --=-=-=-- 10G Converted to 100G----------
subplot(4,1,4);
stem(wvector);
len2=length(wvector);
w=(];
for k=1:len2
wl=[wvector(k) zeros(1,4)];
w={w wl];
end

% --- --PMD Compensation-----—---
c=conv(outputee,w);
[B,A]=butter(4,0.13);

c=filter(B,A,c);




figure;

subplot(3,1,1);

plot(c);

subplot(3,1,2);
eyescat(c,10€9/2,10%10e9);

Yo------- Eye Pattern-------

load Dhrl110;

load Dhr120;

load Dhr210;

load Dhr220;
inputh=(sqrt(input))*cos(beta);
inputv=(sqrt(input))*sin(beta);
outputho=conv(inputh,hr! 1)+conv(inputv,hr21);
outputvo=conv(inputh,hr12)+conv(inputv,hr22);
outputdO=outputho.A2+outputvo.”2;
figure;

subplot(3,1,1);
eyescat(outputd0/10e19,10e9/2,10*10e9);
ylabel(CAmplitude (a)’);

xlabel(’);

subplot(3,1,2);
eyescat(outputd,10e9/2,10*10e9);

title(’ );

xlabel(’ ?);

ylabel(’Amplitude (b)?);

subplot(3,1,3);
eyescat(c,10e9/2,10*10e9);
ylabelCAmplitude (c)?;

title(’);

%---------Pulse Shape-------=------
figure;

subplot(3,1,1);

plot(input);
ylabelCAmplitude (a));
axis({0 700 -.5 1.5]);
subplot(3,1,2);
plot(outputd(500:1165)/6);
ylabel(’Amplitude (b));
axis([0 700 -.5 1.5));
subplot(3,1,3);
plot(c(520:1220)/2);

81



ylabel(’Amplitude (c)’);
xlabel('Time [ps]);
axis([0 700 -.5 1.5]);
save wvecl w
etime(clock,t0)/60
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function [t,hr,hi]=pmd(fsample,N,deltat,fcutoff)

% This function simulates the impulse response of optical fiber channel with first-order

PMD.

c=2.998e8;

lambda=1550*(1e-9);

foffset=0*c/lambda ;

hfli=1;

hf21=1;

hf12=1;

hf22=1;

K=25;

tk=deltat/(sqrt(K));

rl=rand(1,K);

thetal=pi*2*(r1-0.5);

r2=rand(1,K);

theta2=pi*2*(r2-0.5);

for k=[0:N-1],

cl=l;

c2=1;

fl=k*(fsample/N);

f2=k*(fsample/N)-fsample;

for n=1:K,

a=[exp(j*thetal(n))*cos(theta2(n)) exp(j*thetal(n))*sin(theta2(n))
-exp(-j*thetal(n))*sin(theta2(n)) exp(-j*thetal(n))*cos(theta2(n))];

bl=[exp(j*tk*pi*(f1+foffset)) 0

0 exp(-j*tk*pi*(fl1+foffset))];
b2=[exp(j*tk*pi*(f2+foffset)) 0

0 exp(-j*tk*pi*(f2+foffset))];
cl=cl*a;
cl=cl*bl;
c2=cl*a;
c2=c2*b2;
end

c=c1*rect(fl,fcutoff)+c2*rect(f2,fcutoft),
hfl 1(k+1)=c(1,1);

hf21(k+1)=c(1,2);

hf12(k+1)=c(2,1);

hf22(k+1)=c(2,2);

end

y(1,:)=hfll;

y(2,:)=hf21;

y(3,:)=hf12;

y(4,:)=hf22;



ht(1,:)= fsample*ifft(y(1,:));
ht(2,:)= fsample*ifft(y(2,:));
ht(3,:)= fsample*ifft(y(3,:));
ht(4,:)= fsample*ifft(y(4,:));
t=[-N/2:1:(N/2)-1)/fsample;
ht=[ht(:;,[N/2+1]:N) he(;,[1:N/2])};
hr = real(ht);

hi = imag(ht);

84
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function hiden=iden(channel_input,a)

% This function obtains the impulse response of optical fiber with PMD by correlation.
pn=(2*(2>0.5)-1);

noise_variance = 0*10/(2) ;

channel_noise = sqrt(noise_variance) * randn(size(channel_input)) ;

channel_output = channel_input + channel_noise ;

reversed_indices = [ length(pn) : -1 :1];

matched_filter = conj( pn( reversed_indices ) ) ;

matched_filter_output = conv ( matched_filter , channel_output );

index_max = find (abs(matched_filter_output)== max(abs(matched_filter_output)))
index_max=length(a);

matched_filter_output(index_max);

width_around_max =5;

indices_plot =[ index_max-width_around_max : index_max+width_around_max];
width_around_max|1 =100;

indices_plotl =[ index_max-width_around_max| : index_max+width_around_max1];
hiden2=matched_filter_output(indices_plot);
hiden1=matched_filter_output(indices_plotl);

hiden=hiden2;

weight=sum(hiden2.A2)/sum(hidenl.A2)



function wvector = equali( hvector, D, N)

%  This function calculates coefficients of the optical equalizer.
%  wvector are the equalizer taps

%  Dis the delay

% N is the number of taps in w

%  Example:

% clf

% h=[0.1-5.2 04].;
% h=[11]";

%  bitdelay=15;

%  Ntaps=30;

%  wvector = lineareql ( h, bitdelay , Ntaps ) ;
%  subplot(2,1,1)
%  stem(wvector)
%  subplot(2,1,2)
%  stem(conv(h,wvector))
uncertainfactor] =6000; % training length
uncertainfactor2 = 0.025; % adaptation parameter
wvector =zeros (N, 1 );
rvectorshort = wvector ;
Nbits = uncertainfactor] * max ([ length(hvector) DN ]);
bvector =2 * ( rand(Nbits,1) <0.5)-1;
rvector = conv2 ( bvector , hvector ) ;
dvector = [ zeros(D,1) ; bvector ] ;
Ntrunc = min([ length(rvector) length(dvector) ])
rvector = rvector([ 1:Ntrunc]) ;
dvector = dvector([ 1 :Ntrunc]) ;
mu = uncertainfactor? ;
for i=1:Ntrunc,
rvectorshort = [ rvector(i) ;
rvectorshort(1:(length(rvectorshort)-1))] ;
dhat = (wvector.”) * rvectorshort ;
err= dvector(i) - dhat;
if 1>0.9*Ntrunc
mu=0.004;
elseif 1>0.7*Ntrunc
mu=0.008;
elseif 1>0.15*Ntrunc
mu=0.012;
end
wvector = wvector + mu * err * rvectorshort ;
end



% DGD.m
% This program calculates DGD and searches PSP of the optical channel with PMD.
clear all;
clear figure;
a=[1 0];
[input,t]=rcosflt(a,10e9,10*10e9, hormal’1,1);
figure;
subplot(2,1,1);
plot(input);
load Dhrl |;
load Dhr21;
load Dhrl2;
load Dhr22;
for n=1:180
mtl=0;
beta=n*pi/(180);
inputh=(sqrt(input))*cos(beta);
inputv=(sqrt(input))*sin(beta);
outputho=conv(inputh,hrl 1)+conv(inputv,hr21);
outputvo=conv(inputh,hrl2)+conv(inputv,hr22);
outpute=outputho.A2+outputvo.A2;
len=length(outpute);
for m=1: len

mtl=mtl+m*(outpute(m)*2);
end
mt2=sum(outpute.*2);
mt=mtl/mt2;
icenter(n)=mt;
end
alphal=find(max(abs(icenter))==abs(icenter));
alpha2=find(min(abs(icenter))==abs(icenter));
dgd=max(icenter)-min(icenter)
alphal
alpha2
subplot(2,1,2);
plot(outpute);





