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ABSTRACT

A mathematical procedure aimed to compensate Polarization Mode Dispersion by

reducing the root mean square pulsewidth of a signal through the optimization of the

launching and receiving states of polarization has recently been proposed.  It is the objective

of this thesis to explore the nature of such compensation method. Analytically exact

solutions are presented for the case in which the optical fiber consists of one, two and three

segments of Highly-Birefringent (Hi-Bi) fiber.  Numerical generated results are presented

for a fiber consisting of an arbitrary number of segments of Hi-Bi fiber. 

The solution of the mathematical procedure shows, in all cases, the existence of two

sets of orthogonal input and output states of polarization which allow an output pulse to be

narrower than the input pulse.  The cost for obtaining a narrower pulse at the output of the

fiber is a power loss.
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1  INTRODUCTION

1.1  MOTIVATION

In recent years, the exponential rise in the demand for high speed optical

communication systems [1] has led to the introduction of multigigabit per second

communications equipment into the market [2].  The increase in the transmission rate and

the possibility of using optical amplification [3] to extend the communications link over

even longer distances have created new technical challenges.  The bandwidth of the

communication system is limited by optical and electrical components and also by the

properties of the optical fiber itself.

A major limiting factor, known as Polarization Mode Dispersion (PMD), constitutes

the ultimate impairment for the transmission of high speed optical signals over the already

embedded optical fiber network [4]. 

Digital signals propagating through an optical fiber with PMD may be broadened

during transmission and as a consequence spread beyond their allocated bit slot and interfere

with neighbouring bits.  The distortion introduced by PMD becomes relevant for systems

operating at data rates of 4.8 Gbit/s or higher [5] in the absence of chromatic dispersion [3].

In this thesis we examine the dependence of the frequency response of an optical

fiber with PMD on the input and output states of polarization of a signal transmitted through

it.  The goal of our calculations will be to prove the hitherto unnoticed fact that it is possible

to achieve maximum pulsewidth compression of a signal transmitted over an optical fiber

with PMD when its input and output states of polarization are adequately chosen. 
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1 root mean square.

1.2  THESIS CONTRIBUTIONS

This thesis solves for the first time, analytically and numerically, a mathematical

formulation proposed by Chen et. al. [7] which allows the rms1-pulsewidth of a signal to be

minimized at the output of the fiber when PMD is the only impairment.

The solution of the mathematical analysis postulated by Chen et. al. [7] shows the

existence of two sets of input and output states of polarization which minimize the rms-

pulsewidth of the received signal.  These states of polarization depend on the shape of the

transmitted signal.  In general they are different from other commonly adopted [6] sets of

input and output states of polarization which are used to minimize PMD induced distortion.

Here, we introduce the idea of leveraging the dependence of the frequency response

of an optical fiber with PMD on the input and output states of polarization of the signal in

order to minimize its rms-pulsewidth at the output.  This allows us to perform the equivalent

of equalization in the optical domain by only adjusting the state of polarization of the signal.

1.3  THESIS OVERVIEW

Chapter 2 gives an introduction to the concept of polarization mode dispersion.  The

necessary tools to represent an arbitrary state of polarization using Jones calculus and the

Poincaré sphere are presented.  At the end, the statistical nature of PMD is described.

Chapter 3 presents in detail the mathematical formulations introduced by Chen et

al. [7] and the fundamental eigenvalue equations required to minimize the rms-pulsewidth

of a signal at the output of an optical fiber with PMD.  Algorithms which can recursively
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solve those eigenvalue equations are illustrated at the end.

Chapter 4 briefly describes the analytical model of an optical fiber with PMD.

Through simulation, the probability distribution function of the envelope of its complex

lowpass time impulse response [8] is shown to be Rayleigh.

Chapter 5 outlines the mathematical analysis followed in order to obtain the exact

solutions to the eigenvalue equations introduced in chapter three when a Gaussian-shaped

pulse is used as the input signal.  The solution of the eigenvalue equations is obtained

through exhaustive computer simulation using analytic formulas for the case in which the

optical fiber consists of 1, 2 and 3 segments of highly-birefringent fiber.  Finally, the more

generic case of an optical fiber made up by a large number (500) of sections of highly-

birefringent fiber is considered.  The solution to the eigenvalue equations for such a fiber

is numerically calculated and presented.

Chapter 6 studies the special case in which only the input or output state of

polarization is allowed to vary in order to minimize the rms-pulsewidth of the output signal.

The final performance of varying both, input and output states of polarization, is compared

through computer simulation with the case in which only one of them is varied.

Chapter 7 gives a summary of the thesis work and indicates future lines of research.

The appendices contain the proof of mathematical expressions used throughout the

thesis as well as the analytic formulas used in chapter 5.  The simulation of a five channel

wavelength division multiplexing (WDM) system is presented and the Matlab code needed

to numerically solve the pulsewidth eigenvalue equations when the optical fiber consists of

an arbitrary large number of sections of highly-birefringent fiber is given. 
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2  BACKGROUND

Polarization Mode Dispersion, PMD, has increasingly attracted the attention of

researchers, fiber manufacturers and system planners due to several reasons.  Different

techniques have recently succeeded in keeping chromatic dispersion under control [3] and

chromatic dispersion compensation modules have become commercially available, making

the previously neglected effects of PMD a dominating factor.  The introduction of optical

amplifiers has allowed a considerable increase in the length of the communications link

before electronic regeneration of the signal is required.  This however, also allowed PMD

effects to accumulate over even longer distances.  Researchers in the late 1980's and early

1990's realized [9,10] that PMD would have to be addressed because of its significant

impact on the performance of multi-gigabit per second optical communication systems

operating over the embedded optical fiber network.  The purpose of the present chapter is

to explain the phenomenon known as PMD and to provide readers with some of the key

concepts and tools used throughout the rest of this thesis.

2.1 JONES CALCULUS 

The state of polarization of a signal at any given frequency can be uniquely

represented by two parameters.  Those parameters account for the relative magnitude of the

horizontally and vertically polarized components of the electric field and the phase lag

between them [11].  In general, a signal with a given electric field, E(t), polarized along a

particular state of polarization has a total vector field, E, given by

,   (2.1a)



5

where

  (2.2b)

and γx and γy are the absolute phases of each component.  The vectors x and y representing

horizontal and vertical states of polarization in eq 2.1 are in general, “Jones vectors”

[11,12].

A Jones vector is essentially a 2 by 1 unitary vector with complex components.  Each

complex component accounts for the magnitude and absolute phase of the electric field

polarized in either the horizontal or vertical directions.  Thus, a Jones vector, ξ,

representing some arbitrary state of polarization is given by

.       (2.2)

As only the relative phase between components is needed to define a state of polarization,

eq. 2.2 can be slightly modified and re-expressed as

        ,     (2.3)

where γ = (γy - γx)/2 and the magnitude components (Ax and Ay) are now a function of the

angle α.  The absolute phase term in the right hand side of eq. 2.3 can be neglected as the

phase difference between the horizontal and vertical components is given by γ.  Throughout

this thesis, the Jones vector representing an arbitrary state of polarization, ε, will be given

by

,                (2.4)

where both γ and α are real numbers.  The signal in eq. 2.1a can be more compactly 
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expressed in terms of the Jones vector ε as

        .                               (2.5)

The use of Jones vectors to represent states of polarization provides a simple way

of mathematically manipulating signals with a particular state of polarization.  However, it

becomes difficult to directly appreciate the changes in the state of polarization of a signal

when the complex elements of a Jones vector change.  An alternative way of representing

a state of polarization is through the use of Stokes vectors.

2.2 STOKES  VECTORS AND THE POINCARÉ SPHERE

The Stokes vectors offer a qualitative way of representing a state of polarization,

[12]. A Stokes vector is a 4 by 1 vector with real elements,

   .      (2.6)

In eq. 2.6, s0 represents the total normalized power of the signal, s1 is the difference

in the intensities of the horizontally and vertically polarized components of the signal, s2 is

the difference between the intensities of the components polarized with tilt angles [12] of

π/4 and 3π/4 rad. and s3 is the difference between the left and right circularly polarized

components.

Any arbitrary state of polarization can be represented as a point in a Cartesian three-

dimensional space with axes s1, s2 and s3.  Each axis corresponding to one of the stokes

parameters s1, s2 and s3 and ranging from -1 to +1.  The Poincaré sphere [11] is a powerful
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Fig 2.1  The Poincaré sphere [14].

tool for the visualization of any state of polarization.  The center of the Poincaré sphere

coincides with the origin of the three

dimensional Cartesian space with axes

s1, s2 and s3 and its radius is equal to s0.

Any fully polarized signal [12,13] can

be represented as a point on the surface

of the Poincaré sphere as indicated in

fig. 2.1.  All the linear states of

polarization lie on the equator of the

sphere and all the left (right) [12,13]

elliptical and circular states of polarization are located in the upper (lower) hemisphere.  The

states of polarization where the π/4 (3π/4) tilt angle dominates over the 3π/4 (π/4) tilt angle

fall in the right (left) half of the Poincaré sphere.  Finally, all the points between the equator

and the poles on the sphere represent elliptical states of polarization and the north (south)

pole represents left (right) circularly polarized light [11-13].  It is possible to obtain the

Stokes vector components for a given state of polarization from its corresponding Jones

vector [11-13] by using

                ,                (2.7)

where α and γ are the parameters of the Jones vector in eq. 2.4.  Throughout this thesis, the

Jones vector representation of a state of polarization is used for quantitative calculations

whilst the equivalent Stokes vector and the Poincaré sphere are used for the qualitative
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1A particular mode propagates within a fiber with an effective refractive index :  
n =ψ(ω)/ko, where ψ(ω) is the propagation constant, ko=ω/c is the free space wave
number, ω is the angular optical frequency and “c” is the speed of light [3].

Fig. 2.2 a) Extrinsic and b) Intrinsic mechanisms of
fiber birefringence.

representation of the state of polarization.

2.3  BIREFRINGENCE IN OPTICAL FIBERS

A single mode fiber operating in the HE11 mode, actually supports two degenerate

modes which are orthogonally

polarized [3].  These degenerate

modes will have the same mode

index, n1, only when the core of

the fiber is perfectly cylindrical,

(i.e. it has a uniform diameter)

refer to fig. 2.2.  

The degeneracy is

broken if the core exhibits some

degree of asymmetry. The

causes of ellipticity in the core can be intrinsic (non uniform stress introduced during the

drawing or cooling stage of fabrication) or extrinsic (stress introduced by cabling, micro or

macro-bending, twisting side pressure, etc.) [15].  

The former cause is more common with older fiber which was made with less

geometrical control than nowadays, while the latter one can occur due to environmental
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Fig. 2.3  Beat length, LB  [14].

factors (temperature changes for example, [16-18]) or during the cabling process.  Once the

symmetry of the core has been altered, the two degenerate supported modes will experience

a different mode index, i.e. the fiber will become Birefringent.  The difference between

these two indexes is known as the degree of birefringence, ∆neff = |nx - ny|.  As a result of

Birefringence, a signal launched into the fiber at a particular state of polarization, ε, will be

split into two identical, linearly polarized signals having their electric field vectors aligned

with the symmetry axes of the fiber.

At each frequency, a phase lag is introduced between those two components due to

the fact that each one propagates through the fiber experiencing different mode indexes.

This progressive slippage of the two orthogonally polarized modes will, in turn, cause the

overall state of polarization of

the signal to evolve with

distance (refer to fig. 2.3),

effectively tracing out a circle

on the surface of the Poincaré

sphere.  

The distance over

which the state of polarization

undergoes a full rotation on the Poincaré sphere (i.e. experiences a phase shift of 2π between

its components) is called the Beat Length and it is defined as: LB=λ/∆neff.  Fibers for which

∆neff is large (~ 10-4) are called Highly-Birefringent (Hi-Bi) fibers.  In general, the net effect

of launching a signal with an arbitrary state of polarization into a piece of Hi-Bi fiber will
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be that of obtaining two replicas of the input signal, polarized at different orthogonal states

of polarization and with a relative time shift between them.  The input state of polarization

which yields the lowest value of n is called the fast input state of polarization and it is

customarily represented as εa-.  Likewise the input state of polarization which yields the

highest value of n is known as the slow input state of polarization, εa+. 

In general, a signal with a state of polarization εa+ (εa-), launched into a birefringent optical

fiber will come out of it polarized along εb+ (εb-).  For the special case of a Hi-Bi fiber, εa+

= εb+, εa- = εb- and both coincide with the symmetric axes of the fiber.  

This signal splitting and time delaying phenomenon is known as Polarization Mode

Dispersion, PMD and to date, represents the ultimate hurdle for the massive deployment of

multi-gigabit per second optical communication systems.

2.4 FIRST ORDER  POLARIZATION MODE DISPERSION

During the mid 1980's [6] the necessary concepts and analytical tools required to

describe PMD were introduced.  In a real optical fiber, the degree of birefringence, ∆neff,

does not remain constant throughout its length but changes randomly as a result of

fluctuations in the core shape and non-uniform stress acting on it [20].  In fact, a real optical

fiber can be thought as being a “special” Hi-Bi fiber which has been cleaved into segments

of random length and then fusion spliced back with random fusion angles in between each

segment.  

There exists, however, at any given frequency ω two input, εa+(ω) and εa-(ω), and 
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  2 The inner product of two complex vectors u and v is defined as <u,v> = u+v and “+”
represents the transpose complex conjugate (Hermitian) of a vector or a matrix.

two corresponding output, εb+(ω) and εb-(ω), states of polarization which render the shortest

and the longest propagation time through the fiber.  The difference in the transmission time

of two signals polarized along the states of polarization producing the shortest and longest

propagation times is known as the Differential Group Delay (DGD) and it is usually

represented [6] as ∆τ = τ+ - τ-.  Where τ+ (τ-) represents the longest (shortest) transmission

time. 

In the absence of polarization dependent losses, the input (output) states of

polarization εa+(ω) and εa-(ω), (εb+(ω) and εb-(ω)) are mutually orthogonal2, i.e., <εa+(ω),

εa-(ω)> = 0, (<εb+(ω), εb-(ω)> = 0).  These states of polarization are commonly [6] referred

to as Principal States of Polarization (PSPs).  The differential transmission time of two

undistorted signals polarized along mutually orthogonal states of polarization constitutes

what it is known as the first order effect of PMD.

Both the PSPs and the DGD are assumed to be independent of frequency if only first

order PMD effects are being considered.  When a signal with an electric field Ein(t) and

polarized along a state of polarization ϕ is launched into a birefringent optical fiber which

exhibits only first order PMD effects, the vector field of the signal at the output of the fiber,

Eout, [20], is given by

      ,       (2.8)

where the input state of polarization, ϕ, was expressed in terms of the orthonormal basis of

the input PSPs according to
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.    (2.9)

The constants c+ and c- represent the projection of ϕ onto εa+ and εa- respectively, i.e., c+ =

ϕ+εa+ and c- = ϕ+εa-.  From eq. 2.8 it is clear that unless, c+ = 0 or c- = 0 or τ+ = τ-, the receiver

will “see” two signals with different magnitudes arriving at different times.  The latter will

cause intersymbol interference (ISI) when ∆τ is roughly equal to or greater than one tenth

of the bit period [21], refer to fig. 2.4.  Eqs. 2.8 and 2.9 also tell us that, for a given ∆τ, the

worst interference will be introduced when ϕ falls between εa+ and εa-.  

Fig. 2.4a  Signal at the input of an optical fiber with first order PMD

Fig. 2.4b Signal at the output of an optical fiber with first order
PMD.
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The time duration of Ein(t) will also influence the amount of interference generated.

A return to zero (RZ) coding scheme is for example, more resistant to first order PMD

impairments than a non return to zero (NRZ) coding [22].  In fact, the bit error rate (BER)

in an Intensity Modulated / Direct Detection (IM/DD) system has been shown to strongly

depend on the input state of polarization and ∆τ, [21].  A conservative design guideline for

a 10 Gbps system with first order PMD allows for a maximum value of only eight ps for ∆τ

in order to permit a power penalty of only 1dBm during 20 mn every year while maintaining

a BER of 10-9 [21].

The next important concept to be introduced before describing second order PMD

effects is that of mode coupling.  As mentioned before, a real fiber can be modelled by a

large number of segments of Hi-Bi fiber of random length and with random fusion angles

between them.  Each one of those segments has its own PSPs and a portion of the signal

propagates on each of them.  At the boundary between the sections, the signal will be

resolved into new pairs of local PSPs belonging to the next segment.  The process of

rotating the optical field into the new PSPs of the following segment is known as mode

coupling and it does not introduce any loss in the power of the signal whenever polarization

dependent losses (PDL) are negligible.  

It is the mode coupling phenomenon which makes the DGD and the PSPs of the

fiber to be frequency dependent [19].  The mode coupling process also allows the DGD to

grow proportionally to the square root of the length of the link [23].  The DGD does not

grow linearly with length in highly mode coupled fibers because occasionally, the coupling

between segments reduces the accumulated DGD, i.e., when the slow PSP of one segment
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is very nearly aligned with the fast PSP of the next or previous segment the DGD of both

segments will cancel each other out.

2.5 SECOND ORDER  POLARIZATION MODE DISPERSION

As indicated in the previous section, both the DGD and the PSPs are assumed to be

independent of frequency (at least within the spectral range of the signal) when only first

order PMD effects are considered.  In reality however, the DGD and the PSP are frequency

dependent to some extent.  The linear frequency dependence of the DGD and the PSPs

constitutes what it is known as second order PMD effects [6,24-26].  The implications [24],

systems impact [9,27-30] and pulsewidth effects [24,30,31] due to second and higher order

PMD have been thoroughly studied.

According to Poole et al. [6,24], an optical fiber exhibiting PMD can be treated as a linear

medium described by a complex 2 by 2 transfer matrix T(ω), and in the absence of

polarization dependent losses that matrix is given [6] by

      ,    (2.10)

where β(ω) is in general a complex number given by

,  (2.11)

z is the transmission distance, ρ represents the fiber loss and ψ(ω) is the propagation

constant. In eq. 2.10, U(ω) is a unitary matrix defined [6] as

,  (2.12)

where |u1(ω)|2 + |u2(ω)|2 = 1. The Jones vector notation can be used to represent the vector

field Ein of a real lowpass signal [8], Ein(ω), polarized along ϕ at the input of an optical
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fiber, 

   .  (2.13)

As we are treating the fiber as a linear medium, the complex lowpass vector signal [79] at

the output of the fiber can be expressed by

    ,              (2.14)

where ∆ω = ω + ωo and ωo is the optical angular carrier frequency.

According to the phenomenological approach introduced by Poole and Wagner [6],

a signal of a given frequency ω, launched into a birefringent optical fiber on one of its input

PSPs at the frequency, εa±(ω), will come out at the other end polarized on one of the output

PSPs at that frequency, εb±(ω), and with a given phase θb±(ω).

Let us, for the sake of simplicity, assume that, ϕ corresponds to one of the input

PSPs at the carrier frequency, i.e., ϕ = εa±(ωo).  With the use of eq. 2.13, eq. 2.14 can be

expressed as

(2.15a)

or alternatively,

     , (2.15b)

where |Eout±(ω)| is the magnitude of the complex lowpass output signal.  The output phase,

θout±(ω) can be expanded in a Taylor series around the carrier frequency and approximated

by the first three terms as

     ,  (2.16)

where δω = ω − ωo and θout,n± = dn θout±(ω)/dωn |w = wo, n=0,1,2.  The first term in the right
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3When the chromatic dispersion is exclusively owed to PMD it is known as polarization
dependent chromatic dispersion.

4Where <•> means the average of “•” over frequency.

hand side of eq. 2.16 is an arbitrary phase and can be neglected, the second term represents

the transmission time of the signal and the third term represents the frequency dependence

of the transmission time, commonly known as chromatic dispersion3 [3].  Thus, a signal of

a given frequency transmitted along the slow input PSP, εa+(ω), will experience a

transmission time of τ+ = θout,1+ and will be polarized along εb+(ω) at the output of the fiber.

Likewise, a signal of a given frequency transmitted along the fast input PSP, εa-(ω), will

experience a transmission time of τ- = θout,1- and will be polarized along εb-(ω) at the output

of the fiber.

Therefore, if θout,2± ≠ 0 then the differential group delay will depend on frequency,

which is one of the second order effects of PMD.  The other effect being the frequency

dependence of the input and output PSPs.

Both second order effects are actually correlated [29] in such a way that when <∆τ>

is high4, the rate of change of εb±(ω) with frequency is low and vice versa [28,29].  The

impact of second order PMD on the pulsewidth of the signal at the output of the fiber has

recently been studied in both, the frequency [30-33] and the time domain [34].  It has

generally been concluded that, whenever <∆τ> is less than one tenth of the bit period,

second order PMD effect can be neglected [28].  However, second order PMD effects may

also interact with the chromatic dispersion of the fiber and introduce fluctuations on the

transmission performance of the system [33].  When second order PMD is not negligible,
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5A highly coherent laser source [3] is said to be “chirped” if the carrier frequency
produced by it drifts over time.

the frequency content of the signal becomes a concern [35,36] and low chirp5 modulation

techniques (such as the use of external modulators) are required.

An analysis of the probability of experiencing a “performance outage” (when the bit

error rate increases beyond 10-9) due to first and second order PMD effects [37] shows

however, that if <∆τ> ≤ T/10 (where “T” is the bit period), a relatively high laser chirp will

not cause additional system degradation due to second order PMD.  

Nevertheless, it is the frequency dependence of the input and output PSPs which

causes most of the harmful effects for an IM/DD system, [27,29,33,38] and can even render

a coherent system useless [3] or considerably diminish the effectiveness of several recently

proposed first order compensation schemes [31,39-51].

2.6 THE STATISTICAL NATURE OF POLARIZATION MODE DISPERSION

The intersymbol interference caused by pulse spreading due to PMD has a different

origin from the ISI caused by the chromatic dispersion in the fiber [52].  The latter one is

deterministic, grows linearly with distance and can be compensated by using dispersion

compensating fiber [53] or any other commercially available dispersion compensation

technique [3].  

PMD however, is a stochastic process [54].  The random configuration of

birefringence which causes PMD depends on the stress induced by spooling, cabling,

temperature changes and any other environmental factor that may cause the core of the fiber
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to deviate from being perfectly cylindrical.  The statistical properties of PMD have been

experimentally and theoretically studied [54-57].  It was found, [58], that the evolution of

DGD at a particular frequency over time yields a Maxwellian probability density function

[54] given by

 ,    (2.17)

where ∆τrms = <∆τ2>1/2.  

Interestingly, as a result of the multiple factors which contribute to the randomly

varying birefringence along the fiber, the statistics of PMD at a given frequency over time

are the same as the statistics of PMD at a given time over a broad enough frequency range

[54].  Even more interesting is the fact that the statistics of PMD over either time or

frequency for a single fiber are the same as the statistics of PMD over an ensemble of fibers

[58].  This makes PMD an ergodic process of course.

It is this highly statistical nature of PMD which makes it difficult to compensate.

The PMD dependence on environmental factors [17,36,58,60,61] introduces a time variation

in the frequency response of the fiber, which in turn implies the need for an adaptive

compensation technique.  Not only does the frequency response of the fiber evolve with

time but also with the input and output [33,50,52] states of polarization.  A successful PMD

compensation scheme should therefore, be capable of tracking relatively fast variations

[19,62] in the frequency response of the fiber.
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3 PULSEWIDTH NARROWING

This chapter will present, in detail, the mathematical derivation, first introduced by

Chen et al. [7], which establishes the theoretical framework necessary in order to minimize

the rms-pulsewidth of a signal transmitted through an optical fiber with PMD.  It is

noteworthy to mention that the theoretical work by Chen et al. does not make any

simplifying assumption about the orders of PMD in the fiber or the shape of the transmitted

signal. The system under consideration is also presented and mathematically described.  At

the end of this chapter a set of algorithms is introduced, the purpose of which is to vary the

input and output states of polarization in order to minimize the rms-pulsewidth of a signal

before it reaches the detector.  The latter is equivalent to searching for an absolute minimum

in a four dimensional space. 

3.1 THE SYSTEM  CONSIDERED

In order to clearly appreciate the dependence of the frequency response of the fiber

on the input and output states of polarization of the signal being transmitted, eq. 2.14 can

be rewritten as 

      (3.1)

where TL(ω) = T(ω+ωo) =  T(∆ω)  is the complex lowpass equivalent of T(ω) [8].

Signals can be launched into a fiber on any state of polarization with the help of a

Polarization Controller, (PC)[63,64].  A PC is essentially a set of waveplates with different

retardation values [65], each of which can be rotated in such a way that the complex Jones

transfer matrix resultant, TPC, maps an input state of polarization, εx, into any desired output
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state of polarization on the surface of the Poincaré Sphere, εy, according to 

      (3.2)

Receiving the signal at the output of the fiber along a particular state of polarization,

χ, means projecting the signal polarized along εout(ω) onto χ at every frequency, i.e., <χ+,

εout(ω)> for all ω.  To that end, a Polarization Analyser, (PA) is required.  A PA can be built

by cascading a PC and a Polarization Beam Splitter, (PBS). 

In fig. 3.1, ε1 and ε2 represent two mutually orthogonal states of polarization respectively.

The purpose of the latter is to spatially separate two orthogonal states of polarization

incident on it. The PC will transform those frequency components of Eout polarized along

χ into a particular state of polarization (ε2 for example), which can be extracted by the PBS

and subsequently detected.  Refer to fig. 3.1.  The overall effect will be the extraction of

those frequency components polarized along χ in such a way that the receiver only “sees”

that portion of Eout.  This can be mathematically expressed as

      (3.3)

Fig. 3.1 A system with a polarization analyzer at the end.
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1Refer to appendix “A”

Where Ex(ω) is the signal seen by the detector and we made use of eq. 3.1.  In eq. 3.3, HL(ω)

represents the complex lowpass frequency response of the fiber and is given by

     (3.4)

3.2  BASIC  DEFINITIONS 

This section gives some of the fundamental definitions required for the pulsewidth

analysis presented in the next sections.  The Fourier transform definitions used here are 

  (3.5a)

   .   (3.5b)

The rms-pulsewidth of the signal seen by the detector is defined [7,32,33,66] as

        ,    (3.6)

where the n-th moment of t, [32], is given by 

     (3.7)

and the asterisk ,”*”, denotes complex conjugate.

It is straightforward to prove1  that the first two moments of t can be expressed in the

frequency domain [32] as
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        (3.8a)

  (3.8b)

The complex lowpass time impulse response of the optical fiber can be obtained by taking

the inverse Fourier transform of eq. 3.4 as

   (3.9)

Therefore, for a given optical fiber exhibiting PMD, described by a complex Jones

transfer matrix TL(ω) in a system like that from fig. 3.1, the time impulse response seen by

any signal propagating through it will depend on the state of polarization at which the signal

is launched and received [50].

3.3 PULSEWIDTH  EQUATIONS

In this section, the mathematical expressions for the rms-pulsewidth as a function

of the input and output states of polarization are presented [7].  From equations 3.3 and 3.8,

the first and second moments of t can be expressed as

(3.10a)
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 (3.10b)

The input, ϕ, and output, χ, states of polarization are degrees of freedom of the

system and they are assumed to be independent of frequency.  Therefore, by using eq. 3.1,

we can rewrite eq. 3.10 as 

  

                                                                                                                                        (3.11a)

 (3.11b)

The expressions within the braces in eq. 3.11 are not a function of frequency, but a

function of the input state of polarization, ϕ.  For that reason, the notation can be simplified

[7] by defining

  (3.12a)

 (3.12b)

(3.12c)
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where Tj, Sj and Pj are complex 2 by 2 matrices.  Equation 3.11 is now reexpressed as

            (3.13a)

           (3.13b)

For a given value of the input state of polarization, ϕ, eq. 3.6 can be expressed as a

function of the output state of polarization, χ, by using eq. 3.13

 (3.14)

Had we changed the order of the terms within the integrals of eq. 3.10, we would

have obtained the following result 

 (3.15a)

(3.15b)

Eq. 3.15 can also be arranged in a way similar to eq. 3.10 by using eq. 3.1, yielding the

following result

  (3.16)
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        .  (3.16b)

In this case, similar to eq. 3.11, neither of the expressions within the braces in eq.

3.16 is a function of frequency but a function of the output state of polarization, χ.

Therefore the notation can be further simplified, [7], by defining 

(3.17a)

(3.17b)

        , (3.17c)

where Tc, Sc and Pc are 2 by 2 complex matrices.  Thus, eq. 3.15 will now be given by

(3.18a)

(3.18b)

For a given output state of polarization, χ, eq. 3.6 can be expressed as a function of

the input state of polarization, ϕ, by using eq. 3.18, to give

   .  (3.19)
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3.4 CONSTRAINED  MINIMIZATION

Eq. 3.14 (or eq. 3.19) represents the case in which the objective function, σx
2, is

expressed as a function of the output (input) state of polarization while the input (output)

state of polarization is held fixed.  A constrained minimization using Lagrange multipliers

will be carried out in eq. 3.14 and 3.19.  In both cases the minimization constraint, will be

that the 2 by 1 complex vectors ϕ and χ represent a Jones vector state of polarization, i.e.

ϕ+ϕ =1, χ+χ =1, respectively.  The primal equation [67] for the constrained minimization

of eq. 3.14 is given by

.   (3.20)

We can define a new function, h(χ), needed for the minimization procedure,

(3.21a)

   , (3.21b)

where eqs. 3.14 and 3.20 were used and η is the Lagrange multiplier [85]. Differentiating

eq. 3.21 with respect to χ+, we will obtain the adjoint [67] equation,

(3.22a)

           (3.22b)
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The notation can be further simplified by defining

(3.23a)

                       (3.23b)

Substituting eq. 3.23 into eq. 3.22b will produce the following eigenvalue equation, (after

reordering terms)

                        (3.24a)

or

           (3.24b)

It is possible to follow a similar procedure but starting from c(ϕ) = 1 - ϕ+ϕ and h(ϕ ) =

σx
2(ϕ) + ζc(ϕ), where σx

2 is obtained from eq. 3.19 and ζ is the Lagrange multiplier in this

case.  The eigenvalue equations produced will be

           (3.25a)

or

     .            (3.25b)

The eigenvalue equations 3.24 and 3.25 are the fundamental results presented by

Chen et al. [7].  The next sections will discuss how to use them in order to find the input and

output states of polarization which produce the minimum rms-pulsewidth. 
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3.5  METHOD OF SOLUTION

Both eigenvalue equations, 3.24b and 3.25b are derived independently.  Each one,

however, tries to minimize σx
2 by adjusting only one state of polarization while the other

is held fixed.  It must be pointed out that M1(ϕ,χ) in eq. 3.24b and M2(ϕ,χ) in eq. 3.25b are

functions of both the input and the output states of polarization.  Therefore the solution to

eq. 3.24b and 3.25b will require a set of initial values for ϕ and χ.

3.6 OPTIMIZATION OF THE RECEPTION STATE OF POLARIZATION

If the input state of polarization is held fixed, eq. 3.24b can be solved recursively by

assuming an initial value for χ, χo.  If a value close to the optimum value of χ, χopt, is not

known beforehand (which is usually the case), an arbitrary initial value of χo, is chosen.

Every time that the eigenvalue equation 3.24b is solved, it will produce two eigenvectors,

χ1 and χ2.  Each of those values of χ can be used along with ϕ in eq. 3.14 to calculate σx(χ1)

and σx(χ2).  The output state of polarization yielding the smallest value of σx will become

the new value of χo.  The process is repeated until a figure of merit (FOM) reaches certain

limit.  At that point, it is assumed that the search for χopt has converged and σx
2 has the

smallest possible value for the given input state of polarization, ϕ.  The figure of merit used

here is defined as

      ,           (3.26)

where χnew (χold) represents the value of χ which minimized σx in the current (previous)

iteration.  The convergence limits used here were empirically chosen and range from 10-6
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to 10-14.  The search for χopt will thus stop when χnew is almost the same as χold . Fig. 3.2

shows a flowchart of the procedure described. 

3.7 OPTIMIZATION OF THE TRANSMISSION STATE OF POLARIZATION

The procedure for optimizing the input state of polarization, ϕ, and the convergence

limits are similar to those described in the previous section, but this time assuming that the

output state of polarization is held fixed.  Figure 3.3 shows the flowchart corresponding to

the search for ϕopt.  The figure of merit, FOMϕ, in this case is given by

    ,              (3.27)

where ϕnew (ϕold) corresponds to the value of ϕ which minimized σx in the current (previous)

iteration.

3.8 OPTIMIZATION OF THE TRANSMISSION AND RECEPTION STATES OF

POLARIZATION

The procedure for optimizing the transmission and reception states of polarization,

ϕ and χ is, in essence, the same as that presented in the two previous section.  Here,

however, we will combine the two individual searches.  Initial arbitrary values of ϕ and χ

are chosen, and a new figure of merit, FOMj,c, will simply be defined as: FOMj,c = FOMj

+ FOMc.  The convergence limit for the new figure of merit also falls in the same range as

that from the previous cases.

Fig. 3.4 shows the flowchart for the search of ϕopt and χopt.  In all the optimization
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Fig. 3.3  Flowchart for the optimization of
the input state of polarization, ϕ.

procedures described, the search for ϕopt and χopt is repeated a number of times, each time

using different, randomly chosen values of ϕo and χo.  This is done with the purpose of

avoiding convergence to possible local minimum points.  The results of the searches are

presented in chapters five and six.

                 Fig. 3.2 Flowchart for the optimization 
                of the output state of polarization, χ.
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Fig. 3.4  Flowchart for the optimization of the input, ϕ, and output, χ, states of
polarization.
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1In reality a waveplate is a birefringent crystal with well defines optical axes [12].

Fig 4.1  Single waveplate [12].

4 FIBER SIMULATION

Due to its highly statistical nature, PMD research relies to an unusual extent on

computer simulations.  The purpose of this chapter is to introduce the mathematical model

of an optical fiber exhibiting PMD. The model is used throughout  the rest of the thesis and

in this chapter is utilized to explore the statistical nature of the time impulse response owed

to PMD. 

4.1 THE WAVEPLATE  MODEL

A waveplate can be thought1 as being a short section of highly birefringent fiber

which strongly guides light along two states of linear polarization, coincident with the

symmetry axes of the fiber.  The waveplate introduces a phase shift between the

orthogonally polarized components of a signal propagating through it.  Fig. 4.1 shows the

simplest case of a pulse being transmitted through a single waveplate with fast and slow

axes corresponding to the lower

and higher values of the refractive

index respectively. 

Fig. 4.2 illustrates the

dephasing of the two orthogonally

polarized components at the output

of a waveplate at a particular

frequency. 
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Fig. 4.2  A Single frequency component delayed by a waveplate [14].

The widely used approach [50,65,66,68-70,74] for modelling an optical fiber with

some given mean DGD, <∆τ> consists of cascading a large number, N, of waveplates, each

one introducing a random delay, ∆τi , and with their fast and slow axis randomly rotated as

shown in fig. 4.3 .

Each of the waveplates in fig. 4.3 is characterized by a complex 2 by 2 Jones matrix

given by 

     ,    (4.1)

Fig. 4.3 PMD modelled by a series of cascaded waveplates [14].
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2 Throughout this thesis the notations <∆τ> and <DGD> are used interchangeably, as it
often appears in the literature, to represent the mean differential group delay over
wavelength or frequency.

where the first matrix introduces a rotation of the optical field into the frame of reference

of the local principal states of polarization and the second one accounts for the DGD on

each of the orthogonally polarized components.  The rotation angles of every segment, θi,

are random with a uniform distribution from 0 to 2π radians; the values of ∆τi (in

picoseconds, ps) are also drawn from a uniform distribution between 0 and a maximum

value of DGD, ∆τmax.  Under these conditions, U(ω) in eq.2.12 can be obtained as the

successive multiplication [50,66,69] of the Jones matrices of each individual waveplate,

         .                 (4.2)

The use of eq. 4.2 produces an optical fiber [65] with a mean DGD2, <∆τ> given by

    .    (4.3)

As we wish to focus on the nature of the changes introduced solely by PMD on a

single optical pulse, we will neglect the effect introduced by the fiber chromatic dispersion

and fiber loss unless it is indicated otherwise. Using numerical approximation methods, [71-

72], it is possible to calculate the DGD as shown in fig. 4.4a) for an optical fiber made up

of 700 different waveplates and with <∆τ> = 20 ps.  Fig 4.4b) depicts the principal output

states of polarization on the Poincaré sphere for the same wavelength range as in 4.4a).

Second order PMD effects are present in this case, the differential group delay depends on

the frequency, ∆τ = ∆τ(ω), and so do the principal output states of polarization, εb± = εb±(ω).
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3 The notation Re[•] and Im[•] represent the Real and Imaginary parts of the complex
number “•” respectively.

4.2 THE STATISTICAL NATURE OF THE TIME IMPULSE RESPONSE

The envelope of the complex lowpass time impulse response [8] of an optical fiber

with PMD given by eq. 3.9 can be expressed3 as 

        .    (4.4)

As indicated in chapter two, the multiple birefringence along the fiber will change

randomly over time.  These changes will in turn, make hL(t) a stochastic quantity. In order

to explore the statistical nature of hL(t), the probability distribution function of |hL(t)| was

estimated through simulation.

The time varying characteristics of the fiber were accounted for by using an

ensemble of 10,000 statistically independent fibers, each one consisting of 500 waveplates

with a mean DGD of 20 ps.  The input (output) state of polarization, ϕ (χ), was randomly

chosen at the beginning of the simulation and held fixed thereafter.  

Fig. 4.4b Variation of the output PSPs over
1 nm.

      Fig. 4.4a Variation of DGD over 1 nm.
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          Fig. 4.5  Probability distribution of |hL(t1)|.

For each fiber, |hL(t1)| was numerically calculated from eq. 4.4 for some arbitrary

time instant, t1. U(ω) was calculated from eq. 4.2. The histogram for the frequency of

occurrence of the different values of |hL(t1)| is shown in fig. 4.5 along with Rayleigh and

Maxwellian fits.

From fig. 4.5 we can see that a

Rayleigh probability distribution is

a good approximation to the

distribution of the data rendered by

the simulation.

This hitherto unnoticed fact

implies that at least from the linear

time variant system point of view,

a system as that from fig. 3.1

subject to time varying PMD will be equivalent to a wireless communications channel

exhibiting multipath propagation on a signal transmitted through it [73].  The analogy with

a wireless channel suggests the possibility of introducing a relationship between the DGD

and figures of merit such as the rms Delay Spread [73] in order to study the system

limitations imposed by PMD.  This however, is beyond of the scope of this thesis and

should be considered a topic for future research.
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1The electrical signal at the receiver is proportional to the optical power incident on it for an
IM/DD system [8] as the one considered here.

5  SOLUTION TO THE NARROWING EIGENVALUE EQUATIONS

This chapter will make use of the waveplate model previously introduced in order

to analytically and numerically solve the eigenvalue equations presented in chapter three.

The analytically exact solution will be calculated for the case in which the optical fiber

consists of one, two and three segments of Highly-Birefringent fiber, each one having a

different DGD, τ0, τ1 and τ2 and with different fusion angles in between them.  The solution

for the more general case of a fiber made up of “n” segments of Hi-Bi fiber is numerically

obtained. The existence is revealed, of two orthogonal input states of polarization, ϕ+, ϕ-,

and two orthogonal output states of polarization, χ+, χ-, under which the rms-pulsewidth of

the output signal is the smallest possible. 

5.1 BASIC  DEFINITIONS

In order to simplify the calculations and as a good approximation to a real system,

a Gaussian shape of the transmitted optical power1, Pin(t),  is assumed such that the input

lowpass electric field is given by

,    (5.1)

where “τ” is the rms-pulsewidth of Pin(t).  Unless indicated otherwise, τ = 25ps, which is

appropriate for a 10 Gigabit per second, Gbps, system and the carrier frequency will be  
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ωo = 1216.1 rad/ps which corresponds to a carrier wavelength, λc, of 1.55µm.  The input

electric field can be expressed in the frequency domain by using eq. 3.5 as

  (5.2a)

and .              (5.2b)

For the sake of simplifying the calculations in the following sections, we will define the

following set of functions (the proof can be found in appendix “A”)         

  (5.3a)

    (5.3b)

      .           (5.3c)

In general, the normalized Jones vectors representing the input, ϕ, and output, χ,

states of polarization will be represented [12] as

  (5.4a)

      ,   (5.4b)

with γ1,γ2,α1 and α2 being real.  Fig. 5.1 shows a schematic system in which the optical fiber

in fig 3.1 consists of three segments of Hi-Bi fiber with different DGDs, τ0, τ1 and τ2 and

fusion angles, θ1 and θ2, between them. Here, θ2 is measured with respect to θ1.
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The one segment case can be obtained by aligning the three segments together, θ1

= θ2 = 0o. Then the total DGD introduced will simply be the sum of the individual DGDs,

τtot = τ0 + τ1 + τ2, [25].  The two segment case can also be retrieved by aligning the first two

or the last two segments, i.e. θ1 = 0o or θ2 = θ1.  Without loss of generality, the analysis for

the three segment case will be presented in detail and the other two cases will then be

derived by setting the appropriate values of θ1 and θ2.

According to the waveplate model introduced in the previous chapter and eq.4.2,

the complex Jones transfer matrix of the 3-segment fiber in fig.5.1 is given by

,       (5.5)

where we have neglected the chromatic dispersion and fiber losses.  For the sake of

simplicity we choose θ0 = 0o.  After multiplying out all the terms indicated in eq. 5.5 and

having simplified the notation, the complex lowpass Jones transfer matrix, TL(ω) is

obtained from T(ω) by a simple frequency shifting [25], TL(ω) = T(ω+ωo) and is given by

Fig. 5.1 Three segment system.
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   (5.6a)

and its corresponding Hermitian is,

.    (5.6b)

The newly introduced set of variables is defined as follows

       .       (5.7)

The final results can be further simplified by introducing the following vectors,

        .           (5.8)

In order to assess the difference between the signal rms-pulsewidths and power

levels at the output of PC1 and PA in figures 3.1 and 5.1 we will make use of the effective

rms-pulsewidth defined here as

 (5.9a)
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where the rms-pulsewidth of the output signal, σx, is given by eq. 3.6.

The power of the input signal is normalized to one due to the Gaussian shape of the

transmitted signal and the power of the signal at the output of the PA will be

  (5.9b)

where we made use of eq. 3.3. Pf and Pc are given by equations 3.12c and 3.17c respectively.

The following sections, will outline the mathematical procedure required to derive

the analytically exact expressions for Tj, Sj , Pj, Tc, Sc and Pc as functions of the variables

and functions defined in this section.  The actual results are presented in Appendix B.

5.2 POW ER CALCULATIONS, Pϕ

From eq. 5.2, 5.4 and 5.6 we can see that the term within the integral of eq. 3.12c

is a complex 2 by 2 matrix,

.      (5.10)

Thus, Pj will in turn be a complex 2 by 2 matrix given by

 (5.11a)

where

.  (5.11b)

By making use of eqs. 5.2-4, 5.6, 5.10 and 5.11 we obtain, after considerable mathematical

manipulations the results presented in eq. B.1.



42

5.3 POW ER CALCULATIONS, Pχ 

As in the previous case, the term within the integral in eq. 3.17c will be a 2 by 2

complex matrix given by

   (5.12)

Therefore, Pc in eq. 3.21c will also be a complex 2 by 2 matrix,

  (5.13a)

where

.   (5.13b)

The components of Pc in eq. 5.13 are obtained from equations 5.2-4, 5.6 and 5.13.  The final

expressions for Pc1 to Pc4 are given in eq. B.2.

5.4 FIRST MOMENT  CALCULATIONS, Tϕ 

Here, the procedure is essentially the same as that for the power calculations, except

for the intermediate algebraic steps (not shown) which become increasingly more

elaborated. The terms within the integral in eq. 3.12a will make up a 2 by 2 complex matrix.

         .        (5.14)

Accordingly, eq. 3.12a can be reexpressed as a 2 by 2 complex matrix given by

(5.15a)

where

. (5.15b)
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The set of analytical expressions for Tj1 to Tj4 can be found in eq. B.3.  Equation B.3 was

obtained by using equations 5.2-4, 5.6 and 5.15.

5.5 FIRST MOMENT  CALCULATIONS, Tχ 

The calculations for Tc are as elaborated as those for Tj and only the final results are

shown in appendix B.  The terms within the integral of eq. 3.17a will produce the following

matrix

      (5.16)

Substituting eq. 5.16 back into eq. 3.17a gives 

           (5.17a)

where

               .                    (5.17b)

Equation B.4 is finally obtained by using eqs. 5.2-4, 5.6 and eq. 5.17.

5.6 SECOND MOMENT  CALCULATIONS, Sϕ 

Although the mathematical procedure required to derive the analytically exact

expressions for the second moment terms, Sj and Sc, is essentially the same as that from

preceding sections, the algebraic manipulations are in general more intricate.  Here, all the

intermediate steps are skipped.  Only the initial steps are illustrated and the final results are

included in appendix B.  After multiplying out the terms within the integral of eq. 3.12b, a

2 by 2 complex matrix results.
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         .   (5.18)

Substituting eq. 5.18 back into eq. 3.12b yields

           (5.19a)

where

.            (5.19b)

The final result in eq. B.5 makes use of equations 5.2-4, 5.6 and 5.19.

5.7 SECOND MOMENT  CALCULATIONS, Sχ 

Finally, the expression for the second moment factor, Sc, is calculated by applying

the same procedure.  We begin by multiplying all the terms within the integral of eq. 3.17b.

         .  (5.20)

Substituting back eq. 5.20 into eq. 3.17b will result in another 2 by 2 complex matrix,

 (5.21a)

where

    . (5.21b)

The use of equations 5.2-4, 5.6 and 5.21 along with lengthy algebraic manipulations renders

the result for Sc1 to  Sc4 which can be found in eq. B.6.

To this point we have derived the necessary mathematical expressions for the

evaluation of the eigenvalue equations presented in chapter three.  In the following sections,

we will gradually incorporate those results into the searching procedure depicted in fig.3.4
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in order to explore the possibility of obtaining an output signal with an rms-pulsewidth 

smaller than the rms-pulsewidth of the input signal. 

5.8 THE ONE SEGMENT CASE

In this section, we investigate the effect of varying the input and output states of

polarization in a single segment of Hi-Bi fiber.  To that end we resort to our three segment

model and align all the segments, i.e. θ1 = θ2 = 0o.  We also choose a typical value of 20ps

(τtot=20ps)  for the DGD introduced by the fiber.  As all the segments are aligned, the total

DGD is equal to the sum of the DGDs of each individual segment [25].   Without loss of

generality we can select τ1 = τ2 = τ3 = 20/3 ps. 

The mathematical expressions for Tj, Sj , Pj, Tc, Sc and Pc contained in appendix B

were evaluated for the chosen values of θ1, θ2, τ0, τ1 and τ2 and used in the searching

procedure illustrated in fig. 3.4.   In order to find the values ϕopt and χopt which minimize

σx
2, the search was repeated 100 times, each time with different initial values ϕo and χo.  In

all cases a convergence limit of 10-10 was used.  The reason for choosing such limit was

simply that neither an increase nor a decrease seemed to have any effects on the final results.

The Poincaré sphere is used in fig. 5.2 to represent the initial and final values of the input

state of polarization.

 Figure 5.2a shows the randomly selected initial search points for ϕ and fig. 5.2b

shows the final values of ϕ rendered by the search after it reached the convergence limit.

The results for the output state of polarization, χ, were similar and are omitted.  It seems
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apparent that at least for the case of a single segment of Hi-Bi fiber, no unique solution

exists.  

To show an example of one of the solutions reached, we randomly picked one set of final

input and output states of polarization and used it to transmit and receive our Gaussian

shaped signal of eq. 5.2.  The time domain output signal, Ex(t), can be obtained by taking

the inverse Fourier transform of eq. 3.3.  Figure 5.3 depicts that result.  

Although we have been able to

achieve an effective rms-pulsewidth

reduction of 3.07 ps, (σeff = -3.07ps ), the

narrower pulse obtained contains only

6.69% of the original power.  This power

reduction will, in general, become the price

to be paid for the improvement obtained of

not only avoiding PMD induced distortion

Fig. 5.2a   Initial ϕ  values. Fig. 5.2b   Final ϕ values.

        Fig. 5.3 Input and output pulses for one     
        segment of Hi-Bi fiber.
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but producing a narrower output pulse.  In this section, we have analytically shown, for the

first time to our knowledge, that is possible to obtain an output pulse which is narrower than

the input pulse when only one segment of Hi-Bi fiber is used by appropriately adjusting the

input and output states of polarization.  The narrowing effect observed here cannot be

credited to the influence of second or higher order PMD effects, [24,30,34,75], as these are

absent for the case of a single segment of Hi-Bi fiber.  From the linear systems point of

view, the dependence of the time impulse response on the input and output states of

polarization in eq. 3.9 is responsible for the narrowing effect.  It all reduces to finding the

appropriate values of χ and ϕ which produce a time impulse response (frequency response)

capable of minimizing the figure of merit under study, in this case the rms-pulsewidth. A

microscopic analysis of the phenomenon [76] reveals that the narrowed pulse is obtained

as a result of the constructive interference of two pulses.

5.9 THE TWO SEGMENT CASE

Here we allow one additional degree of freedom with respect to the previous case.

Our three segment model of fig.5.1 will reduce to the two segment case by setting θ1 = 0o

and by allowing θ2 to move freely.  Although additional simulations revealed that the

amount of rms-pulsewidth narrowing achievable ultimately depends on the DGD introduced

by each segment of birefringent fiber and the rms-pulsewidth of the input signal, the exact

correlation between those parameters was not further investigated.  We will therefore

confine ourselves to the use of relatively small values of DGD.  For the two segment case

we somewhat arbitrarily choose, τ1 = τ2 = τ3 = 15ps.
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Fig. 5.4d   Final χ values.

The analysis begins by setting θ2 = 45o.  The search procedure of fig. 3.4 was

repeated 60 times with a convergence limit of 10-13 and 60 different, randomly selected,

initial values of χ and ϕ.  The convergence limit was chosen empirically by looking at the

quality of the obtained results.  Figures 5.4a through 5.4d show the initial and final values

of χ and ϕ .

Unlike the previous single segment case, we can see from fig. 5.4 that all the original values

of χ and ϕ have migrated to two diametrically opposite locations on the surface of the

Fig. 5.4a   Initial ϕ values. Fig. 5.4b   Final ϕ values .

Fig. 5.4c   Initial χ values .
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Poincaré sphere.  

From here on, the diametrically opposite solutions for the input (output) state of

polarization will be referred as ϕ+ and ϕ- (χ+ and χ-).  As ϕ+ and ϕ- (χ+ and χ-) lie on

opposite points on the Poincaré sphere, then it must be true that ϕ+
+ϕ- = 0 (χ+

+χ-=0) [12].

Fig. 5.5 shows the normalized input and output pulses for a signal transmitted along ϕ+ and

received along χ+.  It can be seen that a pulse reduction of 5.85 ps with respect to the input

pulse has been achieved.  However the output pulse contains only a very small fraction of

the power of the input pulse.

The influence of the fusion

angle θ2 on the minimum rms-

pulsewidth reachable and the power

level of the output signal was also

studied through simulation.  Fig.

5.6 shows the dependence of σeff

and Px on θ2 when the fusion angle

is rotated from 10o to 80o in 1o

increments.  For each value of θ2, 60 different initial values of ϕo and χo were used along

with a convergence limit of 10-14.

A somewhat surprising result from fig. 5.6 is the small scale of the variations of σeff

with changes on θ2.  This can be explained by looking at eq. 3.4.  In order to maintain a

similar value of σeff when θ2 changes, the frequency response of the two segments of Hi-Bi

         Fig 5.5   Best σeff when θ1 = 00 and θ2 = 450.
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2 The “±” notation, makes reference to both orthogonal states of polarization “+” and “-“.

Fig. 5.7a    ϕ± Evolution with  θ2. Figure 5.7b χ± Evolution with θ2.

fiber must remain relatively unchanged.  If TL(ω) is changed in eq. 3.4 by varying θ2, then

it will be up to the input and output states of polarization to compensate that change so that

HL(ω) remains nearly the same.  In fact, ϕ and χ will act like a constrained equalizer [77]

in the optical domain.

Fig. 5.7 shows the expected evolution2 of ϕ±(θ2) and χ±(θ2).  
Fig. 5.6  Dependence of σeff and Px on the fusion angle, θ2.
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 3In all the top views presented in this section, light regions represent positive high numerical
values whilst dark regions represent small positive or negative numerical values.

It must be pointed out here, that in fig. 5.5, every time that θ2 is incremented, ϕ± (χ±) will

move over diametrically opposite trajectories, thus maintaining its orthogonality.

We now know that σeff will have the smallest possible value when a signal is

transmitted on ϕ+ (ϕ-) and received on χ+ (χ-).  In order to investigate the consequences of

receiving a signal along χ+ and transmitting it on any other state of polarization, ϕ, we

varied α1 and γ1 from 0 to π in eq. 5.4a and made use of equations. 3.19, 5.9a and the

equations in appendix B to calculate σeff.  The results for our previously analysed case of θ1

= 0o, θ2 = 45o, τ1 = τ2 = τ3 = 15ps are shown in fig. 5.8 for the case of χ+ reception.

Fig. 5.8a presents the change in the effective pulsewidth when α1 and γ1 vary from

0 to 2π in eq. 5.5a and fig. 5.8b shows its top3 view.  In reality however, it is only necessary

to vary γ1 from 0 to π/2 [16].   For that reason every input state of polarization, ϕ, will repeat

twice.  

Fig. 5.8a   Effective pulsewidth with χ+

reception, θ1 = 0o and θ2 = 45o.
Fig. 5.8b  Effective pulsewidth with χ+

reception, θ1 = 0o and θ2 = 45o (top view).
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As can be seen from fig. 5.8a the value of ϕ which produces the minimum σeff ϕ+, is

adjacent to an input state of polarization which produces a very large positive value of σeff.

The latter implies that the output signal will be broader than the input signal, which is not

desirable.  The behaviour of Px for the same set of values of ϕ was obtained from eq. 5.9b

by making χ = χ+ and calculating Pj for multiple values of ϕ, the results are shown in fig.

5.9.

If we overlay the two top views presented in figs. 5.8b and 5.9b we find that the

region of signal narrowing / broadening falls in a very low power section of Px.  This

behaviour of σeff agrees well with previously empirically obtained results, [75].  The low

power levels imply that significant amplification would be required before re-transmitting

or detecting the narrowed pulse.  Fig. 5.10 shows the broadened output signal (obtained by

transmitting on the value of ϕ which produces the maximum σeff and receiving the signal

on χ+) along with its power level.

Fig. 5.9a  Power of the output signal with
χ+ reception, θ1 = 0o and θ2 = 45o.

Fig. 5.9b  Power of the output signal with
χ+ reception, θ1 = 0o and θ2 = 45o (top
view).
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          Fig. 5.10 Worst σeff when θ1 = 00 and θ2 = 450.

Fig. 5.10 helps to

understand the abrupt nature of

the change from best (minimum)

σeff to worst (maximum) σeff.  The

signal with the worst value of σeff

is not a single Gaussian pulse

broadened, but two narrowed

time-delayed pulses.  A detailed

analysis [76] of the output signal when ϕ is varied within the narrowing / broadening region

reveals that, when ϕ is varied from the value with worst σeff to the value with best σeff, one

of the two narrowed pulses shown in fig. 5.8b will quickly die out leaving only a single

pulse with negative σeff.  

The opposite is also true, when ϕ varies from the best σeff to the worst σeff, a second

narrowed pulse will appear delayed in time with respect to the first one, thus rendering a

high rms-pulsewidth of the output signal.  The next section will explore the influence of ϕ

and χ on the minimum rms-pulsewidth achievable for three segments of Hi-Bi fiber.

5.10 THE THREE SEGM ENTS CASE

We will now make full use of the analytical expressions contained in appendix B for

the 3-segment system shown in fig. 5.1.  We somewhat arbitrarily chose θ1 = θ2 = 45o and

τ0 = τ 1 = τ 2 = 15 ps. The searching algorithm illustrated in fig 3.4 was used in order to find
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4 The assignment of “+” and “-“ is completely arbitrary.

5 This is true regardless of the number of segments which makes up the fiber as will be
shown in the next section.

Fig. 5.11a  Effective pulsewidth with χ+

reception,  θ1 = 45o and θ2 = 45o.

ϕopt and χopt.  Sixty initial random values of ϕo and χo where used to prevent falling into a

possible local minimum. The convergence limit used was 10-14.  

After converging, all the initial values of ϕ and χ moved to opposite points on the

surface of the Poincaré sphere like in the two segment case.  These two sets of orthogonal

solutions4, ϕ± and χ± produced the minimum possible value of σeff.  To reach such a

minimum value of σeff it is necessary to transmit the signal on ϕ+ (ϕ-) and receive5 it on χ+

(χ-).  

Fig. 5.11 illustrates the behaviour of σeff when the parameters of ϕ in eq. 5.4a are

varied from - π to π and the signal is received in χ+.  The - π to π range was chosen only for

plotting purposes and as a result of

that, each value of ϕ repeats several

times as shown in fig. 5.11.

In fig.5.11 we can see the same

coexistence of the best and worst

values of σeff next to each other.  This

is a rather unfortunate and undesirable

coincidence, as any small change in

the input state of polarization from its
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Fig. 5.12b  Power of the output signal
with χ+ reception, θ1 = 45o & θ2 = 45o

(top view).

Fig. 5.12a  Power of the output signal
with χ+ reception, θ1 = 45o & θ2 = 45o.

Fig. 5.11b  Effective pulsewidth with χ+

reception,  θ1 = 45o and θ2 = 45o (top
view).

optimum value, will quickly introduce the

worst possible degradation in the

output signal.  

If we overlay figs. 5.11b and 5.12b we

can see that the region of signal narrowing

/broadening falls again in a low power section

of Px.  This is in general the price to be paid

for obtaining a narrower signal at the output5.

Finally, figs. 5.13 and 5.14 show the narrower and broader signals obtained for the

best and worst cases of σeff.  As in the two segment case, a small variation of ϕ (in the

wrong direction) from its optimum value will create two different, time delayed, pulses

which will increase σeff.
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5.11 THE n SEGMENT CASE

Until this point we have been using the analytically exact formulas from appendix

B to study the rms-pulsewidth narrowing effects introduced by properly adjusting the input

and output states of polarization in the system depicted in fig. 5.1.  However, as mentioned

in chapter two, a real fiber would consist of the concatenation of a large number of segments

of Hi-Bi fiber.  Each of those segments introducing a different DGD and being rotated by

a different angle.

In this section we make use of the waveplate model to numerically simulate the

complex lowpass Jones transfer matrix, TL(ω), of an optical fiber made up by 500, [66,78],

different sections.  The integrals and derivatives necessary to calculate Tj, Sj , Pj, Tc, Sc and

Pc were obtained by using numerical methods [79].  The optical fiber simulated had a mean

DGD of 20 ps. given by eq. 4.3.

       Fig 5.13   Best σeff when θ1 = θ2 = 450.       Fig 5.14   Worst σeff when θ1 = θ2 = 450.
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          Fig. 5.15a  Effective pulsewidth with χ+    
          reception for a 500 segment fiber.

The search procedure illustrated in fig. 3.4 was repeated 60 times, every time starting

from randomly chosen values of ϕo and χo.  The convergence limit used was empirically

fixed at 10-14.  After reaching convergence, two sets of orthogonal input and output states

of polarization, ϕ± and χ± were obtained.  The minimum value of σx attained was 16.73 ps.

with a power of Px = 0.66 %.  That was the case when transmitting the signal on ϕ+ (ϕ-) and

receiving it on χ+ (χ-). 

Multiple searches were conducted with different simulated fibers and in each case,

the existence of two sets of orthogonal input and output states of polarization, ϕ± and χ±,

under which an output pulse narrower than the input pulse can be obtained, was revealed.

This hitherto unnoticed fact has been apparently overlooked by all the optical PMD

compensation techniques proposed so far [40-50,80-88].

We now proceed to examine the

changes in σeff when the output state of

polarization is fixed at χ+ and the input

state of polarization, ϕ, is varied.  Figs.

5.15 and 5.16 show the changes in σeff

and Px with ϕ.  By comparing figs. 5.8,

5.9, 5.11, 5.12, 5.15 and 5.16 we can

see that the nature of the changes

induced on σeff and Px by variations of ϕ is always the same, i.e. the point of maximum pulse

narrowing is always close to the point of sharp signal broadening and both fall in a region
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of low power.  This in fact, seems to be the

case for optical fibers consisting of two, three,

five hundred or any number of segments.  The

existence of the orthogonal polarization states

ϕ± and χ± which allow us to obtain output

pulses which are narrower than the input

pulses in optical fibers with PMD is the main

result of this chapter and indeed of this thesis.

Figures 5.17 and 5.18 show the time domain output signals obtained for the best and

worst values of σeff.  The pulse narrowing achieved in this case, comes at the expense of an

extreme loss in power.  As in the previous sections, the point of maximum rms-pulsewidth

corresponds to the coexistence of two narrowed pulses.  

Fig. 5.16a  Power of the output signal with
χ+ reception for a 500 segment fiber (top
view).

Fig. 5.15b   Effective pulsewidth with χ+

reception for a 500 segment fiber (top
view).

Fig. 5.16b  Power of the output signal
with χ+ reception for a 500 segment fiber.
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Fig. 5.17  Best σeff in an optical fiber with a mean
DGD of 20 ps and made up of 500 segments of Hi-
Bi fiber

         Fig. 5.18  Worst σeff in an optical fiber with a     
         mean DGD of 20 ps and made up of 500            
        segments of Hi-Bi fiber

All the results in this

chapter confirm that, although it

is possible to obtain output

pulses which are narrower, [75],

than input pulses by adequately

choosing the launching and

reception states of polarization

in an optical fiber with PMD, a

small drift (in the wrong

direction) in the input state of polarization, ϕ, from its optimum value, ϕopt,  will abruptly

increase the rms-pulsewidth of the output signal to its worst case.

Our simulations also

indicated that, regardless of the

number of segments that make up

the optical fiber, a sharp power loss

is experienced whenever a narrower

pulse is obtained at the output.  In

the next chapter, we look at the

optimization of only one state of

polarization at the time and compare

the rms-pulsewidth obtained in each case. 
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6  OPTIMIZATION PERFORMANCE

In this chapter, the optimization procedures for the input and output states of

polarization introduced in figures 3.2 and 3.3 are used and their results compared with the

optimization procedure of fig. 3.4, which takes into account both, the input and the output

states of polarization.  The benefits of properly adjusting the launching and reception states

of polarization are studied by comparing the pulse shapes at the output of an optical fiber

with high and low PMD when the principal input and output states of polarization, [6], are

used and when the input and output states of polarization obtained through our optimization

algorithms are used.  Throughout this chapter, the optical fibers simulated consisted of 500

sections of Hi-Bi fiber and all the calculations needed were carried out numerically, [79].

6.1 OPTIMIZATION CONVERGENCE

In this section, the results of optimizing either the input state of polarization or the

output state of polarization are compared with the case in which both input and output states

of polarization are optimized to reduce the rms-pulsewidth of the output signal.  Although

definitive conclusions about the convergence speed of the algorithms presented in figures

3.2, 3.3 and 3.4 are difficult to draw from the simulation of a small number of optical fibers,

it is hoped that the results presented in this section will shed some light into the evolution

of the optimization algorithms introduced in chapter three.

In order to reach a final conclusion on the convergence speed and the quality of the

results rendered by the optimization algorithms, their dependence on the initial values of ϕ

and χ, (ϕo and χo), and on the mean DGD of the fiber has to be eliminated through statistical
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1 From the point of view of minimizing the rms-pulsewidth of the output signal.

average.  This could be done by averaging the results produced by the use of multiple values

of  ϕo and χo along with a large enough population of fibers (~500).  Such statistical

average, however, would require exhaustive computer simulation and it is beyond of the

scope of this thesis.

We begin by using the waveplate model presented in chapter four to simulate an

optical fiber with a mean DGD of 30 ps.  Next, the optimization algorithm of fig. 3.4 is used

and the values of ϕopt and χopt are found.  As mentioned in the previous chapter, there are

actually, two solutions for ϕopt and χopt, namely ϕ± and χ±.  Knowing one solution, ϕ+ per

say, allow us to find the other soltion, ϕ-, due to their mutually orthogonal nature, ϕ+
+ϕ- =

0.  The worst case1 for choosing the input (output) state of polarization would be to select

a value of ϕ (χ) which is as far from ϕ+ (χ+) as it is from ϕ- (χ-).  We will call such a state

of polarization, the worst case input (output) state of polarization, and it will be represented

as ϕwc (χwc).

The worst case input (output) state of polarization can easily be found (when one of

the solutions is known) from ϕ+
wc ϕ± = cos(45o) (χ+

wc χ± = cos(45o)).  Once ϕopt and χopt

have been found, the worst case launching and reception states of polarization, ϕwc and χwc

respectively, are calculated.  The input (output) worst case state of polarization, ϕwc (χwc),

is then used as the given input (output) state of polarization in the optimization procedure

of fig. 3.2 (fig. 3.3).  This is done to ensure that the number of iterations required for the

convergence of the algorithms in figs. 3.2 and 3.3 can be compared on an equal basis. 
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 After reaching the convergence limit, the optimum output (input) state of

polarization, χopt (ϕopt) is found for a given worst case input (output) state of polarization,

ϕwc (χwc).  It must be pointed out here that in general, the values of χopt and ϕopt obtained by

the optimization algorithms in figures 3.2 and 3.3 will differ from those found by using the

algorithm in fig. 3.4.

The process of using the algorithm in fig. 3.4 to find χopt and ϕopt, calculating the

worst case values of ϕ and χ and applying those values to the optimization procedures of

figs. 3.2 and 3.3 was repeated 78 times.  Each time, a new fiber with a mean DGD of 30 ps

was used.  The average evolution of σx and Px is shown in figures 6.1a and 6.1b respectively

for the cases in which χ, ϕ and both χ and ϕ are optimized.

Fig. 6.2 shows the average output pulses obtained by optimizing χ, ϕ and both χ and

ϕ along with the input pulse and table 6.1 gives the average final values of σx and Px.

During each simulation, an empirically chosen convergence limit of 10-11 was used. 

    Fig. 6.1a Output pulsewidth evolution for        
   different optimizations.

          Fig. 6.1b Output power evolution for    
           different optimizations.
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Optimization: ϕopt, χopt ϕopt, χwc ϕwc, χopt

σx (ps) 18.5 22.7 22.5

Px (%) 4.1 26.9 27.2

Table 6.1 Output pulsewidths and normalized powers for different optimizations.

From figures 6.1, 6.2 and table 6.1 we can confirm what could have been intuitively

assumed, the output signal will have the smallest rms-pulsewidth (and as a result the lowest

power) when both degrees of freedom, ϕ and χ are jointly optimized.  Our simulation results

summarized in table 6.1 also seem to indicate that, on average, there is not a significant

advantage in optimizing only the input state of polarization as opposed to optimizing only

the output state of polarization.  In both cases the minimum pulsewidth and power level of

the output pulse are similar.  However, such a conclusion should not be laid down without

considering a larger population of fibers. 

   Fig. 6.2   Average output pulses for different optimizations.



64

2 Ideally, εout should be as far to any of the output PSPs as it would be from any of the output
states of polarization χ± which minimize the rms-pulsewidth of the output signal.

6.2 OPTIMUM   INPUT STATE OF POLARIZATION

Several PMD compensation methods [45,51] are based on the idea of polarizing the

signal at the input of the fiber along one of the principal input states of polarization, PSPs,

[6]. This will produce an undistorted output signal when first order PMD dominates.

However, if higher order PMD effects are relevant [24] (i.e., when the mean DGD is high

or the fiber is highly mode coupled [29]) the signal at the output of the fiber will be

distorted.  This comes as a result of the frequency dependence of the PSPs and the DGD.

In this section, we compare the average output pulses obtained by transmitting the

signal on one of the input PSPs at the carrier frequency, εa+(ωc), and on one of the optimum

input states of polarization obtained from the algorithm in fig. 3.3.  The output state of

polarization (εout) used for both cases, is randomly chosen.  To prevent any bias2 in the

election of εout, it is initially chosen and used as the output state of polarization throughout

the simulation of 100 optical fibers.

For each simulated fiber, the input principal state of polarization producing the

highest power of the output signal was used as the input PSP. The algorithm of fig. 3.3 was

then used to find the input state of polarization, ϕ+, which would minimize the rms-

pulsewidth of the output signal given that εout was the output state of polarization.

The comparison is made for two different scenarios, one in which all the fibers

simulated had a mean DGD of 30 ps and the other where the mean DGD of the fibers was

150 ps.  The normalized average input and output pulses are shown in fig. 6.3.
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Table 6.2 summarizes the results obtained,

<DGD>   30 ps. 150 ps.

Input SOP εa+(ωc) ϕ+ εa+(ωc) ϕ+

σx (ps) 25.1 22.2 61.7 54.9

Px (%) 75.4 22.2 64.7 62.7

 Table 6.2  Variation of the input state of polarization (SOP).     

Figure 6.3 shows that the integrity of the pulse is well preserved when fibers with

low mean DGD are used.  This is due to the predominance of first order PMD, i.e., εa+(ωc)

remains almost the same within the spectral range of the pulse.  However the use of ϕ+ as

an input state of polarization allows the output pulse to be “compressed” with respect to the

input pulse.  This, despite of using a fixed output state of polarization.  Pulse compression

is a desirable effect when the signal is to be re-transmitted into a dispersive medium, such

as an optical fiber with high chromatic or polarization dispersion at the carrier frequency.

        Fig. 6.3b  Average output pulses for 100   
        fibers, high PMD (input SOP variation).

    Fig. 6.3a  Average output pulses for 100       
    fibers, low PMD (input SOP variation).
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Further simulation work is required in order to determine the exact relation between

the minimum pulsewidth of the output signal, the mean DGD of the fiber and the pulsewidth

of the input signal.

Interestingly, when the mean DGD of the fiber is high (fig. 6.3b), adjusting only the

input state of polarization according to the algorithm of fig. 3.3 will produce a marginal

improvement over the case in which the signal is transmitted on one of the input PSPs at the

carrier frequency.  In long-haul optical communication systems however, it is not practical

to control the input state of polarization in order to improve the quality of the signal at the

other end.  The next section presents the situation in which the input state of polarization

is fixed and the output state of polarization is varied.

6.3 OPTIMUM  OUTPUT STATE OF POLARIZATION

Similar to the idea of compensating PMD induced distortion by polarizing the

transmitted signal on one of the input PSPs, it is also possible to compensate PMD by

receiving the signal on one of the output PSPs, [31,45].  The effectiveness of that kind of

compensation will depend on the fact that the output PSPs remain the same over at least the

spectral range of the signal, i.e. only first order PMD can be compensated.  In this section

we compare the results of compensating PMD by receiving the signal on one of the output

PSPs and on one of the output states of polarization which minimize the pulsewidth of the

output signal.

Throughout the calculations in this section, the input state of polarization (εin) is

assumed to be known and the same for every fiber simulated.  After randomly choosing εin,



67

the algorithm from fig. 3.2 is used to find the output state of polarization χ+ which

minimizes the rms-pulsewidth of the output signal.  The output PSP which produces the

signal with the highest power is also calculated by using a numerical approximation [5,6].

The process is repeated for 100 different

optical fibers so that any possible bias in the

value of εin is averaged out.

As in the previous section, the

calculations were carried out under two

different scenarios.  First, 100 fibers with a

mean DGD of 30 ps were simulated and then

100 fibers with a mean DGD value of 150 ps

were simulated.  Figure 6.4 shows the output

pulse obtained by averaging the output pulses

from the simulated fibers with mean DGDs of

30 and 150 ps.

<DGD>   30 ps. 150 ps.

Output SOP εb+(ωc) χ+ εb+(ωc) χ+

σx (ps) 25.2 22.2 63.6 54.9

Px (%) 73.3 20.9 64.9 60.4

      Table 6.3  Variation of the output state of polarization.    

   Fig. 6.4a  Average output pulses for 100    
  fibers, low PMD (output SOP variation).

    Fig. 6.4b  Average output pulses for 100  
    fibers, high PMD (output SOP variation).
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Table 6.3 summarizes the simulation results by presenting the average output rms-

pulsewidth and output pulse power for each case.

The results for the mean DGD of 30 ps presented in fig. 6.4a and table 6.3 indicate

that although the input state of polarization has been fixed to an arbitrary value, it is still

possible to obtain output pulses which are narrower than the input pulses when the

algorithm of fig. 3.2 is used to select the output state of polarization.

In agreement with the results presented in the previous chapter, the narrowed output

pulse is obtained at the expense of a reduction in its power with respect to the input pulse.

Additional simulations revealed that, when the mean DGD of the fiber progressively

increases, it becomes more and more difficult (and eventually impossible) to obtain output

pulses which are narrower than the input pulses.  Determining the exact relation between

the mean DGD of the fiber and the minimum pulsewidth of the output signal is beyond of

the scope of this thesis and should therefore be a topic of future research.

If the mean DGD of the fiber is high (fig. 6.4b and table 6.3), the use of the output

state of polarization rendered by the optimizing algorithm of fig. 3.2 produces only a small

improvement over the case in which the signal is received on one of the output PSPs.

It can be concluded from this and previous section that, when the mean DGD of the

fiber is high, controlling only the input or only the output state of polarization is not

sufficient to avoid pulse degradation introduced by higher order PMD effects.  In a real

system (where it is not practical to adjust the input state of polarization), additional optical

equalization [89] would be needed along with an appropriate selection of the output state

of polarization in order to obtain narrowed pulses at the output of the fiber.
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7  CONCLUSIONS 

7.1 SUMM ARY

This thesis has presented, for the first time, the solution to a recently proposed

mathematical formulation [7] which allowed us to adjust the input and output states of

polarization of a signal propagating through an optical fiber with PMD in order to minimize

its rms-pulsewidth at the output.  This is equivalent to conducting a search for an absolute

minimum in a four dimensional space.

Through numerical simulation, we studied the model of a realistic optical fiber with

PMD.  We have found, for the first time to our knowledge, that the statistics of the envelope

of the complex lowpass time impulse response of an optical fiber with PMD are Rayleigh.

We have thus proved through simulation the previously unknown fact that for a

given signal, there exist two orthogonal input and two orthogonal output states of

polarization which minimize its rms-pulsewidth when it is transmitted through an optical

fiber with PMD.  The price to be paid for the improvement in the received signal is two

fold.  A reduction on the power of the output signal is introduced and a precise knowledge

of the shape of the transmitted signal is required before we can calculate the optimized input

and output states of polarization.

Moreover, a small misadjustment (in the wrong direction) in the optimum value of

the input state of polarization will cause the rms-pulsewidth of the output signal to increase

abruptly to a value considerably greater than the rms-pulsewidth of the input signal. 

We also studied the benefits of using the mathematical treatment proposed by Chen



70

et al. [7] for the case in which only the input or the output state of polarization is varied in

order to minimize the rms-pulsewidth of the output signal.  We found that although it is

possible to achieve pulsewidth reduction when the PMD is low, additional optical

equalization would be needed if the PMD is high.

7.2 FUTURE RESEARCH

Throughout this thesis we have neglected the influence of the chromatic dispersion

introduced by the fiber and assumed no polarization dependent losses.  The influence of

these factors should be incorporated in a more thorough analysis. 

We also confined ourselves to specific values in the mean DGD of the fibers

simulated and to a particular Gaussian-shaped input signal.  The impact of a change in these

factors over the minimum rms-pulsewidth attainable by using the formulation proposed by

Chen et al. [7] has yet to be fully assessed.

The selection of an adequate value for the convergence limit used is another point

that should be further investigated.  We also chose to look at the evolution of the states of

polarization throughout the search and assumed that an optimum value had been reached

when there was nearly no change in their value with respect to the previous iteration. 

Finally, although Chen et al. [7] chose the rms-pulsewidth of the output signal as a

figure of merit in his calculus of variations analysis, nothing would prevent us from trying

to minimize a different figure of merit (like the mean square error, the mean absolute error

or the probability of error for example) when varying the input and output states of

polarization of the signal.
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APPENDIX A

MATHEMATICAL PROOFS

Appendix A presents the proof of some of the mathematical identities and

definitions used throughout the thesis.  First, the proof is given for the frequency

representation of the first and second moments of t [32] and then the functions defined in

eq. 5.3 are derived.

A.1 FREQUENCY REPRESENTATION OF THE FIRST AND SECOND MOMENTS OF t

The denominator of eq. 3.7 is equal to the denominator of eq. 3.8 as a result of

Parseval’s theorem and therefore requires no proof.  We begin by proving that the numerator

in the frequency representation of the first moment of t given in eq. 3.8a equals the

numerator of the first moment of t given by eq. 3.7.  To that end, we will have to make use

of the following property of the Fourier transform,

,   (A.1)

where “n” is a positive integer.  With the use of eq. A.1, the numerator of eq. 3.8a can be

expressed as

        .   (A.2)

Using definition of Fourier transform given in eq. 3.5a, we can express eq. A.2 as

       .   (A.3)
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Changing the order of integration in eq. A.3 we get,

       .   (A.4)

We make use again of our Fourier transform definitions and express Ex(t) as

 .   (A.5)

Taking the complex conjugate of eq. A.5 gives

      .   (A.6)

Finally, substituting eq. A.6 into the expression within the brackets in eq. A.4 yields

.   (A.7)

The right hand side of eq. A.7 corresponds to the numerator for the first moment of t

according to eq. 3.7.  Now we proceed to prove the frequency domain expression for the

second moment of t.

Let us define the intermediate variable E1(t) as

     .   (A.8)

The term within the integral in the numerator of eq. 3.8b can be expanded with the use of

eq. A.1 and eq. 3.5a as



81

           .   (A.9)

Taking the complex conjugate of eq. A.8 gives

       . (A.10)

Substituting eq. A.10 into eq. A.9 yields

 . (A.11)

From eq. A.8 and eq. 3.5b we have

   . (A.12)

Taking the complex conjugate of eq. A.12 gives

. (A.13)

With the use of eq. A.11, the term in the numerator of eq. 3.8b can be written as

. (A.14)

Changing the order of integration in eq. A.14 gives

   . (A.15)

The expression within the brackets in eq. A.15 can be substituted by eq. A.13, doing this we
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obtain

       . (A.16)

The right hand side term in eq. A.16 accounts for the numerator of the second moment of

t according to eq. 3.7.

A.2 DERIVATION OF THE EQUATION 5.3

In this section we derive each of the functions defined in eq. 5.3.  Throughout the

derivations the following identity [90] is used

    . (A.17)

We begin by completing the square in the exponential term of eq. 5.3a,

     . (A.18a)

or

.          (A.18b)

The following change of variables will now be introduced in eq. A.18b

(A.19a)

(A.19b)

       . (A.19c)

Substituting eq. A.19 into eq. A.18 we obtain
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      . (A.20)

Finally, making use of eq. A.17 and eq. A.19c, eq. A.20 can be written as

. (A.21)

Completing the square in the exponential of eq. 5.3b yields

.  (A.22)

Introducing the change of variable from eq. A.19 into eq. A.22 gives

    . (A.23)

Equation A.23 can be easily expanded as

        . (A.24)

The first integral in the right hand side of eq. A.24 is equal to zero and eqs. A. 17 and A.19c

can be used to solve the second integral.  The final result is thus given by 

     . (A.25)
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The procedure for deriving eq. 5.3c is similar and begins by completing the square

in the exponential term, 

       . (A.26)

From eq. 4.19a we have

. (A.27)

Substituting eq. A.19 and A.27 into eq. A.26 yields

       . (A.28)

Expanding eq. A.28 gives

        .

 (A.29)

The second integral in the right hand side of eq. A.29 can be solved by using eq. A.17 and

the following identity [90] is used to solve the first integral,

      . (A.30)

The final result is expressed as

. (A.31)
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APPENDIX B
ANALYTIC EQUATIONS

This appendix presents the analytical expressions derived from each one of the

procedures outlined in chapter five.  Notice that, although all the eqs. presented are

expressed as products of matrices, each eq. represents a scalar complex number in general.

The functions encountered as part of each eq. i.e., F1, F2 and F3 are derived in

appendix A and defined in eq. 5.3.  Likewise the rest of the variables used are given by eqs.

5.7 and 5.8.  It must be pointed out here, that no approximations were made during the

derivation of any of the eqs. contained in this appendix, the results obtained from their use

should therefore be exact.
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(B.1a)

(B.1b)

(B.1c)

(B.1d)

 (B.2a)

(B.2b)
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 (B.2c)

(B.2d)

 (B.3a)

(B.3b)
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 (B.3c)

(B.3d)

 (B.4a)
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 (B.4b)

 (B.4c)

(B.4d)
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APPENDIX C

ZERO PMD

Appendix C presents the trivial case in which the optical fiber under study does not

have any PMD.  The rms-pulsewidth of a signal at the output of such a fiber is shown to be

the same as the rms-pulsewidth at the input irrespective of the choice of the input and output

states of polarization.  In order to prove that, the analytic three segment model from fig. 5.1

is used.
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C.1  THE ZERO PMD CASE

To begin the rms-pulsewidth analysis we assign the following values to the fusion

angles of our three segment model in fig. 5.1, θ1 = π/2, θ2 = 0o.  The DGDs introduced by

each section will be, τ1 = τ2 = ∆ and τ3 = 0.  Under these conditions the DGD of the first

segment will be cancelled by the second segment and TL(ω) in eq. 5.6b will become

frequency independent.  Substituting these values into eq. 5.6b yields

         ,   (C.1)

where R(π/2) represents a 90o rotation matrix [111].  Substituting TL into eq. 3.3 and using

eq. 5.2, the electric field and its derivative at the output of PA in fig. 5.1 will be given by

           (C.2a)

         .              (C.2b)

Thus, the power of the output signal will be

      .                (C.3)

From equations 3.8, 5.3 and C.2, the first two moments of t can be expressed as

              (C.4a)

      .             (C.4b)

Therefore, eq. 3.6 gives an output rms-pulsewidth, σx = τ, for all χ and ϕ.  As a

result, we can conclude that, when the PMD of an optical fiber has been completely

cancelled out, the rms-pulsewidth of the output signal will always equal that of the input

signal, regardless of the choice of the transmission and reception states of polarization.
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Fig. D.2  Transmitted bit sequence for every channel.

Channel No. λ

(µm)

ω (rad/ps)

1 1.5516 1214.0

2 1.5508 1214.6

3 1.5500 1215.3

4 1.5492 1215.9

5 1.5484 1216.5

Table D.1 Carrier frequencies and wavelengths.

 The fiber simulated had a mean DGD of 30 ps and consisted of 500 segments of Hi-

Bi fiber.  The input and output states of polarization used were selected through the

searching procedure depicted in fig. 3.4.  The figure of merit used was empirically fixed at

10-14.  The carrier frequency used for the optimization of the input and output states of

polarization was that of the central channel, i.e., ωo = ω3 = 1215.3 rad/ps (λ3 = 1.55 µm). 

 Finally, the same bit sequence was used as the transmitted data for every channel,

namely “0001101100100111”, which contains all the possible three bit sequences.  Fig. D.2

shows the input data sequence for every channel.  Fig. D.3 shows the normalized received

bit sequence in every channel and table D.2 summarizes the results.
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Fig. D.3a  Output bit sequence for the first channel.

Fig. D.3b  Output bit sequence for the second channel.

Fig. D.3c  Output bit sequence for the third channel.



99

<DGD>=30ps Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

σx (ps) 32.6 28.4 18.4 23.4 27.2

Px (%) 21.3 25.9 8.4 46.4 60.8

Table D.2 Fractional power and rms-pulsewidths for the five channel system of fig. D.1

Although a pulsewidth reduction has been achieved in the central channel, the

neighbouring channels show diversified results.  Whilst the fourth channel benefits from the

optimization of the central channel by exhibiting pulsewidth compression and high power

Fig. D.3d  Output bit sequence for the fourth channel.

Fig. D.3e  Output bit sequence for the fifth channel.
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1 The bandwidth over which the optimized states of polarization remain nearly constant.

levels, the first channel undergoes pulsewidth broadening and exhibits low power levels.

Thus, in this case,  the optimization of the input and output states of polarization would

have to be done individually for each channel in order to avoid an irregular performance of

the system.  

The bandwidth of the input and output states of polarization1 calculated by mean of

the algorithm in fig, 3.4 depends in general, on the DGD of the fiber under study and the

rms-pulsewidth of the input signal.  The calculation of such a bandwidth through simulation

is necessary before definitive conclusions can be drawn regarding the feasibility of

optimizing the input and output states of polarization only for the central channel of a WDM

system.  The calculation of such a bandwidth is however, not a simple one due to the

statistical nature of PMD and the high dimensionality of the searching procedure.  A large

population of fibers would have to be simulated and for each fiber a large number of initial

search points would need to be used to ensure the convergence to an absolute minimum

value of the rms-pulsewidth.  This should be a topic of further research.



101

APPENDIX E
SOURCE CODE

Appendix E presents the Matlab source code used for the implementation of the

searching procedure depicted in fig. 3.4, which deals with the simultaneous optimization of

both, input and output states of polarization, in order to minimize the rms-pulsewidth of the

output signal.  The more general case of an optical fiber made up by an arbitrary number of

segments of Hi-Bi fiber is solved by the program Nsegm.m which also calculates the

broadband frequency response for a WDM system with an arbitrary number of channels.

The frequency response is saved in ascii format in two files, one named “NUMO_500S.txt”

which contains the normalized magnitude of the frequency response and the other,

“NUMQ_500S.txt” which contains phase response.  The input signal is given by eq. 5.1.  The

rms-pulsewidth of the input signal and the value for the figure of merit used during the

optimization procedure can be changed by changing the values of the variables “tau” and

“fom” respectively.  

The search in itself is carried out by a subroutine called “OptimizeN.m”, which in

turns makes use of additional subroutines called “phifuncN.m” and “chifuncN.m”.  The

purpose of these two subroutines is the calculation of Sj, Tj, Pj and Sc, Tc, Pc respectively

through numerical approximation.  An additional functions such as, “Fw.m” and

“canonize.m”required for numerical interpolation and state of polarization representation

are also included.  Finally the “TimeDomain.m” program permits the visualization in time

domain of the signal at the output of the fiber.
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NSegm (avgdgd,k,cw,BW,deltaw,Nch)

% NSegm Numerically searches for the narrowing polarization states of 
% an optical fiber made up by "k" sections of Hi-Bi fiber. 
% It also calculates the broadband frequency response of the fiber 
% for a WDM system in which the input and output states of polarization
% used were optimized for the central channel.

% avgdgd -> The Average Differential group delay, DGD, of the fiber in 
%           picoseconds, ps. 
% k  -> The number of fiber segments (wave plates) that make up the 
% fiber.
% cw     -> The carrier wavelength of the signal in micrometers.
% BW -> The Bandwidth of the channel centered @ cw and signal %

centered @ 0 Hz, (it must be given in GHz).
% deltaw -> The Frequency resolution, in GHz.
% Nch -> Number of WDM channels on one side of wc, the WDM array is
% assumed to be symmetric.
%
% Mauricio Yañez, last revision : May’20th of 2000

close all;
warning off;
echo off;
avgdgd = avgdgd*1e-12;cw = cw*1e-6;
wc = 2*pi*3e8/cw;
BW = BW*1e9;
deltaw = deltaw*1e9;
n = ceil (BW/deltaw); % "n" is the number of samples in frequency.
deltaw = 2*pi*(BW/n); % deltaw takes its final value.
W = -2*pi*BW/2 : deltaw : 2*pi*BW/2-deltaw;
tau = 25*1e-12;
Ein = sqrt(tau)*(2/pi)^0.25*exp(-(tau*W).^2);
MaxDelay = avgdgd*sqrt(3)/sqrt(8*k/(3*pi));
delay = MaxDelay*rand(1,k);
theta = 2*pi*rand(1,k);
TL = zeros (2,2,n);TL1 = zeros (2,2,n);TL2 = zeros (2,2,n);
%%%%%%%%%%%%%%%%%%%%%%%% Building the Fiber within BW %%%%%%%%%%%%%%%%%
f = 1;
for w = wc-(2*pi*BW/2) : deltaw : wc+(2*pi*BW/2)-deltaw,     
  T = eye (2);T1 = eye (2);
  for i=1:k,

   T = T*[cos(theta(i)) sin(theta(i)); -sin(theta(i))
cos(theta(i))]*[exp(j*w*delay(i)/2) 0; 0 exp(-j*w*delay(i)/2)];

   T1 = T1*[cos(theta(i)) sin(theta(i)); -sin(theta(i))
cos(theta(i))]*[exp(j*(w+deltaw/2)*delay(i)/2) 0; 0 
exp(-j*(w+deltaw/2)*delay(i)/2)];       

  end     
  TL  (:,:,f) = T1; % TL will now fall in the middle point of 
  TL1 (:,:,f) = T*Ein(f);    % the differential.
  TL2 (:,:,f) = T'*Ein(f);
  f = f + 1;
end
W = W + deltaw/2;
Ein = sqrt(tau)*(2/pi)^0.25*exp(-(tau*W).^2); % Ein will now fall in 
[FX,FY,TL1] = gradient (TL1,deltaw);  % the middle point
[FX,FY,TL2] = gradient (TL2,deltaw);  % of the differential.
%%%%%%%%%%%%%%%%%%%%%%%% The Search begins now %%%%%%%%%%%%%%%%%%%%%%%%
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nn = 60; fom = 1e-14;
Ptmp = zeros (1,nn); Sigmtmp = zeros (1,nn);
rnd_alpha1 = 2*pi*rand(1,nn); rnd_gamma1 = 2*pi*rand(1,nn);
rnd_alpha2 = 2*pi*rand(1,nn); rnd_gamma2 = 2*pi*rand(1,nn);
Phi_guess(:,1:nn) = [exp(-
j*rnd_gamma1).*cos(rnd_alpha1);exp(j*rnd_gamma1).*sin(rnd_alpha1)];
Chi_guess(:,1:nn) = [exp(-
j*rnd_gamma2).*cos(rnd_alpha2);exp(j*rnd_gamma2).*sin(rnd_alpha2)];
h = waitbar (0,'Searching,...');
for i=1:nn,
    [Phi_guess(:,i),Chi_guess(:,i),Sigmtmp(i),Ptmp(i)] = optimizeN ...  

 (TL,TL1,TL2,Ein,W,Phi_guess(:,i),Chi_guess(:,i),tau,fom);
 waitbar (i/nn);

end
close (h);
minSgm = min (Sigmtmp);
ix = pdesubix (Sigmtmp,minSgm);
P = Ptmp (ix); 
Phi1 = Phi_guess (:,ix); Chi1 = Chi_guess (:,ix);
[dummy,dummy,gamma,A] = canonize (Chi1);
Chi2 = [exp(-j*gamma)*A(2);-exp(j*gamma)*A(1)];
[dummy,dummy,gamma,A] = canonize (Phi1);
Phi2 = [exp(-j*gamma)*A(2);-exp(j*gamma)*A(1)];
TimeDomain (TL,Ein,deltaw,Phi1,Chi1,2e-12,25+minSgm,P);
%%%%%%%%%%%%%%%%%%%% Recreating HF for minSgm & Saving Data %%%%%%%%%%%
n1 = 64; %n1 is the number of samples taken from H(w)       

            %within channel spacing.
n2 = 2*(Nch+1)*n1; %n2 is the total number of samples taken from      
                %H(w).
BW = 100e9; %BW is the channel interspacing now !
BW = (Nch+1)*BW;  deltaw = 2*pi*(2*BW)/n2;
TL = zeros (2,2,n2);HL = zeros (1,n2);
f = 1; %Re-building the Fiber for the WDM System.
h = waitbar (0,'Re-building the fiber for the WDM System');
for w = wc-(2*pi*BW) : deltaw : wc+(2*pi*BW)-deltaw,     
   T = eye (2);  
   for i=1:k,

   T = T*[cos(theta(i)) sin(theta(i)); -sin(theta(i))
cos(theta(i))]*[exp(j*w*delay(i)/2) 0; 0 exp(-j*w*delay(i)/2)];

   end
   TL (:,:,f) = T;
   f = f + 1;
   waitbar ((f-1)/length(wc-(2*pi*BW) : deltaw : wc+(2*pi*BW)-deltaw));
end
close (h);
Chia = Chi1(1);Chib = Chi1(2);Phia = Phi1(1);Phib = Phi1(2);
HL (:) = (TL(1,1,:)*conj(Chia)+TL(2,1,:)*conj(Chib))*Phia + ...
   (TL(1,2,:)*conj(Chia)+TL(2,2,:)*conj(Chib))*Phib;
Lambda = 2*pi*3e8./(wc-(2*pi*BW) : deltaw : wc+(2*pi*BW)-deltaw);
Lambda = Lambda*1e9; % Lambda is now in nm.
Phase = 180*unwrap(angle(HL))/pi;
HF = abs(HL); HF = HF/max(HF);
NUMO = [Lambda',HF'];
NUMQ = [Lambda',Phase'];
save NUMO_500S.txt NUMO -ascii
save NUMQ_500S.txt NUMQ -ascii
save Nsegm
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function [PhiFinal,ChiFinal,Sigmeff,PFinal] = OptimizeN
(TL,TL1,TL2,Ein,W,Phi,Chi,tau,fom)
% NEWoptimizeN Finds the Input & Output States of Polarization for
% pulse narrowing on a fiber made up by multiple segments.
% This function numerically optimizes the launching and reception
% angles for a fiber optic with PMD. Optimization criteria is the 
% maximum pulse narrowing.

deltaw = W(2) - W(1);
PhiFinal = Phi; ChiFinal = Chi; Sigmout_min = tau*1e12;
Sphi = zeros (2,2);Pphi = zeros (2,2);Tphi = zeros (2,2);
Schi = zeros (2,2);Pchi = zeros (2,2);Tchi = zeros (2,2);
[Tphi,Sphi,Pphi] = phifuncN (TL,TL1,TL2,Ein,W,Phi);
P =  abs(Chi'*Pphi*Chi); PFinal = P;
TT = Chi'*Tphi*Chi;
T2 = Chi'*Sphi*Chi;
MPhi = Sphi/P - Pphi*Chi*Chi'*Sphi/P^2 - 2*Tphi*Chi*Chi'*Tphi/P^2 +...  

    2*TT*Pphi*Chi*Chi'*Tphi/P^3;
[CHI,etha] = eig(MPhi);
Sigmout1 = 1e12*sqrt(abs((CHI(:,1)'*Sphi*CHI(:,1))/...
           (CHI(:,1)'*Pphi*CHI(:,1))-((CHI(:,1)'*Tphi*CHI(:,1))/...

  (CHI(:,1)'*Pphi*CHI(:,1)))^2));
Sigmout2 = 1e12*sqrt(abs((CHI(:,2)'*Sphi*CHI(:,2))/...

  (CHI(:,2)'*Pphi*CHI(:,2)) -((CHI(:,2)'*Tphi*CHI(:,2))/...
  (CHI(:,2)'*Pphi*CHI(:,2)))^2));

[Kchi,Chi,gamma2,A2,Sigmout] = decide (Sigmout1,Sigmout2,CHI);
FOM = 1 ; iter = 1; SigmOut = zeros (1,500); PP = zeros (1,500);
while FOM > fom,
   [Tchi,Schi,Pchi] = chifuncN (TL,TL1,TL2,Ein,W,Chi);

P =  abs(Phi'*Pchi*Phi);
   if Sigmout < Sigmout_min
      Sigmout_min = Sigmout;PFinal = P;
      PhiFinal = Phi; ChiFinal = Chi;
   end      

TT = Phi'*Tchi*Phi;
   T2 = Phi'*Schi*Phi;
   MChi = Schi/P - Pchi*Phi*Phi'*Schi/P^2 - ...

2*Tchi*Phi*Phi'*Tchi/P^2 + 2*TT*Pchi*Phi*Phi'*Tchi/P^3;
[PHI,lambda] = eig(MChi);

   Phiold = Phi;
   Sigmout1 = 1e12*sqrt(abs((PHI(:,1)'*Schi*PHI(:,1))/...

 (PHI(:,1)'*Pchi*PHI(:,1)) - ((PHI(:,1)'*Tchi*PHI(:,1))/...
 (PHI(:,1)'*Pchi*PHI(:,1)))^2));

Sigmout2 = 1e12*sqrt(abs((PHI(:,2)'*Schi*PHI(:,2))/...
 (PHI(:,2)'*Pchi*PHI(:,2)) - ((PHI(:,2)'*Tchi*PHI(:,2))/...
 (PHI(:,2)'*Pchi*PHI(:,2)))^2));

[Kphi,Phi,gamma1,A1,Sigmout] = decide (Sigmout1,Sigmout2,PHI);
   FOM1 = abs(Phiold'*Phi);
   [Tphi,Sphi,Pphi] = phifuncN (TL,TL1,TL2,Ein,W,Phi);

P =  abs(Chi'*Pphi*Chi); 
   if Sigmout < Sigmout_min
      Sigmout_min = Sigmout;PFinal = P;
      PhiFinal = Phi; ChiFinal = Chi;
   end   

TT = Chi'*Tphi*Chi;
   T2 = Chi'*Sphi*Chi;   

MPhi = Sphi/P - Pphi*Chi*Chi'*Sphi/P^2 - ...
    2*Tphi*Chi*Chi'*Tphi/P^2 + 2*TT*Pphi*Chi*Chi'*Tphi/P^3;   
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[CHI,etha] = eig(MPhi);
   Chiold = Chi;

Sigmout1 = 1e12*sqrt(abs((CHI(:,1)'*Sphi*CHI(:,1))/...
 (CHI(:,1)'*Pphi*CHI(:,1)) - ((CHI(:,1)'*Tphi*CHI(:,1))/...
 (CHI(:,1)'*Pphi*CHI(:,1)))^2));

Sigmout2 = 1e12*sqrt(abs((CHI(:,2)'*Sphi*CHI(:,2))/...
 (CHI(:,2)'*Pphi*CHI(:,2)) -((CHI(:,2)'*Tphi*CHI(:,2))/...
 (CHI(:,2)'*Pphi*CHI(:,2)))^2));

[Kchi,Chi,gamma2,A2,Sigmout] = decide (Sigmout1,Sigmout2,CHI);
   SigmOut(iter) = Sigmout; PP(iter) = P;
   iter = iter+1;
   FOM2 = abs(Chiold'*Chi);
   FOM = abs(1-FOM1) + abs (1-FOM2);   

TimeDomain (TL,Ein,deltaw,Phi,Chi,2e-12,Sigmout,P);
end
P =  abs(Chi'*Pphi*Chi); 
if Sigmout < Sigmout_min
   Sigmout_min = Sigmout;PFinal = P;
   PhiFinal = Phi; ChiFinal = Chi;
end 
Sigmeff = Sigmout_min - tau*1e12;
SigmOut = SigmOut (1:iter-1);
PP = PP (1:iter-1);
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function [Tphi,Sphi,Pphi] = phifuncN (TL,TL1,TL2,Ein,W,Phi);
% This function calculates Tphi,Sphi,Pphi by using numerical
% approximations

N = length (W); Ktmp = zeros (1,N);
Phi1 = Phi (1); Phi2 = Phi(2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Calculating Pphi %%%%%%%%%%%%%%%%%%%%
Ktmp (:) = (TL(1,1,:)*Phi1+TL(1,2,:)*Phi2).*...

  (conj(TL(1,1,:))*conj(Phi1)+conj(TL(1,2,:))*conj(Phi2));
  Ktmp = Ktmp.*(Ein.^2);

X11 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = (TL(1,1,:)*Phi1+TL(1,2,:)*Phi2).*...
           (conj(TL(2,1,:))*conj(Phi1)+conj(TL(2,2,:))*conj(Phi2));

     Ktmp = Ktmp.*(Ein.^2);
X12 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = (TL(2,1,:)*Phi1+TL(2,2,:)*Phi2).*...

  (conj(TL(1,1,:))*conj(Phi1)+conj(TL(1,2,:))*conj(Phi2));
  Ktmp = Ktmp.*(Ein.^2);

X21 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = (TL(2,1,:)*Phi1+TL(2,2,:)*Phi2).*...

  (conj(TL(2,1,:))*conj(Phi1)+conj(TL(2,2,:))*conj(Phi2));
  Ktmp = Ktmp.*(Ein.^2);

X22 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Pphi = [X11  X12; X21 X22];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Calculating Tphi %%%%%%%%%%%%%%%%%%%%
Ktmp (:) = j*(TL1(1,1,:)*Phi1+TL1(1,2,:)*Phi2).*...

     (conj(TL(1,1,:))*conj(Phi1)+conj(TL(1,2,:))*conj(Phi2));
  Ktmp = Ktmp.*Ein;

X11 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = j*(TL1(1,1,:)*Phi1+TL1(1,2,:)*Phi2).*...

     (conj(TL(2,1,:))*conj(Phi1)+conj(TL(2,2,:))*conj(Phi2));
  Ktmp = Ktmp.*Ein;

X12 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = j*(TL1(2,1,:)*Phi1+TL1(2,2,:)*Phi2).*...

        (conj(TL(1,1,:))*conj(Phi1)+conj(TL(1,2,:))*conj(Phi2));
          Ktmp = Ktmp.*Ein;
X21 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = j*(TL1(2,1,:)*Phi1+TL1(2,2,:)*Phi2).*...

     (conj(TL(2,1,:))*conj(Phi1)+conj(TL(2,2,:))*conj(Phi2));
  Ktmp = Ktmp.*Ein;        

X22 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Tphi = [X11  X12; X21 X22];    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Calculating Sphi %%%%%%%%%%%%%%%%%%%%
Ktmp (:) = (TL1(1,1,:)*Phi1+TL1(1,2,:)*Phi2).*...
        (TL2(1,1,:)*conj(Phi1)+TL2(2,1,:)*conj(Phi2));
X11 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = (TL1(1,1,:)*Phi1+TL1(1,2,:)*Phi2).*...

        (TL2(1,2,:)*conj(Phi1)+TL2(2,2,:)*conj(Phi2));
X12 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = (TL1(2,1,:)*Phi1+TL1(2,2,:)*Phi2).*...

        (TL2(1,1,:)*conj(Phi1)+TL2(2,1,:)*conj(Phi2));
X21 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = (TL1(2,1,:)*Phi1+TL1(2,2,:)*Phi2).*...

        (TL2(1,2,:)*conj(Phi1)+TL2(2,2,:)*conj(Phi2));
X22 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Sphi = [X11  X12; X21 X22];    
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function [Tchi,Schi,Pchi] = chifuncN (TL,TL1,TL2,Ein,W,Chi);
% This function calculates Tchi,Schi,Pchi by using numerical
% approximations

N = length (W); Ktmp = zeros (1,N);
Chi1 = Chi (1); Chi2 = Chi(2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Calculating Pchi %%%%%%%%%%%%%%%%%%%%
Ktmp (:) = (conj(TL(1,1,:))*Chi1+conj(TL(2,1,:))*Chi2).*...
        (TL(1,1,:)*conj(Chi1)+TL(2,1,:)*conj(Chi2));

  Ktmp = Ktmp.*(Ein.^2);        
X11 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = (conj(TL(1,1,:))*Chi1+conj(TL(2,1,:))*Chi2).*...
        (TL(1,2,:)*conj(Chi1)+TL(2,2,:)*conj(Chi2));

  Ktmp = Ktmp.*(Ein.^2);
X12 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = (conj(TL(1,2,:))*Chi1+conj(TL(2,2,:))*Chi2).*...
        (TL(1,1,:)*conj(Chi1)+TL(2,1,:)*conj(Chi2));

  Ktmp = Ktmp.*(Ein.^2);        
X21 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = (conj(TL(1,2,:))*Chi1+conj(TL(2,2,:))*Chi2).*...
        (TL(1,2,:)*conj(Chi1)+TL(2,2,:)*conj(Chi2));

  Ktmp = Ktmp.*(Ein.^2);        
X22 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Pchi = [X11  X12; X21 X22];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Calculating Tchi %%%%%%%%%%%%%%%%%%%%
Ktmp (:) = j*(TL1(1,1,:)*conj(Chi1)+TL1(2,1,:)*conj(Chi2)).*...

        (conj(TL(1,1,:))*Chi1+conj(TL(2,1,:))*Chi2);
  Ktmp = Ktmp.*Ein;        

X11 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = j*(TL1(1,2,:)*conj(Chi1)+TL1(2,2,:)*conj(Chi2)).*...

      (conj(TL(1,1,:))*Chi1+conj(TL(2,1,:))*Chi2);
  Ktmp = Ktmp.*Ein;          

X12 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = j*(TL1(1,1,:)*conj(Chi1)+TL1(2,1,:)*conj(Chi2)).*...

        (conj(TL(1,2,:))*Chi1+conj(TL(2,2,:))*Chi2);
     Ktmp = Ktmp.*Ein;    

X21 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = j*(TL1(1,2,:)*conj(Chi1)+TL1(2,2,:)*conj(Chi2)).*...

        (conj(TL(1,2,:))*Chi1+conj(TL(2,2,:))*Chi2);
     Ktmp = Ktmp.*Ein;    

X22 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Tchi = [X11  X12; X21 X22];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Calculating Schi %%%%%%%%%%%%%%%%%%%%
Ktmp (:) = (TL1(1,1,:)*conj(Chi1)+TL1(2,1,:)*conj(Chi2)).*...
        (TL2(1,1,:)*Chi1+TL2(1,2,:)*Chi2);
X11 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = (TL1(1,2,:)*conj(Chi1)+TL1(2,2,:)*conj(Chi2)).*...

        (TL2(1,1,:)*Chi1+TL2(1,2,:)*Chi2);
X12 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = (TL1(1,1,:)*conj(Chi1)+TL1(2,1,:)*conj(Chi2)).*...

        (TL2(2,1,:)*Chi1+TL2(2,2,:)*Chi2);
X21 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Ktmp (:) = (TL1(1,2,:)*conj(Chi1)+TL1(2,2,:)*conj(Chi2)).*...
        (TL2(2,1,:)*Chi1+TL2(2,2,:)*Chi2);
X22 = quad8 ('Fw',W(1),W(N),[],[],Ktmp,W);
Schi = [X11  X12; X21 X22];    
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function  abc = Fw (w,Ktmp,W)
% This function is required for numerical integration.

abc = interp1 (W,Ktmp,w,'*cubic');

function [K,x,gamma,A] = canonize (v)
%CANONIZE Returns a complex vector on its canonical form.

A = zeros(1,2);
n1 = v(1); n2 = v(2);
A(1) = abs(n1); A(2) = abs(n2);
theta1 = angle (n1); theta2 = angle (n2); 
gamma = (theta2-theta1)/2;
K = exp(j*(theta2+theta1)/2);
x = [A(1)*exp(-j*gamma) ; A(2)*exp(j*gamma)];
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function  dummy1 = TimeDomain (TL,Ein,deltaw,Phi,Chi,deltaT,sigmeff,p)
% TimeDomain Shows the Time Domain for of a signal, Ein, being
% transmitted through an Optical fiber with a transfer Matrix TL,
% launched and received at states of polarization Phi & Chi. 
% Ein and TL are in the frequency Domain !
% deltaT and deltaw are the time and frequency resolutions.

n = length(Ein);p = p*100;
Phi1 = Phi(1);Phi2 = Phi(2);
Chi1 = Chi(1);Chi2 = Chi(2);
Eout = zeros (1,n);
Eout (:) = ((TL(1,1,:)*conj(Chi1)+TL(2,1,:)*conj(Chi2))*Phi1 + ...
     (TL(1,2,:)*conj(Chi1)+TL(2,2,:)*conj(Chi2))*Phi2); Eout =
Eout.*Ein;
ts = 2*pi/deltaw; %Be aware that Ein is in the frequency domain !
n1 = ts/deltaT; %n1 is the required number of samples for a     
                        %resolution of deltaT.
n2 = length(Eout);      %n2 is the actual numbre of samples taken from  
                        %Eout(w)
if n1>=n2 %The IFFT will use "n" points to meet deltaT.
   n = 2^(max(nextpow2(n1),nextpow2(n2)));  
end
deltaT = ts/n; %deltaT is now the real IFFT time resolution.
nn = floor (100e-12/deltaT); %Readjusting the time vector to 200 ps.
t = -deltaT*(nn):deltaT:deltaT*(nn-1); t = t*1e12;
if mod (n2,2) == 0, i = n2/2;
else i = (n2+1)/2-1; end
Ein = fftshift(Ein);
ein (1:i) = Ein(1:i); 
ein (i+1:i+n-n2) = zeros (1,n-n2);
ein (i+n-n2+1:n) = Ein(i+1:n2); 
ein = ifftshift(ifft (ein)); %ein is now in the time domain !
Pin = abs(ein.*conj(ein));
K = max(Pin);
Pin = Pin/K;
ix = pdesubix (Pin,1); %Relocating Pin around its center.
Pin = Pin (ix-nn:ix+nn-1);
Eout = fftshift(Eout);
eout (1:i) = Eout(1:i); 
eout (i+1:i+n-n2) = zeros (1,n-n2);
eout (i+n-n2+1:n) = Eout(i+1:n2); 
eout = ifftshift(ifft (eout)); %eout is now in the time domain !
Pout = abs(eout.*conj(eout));
Pout = Pout/max(Pout);
ix = pdesubix (Pout,max(Pout)); %Relocating Pout around its center.
Pout = Pout (ix-nn:ix+nn-1);
figure (100) 
plot (t,Pin,'w'); xlabel ('Time (ps)'); ylabel ('Normalized Optical
Power');
hold;
plot (t,Pout,'w:','Erasemode','xor');
if sigmeff ~= 0
   title (strcat('\sigma_{x} = ',num2str(sigmeff,4),'ps, P_{x} = ',
   num2str(p,4),'%'));
else
   title (strcat('P_{x} = ',num2str(p,4),'%'));
end   



110

legend ('Input Pulse','Output Pulse');
drawnow
hold;




