Binary values expressed as polynomials can readily be manipulated using the rules of GF(2). The table below completely factors all polynomials in GF(2) up to degree 6. Irreducible (prime) polynomials are identified (these are unrelated to prime integers.).
 Online Factoring Tool
 Online Factoring Tool
    
 Table of Primes
 Table of Primes
    
 Factors of xn+1
 Factors of xn+1
| INDEX | BINARY | POLYNOMIAL | FACTORS | 
| 2 | 10 | x | irreducible | 
| 3 | 11 | x+1 | irreducible [ LRS ] | 
| 4 | 100 | x2 | (x)(x) | 
| 5 | 101 | x2+1 | (x+1)(x+1) | 
| 6 | 110 | x2+x | (x)(x+1) | 
| 7 | 111 | x2+x+1 | irreducible [ LRS ] | 
| 8 | 1000 | x3 | (x)(x)(x) | 
| 9 | 1001 | x3+1 | (x+1)(x2+x+1) | 
| 10 | 1010 | x3+x | (x)(x+1)(x+1) | 
| 11 | 1011 | x3+x+1 | irreducible [ LRS ] | 
| 12 | 1100 | x3+x2 | (x)(x)(x+1) | 
| 13 | 1101 | x3+x2+1 | irreducible [ LRS ] | 
| 14 | 1110 | x3+x2+x | (x)(x2+x+1) | 
| 15 | 1111 | x3+x2+x+1 | (x+1)(x+1)(x+1) | 
| 16 | 10000 | x4 | (x)(x)(x)(x) | 
| 17 | 10001 | x4+1 | (x+1)(x+1)(x+1)(x+1) | 
| 18 | 10010 | x4+x | (x)(x+1)(x2+x+1) | 
| 19 | 10011 | x4+x+1 | irreducible [ LRS ] | 
| 20 | 10100 | x4+x2 | (x)(x)(x+1)(x+1) | 
| 21 | 10101 | x4+x2+1 | (x2+x+1)(x2+x+1) | 
| 22 | 10110 | x4+x2+x | (x)(x3+x+1) | 
| 23 | 10111 | x4+x2+x+1 | (x+1)(x3+x2+1) | 
| 24 | 11000 | x4+x3 | (x)(x)(x)(x+1) | 
| 25 | 11001 | x4+x3+1 | irreducible [ LRS ] | 
| 26 | 11010 | x4+x3+x | (x)(x3+x2+1) | 
| 27 | 11011 | x4+x3+x+1 | (x+1)(x+1)(x2+x+1) | 
| 28 | 11100 | x4+x3+x2 | (x)(x)(x2+x+1) | 
| 29 | 11101 | x4+x3+x2+1 | (x+1)(x3+x+1) | 
| 30 | 11110 | x4+x3+x2+x | (x)(x+1)(x+1)(x+1) | 
| 31 | 11111 | x4+x3+x2+x+1 | irreducible [ LRS ] | 
| 32 | 100000 | x5 | (x)(x)(x)(x)(x) | 
| 33 | 100001 | x5+1 | (x+1)(x4+x3+x2+x+1) | 
| 34 | 100010 | x5+x | (x)(x+1)(x+1)(x+1)(x+1) | 
| 35 | 100011 | x5+x+1 | (x2+x+1)(x3+x2+1) | 
| 36 | 100100 | x5+x2 | (x)(x)(x+1)(x2+x+1) | 
| 37 | 100101 | x5+x2+1 | irreducible [ LRS ] | 
| 38 | 100110 | x5+x2+x | (x)(x4+x+1) | 
| 39 | 100111 | x5+x2+x+1 | (x+1)(x+1)(x3+x+1) | 
| 40 | 101000 | x5+x3 | (x)(x)(x)(x+1)(x+1) | 
| 41 | 101001 | x5+x3+1 | irreducible [ LRS ] | 
| 42 | 101010 | x5+x3+x | (x)(x2+x+1)(x2+x+1) | 
| 43 | 101011 | x5+x3+x+1 | (x+1)(x4+x3+1) | 
| 44 | 101100 | x5+x3+x2 | (x)(x)(x3+x+1) | 
| 45 | 101101 | x5+x3+x2+1 | (x+1)(x+1)(x+1)(x2+x+1) | 
| 46 | 101110 | x5+x3+x2+x | (x)(x+1)(x3+x2+1) | 
| 47 | 101111 | x5+x3+x2+x+1 | irreducible [ LRS ] | 
| 48 | 110000 | x5+x4 | (x)(x)(x)(x)(x+1) | 
| 49 | 110001 | x5+x4+1 | (x2+x+1)(x3+x+1) | 
| 50 | 110010 | x5+x4+x | (x)(x4+x3+1) | 
| 51 | 110011 | x5+x4+x+1 | (x+1)(x+1)(x+1)(x+1)(x+1) | 
| 52 | 110100 | x5+x4+x2 | (x)(x)(x3+x2+1) | 
| 53 | 110101 | x5+x4+x2+1 | (x+1)(x4+x+1) | 
| 54 | 110110 | x5+x4+x2+x | (x)(x+1)(x+1)(x2+x+1) | 
| 55 | 110111 | x5+x4+x2+x+1 | irreducible [ LRS ] | 
| 56 | 111000 | x5+x4+x3 | (x)(x)(x)(x2+x+1) | 
| 57 | 111001 | x5+x4+x3+1 | (x+1)(x+1)(x3+x2+1) | 
| 58 | 111010 | x5+x4+x3+x | (x)(x+1)(x3+x+1) | 
| 59 | 111011 | x5+x4+x3+x+1 | irreducible [ LRS ] | 
| 60 | 111100 | x5+x4+x3+x2 | (x)(x)(x+1)(x+1)(x+1) | 
| 61 | 111101 | x5+x4+x3+x2+1 | irreducible [ LRS ] | 
| 62 | 111110 | x5+x4+x3+x2+x | (x)(x4+x3+x2+x+1) | 
| 63 | 111111 | x5+x4+x3+x2+x+1 | (x+1)(x2+x+1)(x2+x+1) | 
| 64 | 1000000 | x6 | (x)(x)(x)(x)(x)(x) | 
| 65 | 1000001 | x6+1 | (x+1)(x+1)(x2+x+1)(x2+x+1) | 
| 66 | 1000010 | x6+x | (x)(x+1)(x4+x3+x2+x+1) | 
| 67 | 1000011 | x6+x+1 | irreducible [ LRS ] | 
| 68 | 1000100 | x6+x2 | (x)(x)(x+1)(x+1)(x+1)(x+1) | 
| 69 | 1000101 | x6+x2+1 | (x3+x+1)(x3+x+1) | 
| 70 | 1000110 | x6+x2+x | (x)(x2+x+1)(x3+x2+1) | 
| 71 | 1000111 | x6+x2+x+1 | (x+1)(x5+x4+x3+x2+1) | 
| 72 | 1001000 | x6+x3 | (x)(x)(x)(x+1)(x2+x+1) | 
| 73 | 1001001 | x6+x3+1 | irreducible [ LRS ] | 
| 74 | 1001010 | x6+x3+x | (x)(x5+x2+1) | 
| 75 | 1001011 | x6+x3+x+1 | (x+1)(x+1)(x+1)(x3+x2+1) | 
| 76 | 1001100 | x6+x3+x2 | (x)(x)(x4+x+1) | 
| 77 | 1001101 | x6+x3+x2+1 | (x+1)(x5+x4+x3+x+1) | 
| 78 | 1001110 | x6+x3+x2+x | (x)(x+1)(x+1)(x3+x+1) | 
| 79 | 1001111 | x6+x3+x2+x+1 | (x2+x+1)(x4+x3+1) | 
| 80 | 1010000 | x6+x4 | (x)(x)(x)(x)(x+1)(x+1) | 
| 81 | 1010001 | x6+x4+1 | (x3+x2+1)(x3+x2+1) | 
| 82 | 1010010 | x6+x4+x | (x)(x5+x3+1) | 
| 83 | 1010011 | x6+x4+x+1 | (x+1)(x2+x+1)(x3+x+1) | 
| 84 | 1010100 | x6+x4+x2 | (x)(x)(x2+x+1)(x2+x+1) | 
| 85 | 1010101 | x6+x4+x2+1 | (x+1)(x+1)(x+1)(x+1)(x+1)(x+1) | 
| 86 | 1010110 | x6+x4+x2+x | (x)(x+1)(x4+x3+1) | 
| 87 | 1010111 | x6+x4+x2+x+1 | irreducible [ LRS ] | 
| 88 | 1011000 | x6+x4+x3 | (x)(x)(x)(x3+x+1) | 
| 89 | 1011001 | x6+x4+x3+1 | (x+1)(x5+x4+x2+x+1) | 
| 90 | 1011010 | x6+x4+x3+x | (x)(x+1)(x+1)(x+1)(x2+x+1) | 
| 91 | 1011011 | x6+x4+x3+x+1 | irreducible [ LRS ] | 
| 92 | 1011100 | x6+x4+x3+x2 | (x)(x)(x+1)(x3+x2+1) | 
| 93 | 1011101 | x6+x4+x3+x2+1 | (x2+x+1)(x4+x3+x2+x+1) | 
| 94 | 1011110 | x6+x4+x3+x2+x | (x)(x5+x3+x2+x+1) | 
| 95 | 1011111 | x6+x4+x3+x2+x+1 | (x+1)(x+1)(x4+x+1) | 
| 96 | 1100000 | x6+x5 | (x)(x)(x)(x)(x)(x+1) | 
| 97 | 1100001 | x6+x5+1 | irreducible [ LRS ] | 
| 98 | 1100010 | x6+x5+x | (x)(x2+x+1)(x3+x+1) | 
| 99 | 1100011 | x6+x5+x+1 | (x+1)(x+1)(x4+x3+x2+x+1) | 
| 100 | 1100100 | x6+x5+x2 | (x)(x)(x4+x3+1) | 
| 101 | 1100101 | x6+x5+x2+1 | (x+1)(x2+x+1)(x3+x2+1) | 
| 102 | 1100110 | x6+x5+x2+x | (x)(x+1)(x+1)(x+1)(x+1)(x+1) | 
| 103 | 1100111 | x6+x5+x2+x+1 | irreducible [ LRS ] | 
| 104 | 1101000 | x6+x5+x3 | (x)(x)(x)(x3+x2+1) | 
| 105 | 1101001 | x6+x5+x3+1 | (x+1)(x+1)(x+1)(x3+x+1) | 
| 106 | 1101010 | x6+x5+x3+x | (x)(x+1)(x4+x+1) | 
| 107 | 1101011 | x6+x5+x3+x+1 | (x2+x+1)(x2+x+1)(x2+x+1) | 
| 108 | 1101100 | x6+x5+x3+x2 | (x)(x)(x+1)(x+1)(x2+x+1) | 
| 109 | 1101101 | x6+x5+x3+x2+1 | irreducible [ LRS ] | 
| 110 | 1101110 | x6+x5+x3+x2+x | (x)(x5+x4+x2+x+1) | 
| 111 | 1101111 | x6+x5+x3+x2+x+1 | (x+1)(x5+x2+1) | 
| 112 | 1110000 | x6+x5+x4 | (x)(x)(x)(x)(x2+x+1) | 
| 113 | 1110001 | x6+x5+x4+1 | (x+1)(x5+x3+x2+x+1) | 
| 114 | 1110010 | x6+x5+x4+x | (x)(x+1)(x+1)(x3+x2+1) | 
| 115 | 1110011 | x6+x5+x4+x+1 | irreducible [ LRS ] | 
| 116 | 1110100 | x6+x5+x4+x2 | (x)(x)(x+1)(x3+x+1) | 
| 117 | 1110101 | x6+x5+x4+x2+1 | irreducible [ LRS ] | 
| 118 | 1110110 | x6+x5+x4+x2+x | (x)(x5+x4+x3+x+1) | 
| 119 | 1110111 | x6+x5+x4+x2+x+1 | (x+1)(x+1)(x+1)(x+1)(x2+x+1) | 
| 120 | 1111000 | x6+x5+x4+x3 | (x)(x)(x)(x+1)(x+1)(x+1) | 
| 121 | 1111001 | x6+x5+x4+x3+1 | (x2+x+1)(x4+x+1) | 
| 122 | 1111010 | x6+x5+x4+x3+x | (x)(x5+x4+x3+x2+1) | 
| 123 | 1111011 | x6+x5+x4+x3+x+1 | (x+1)(x5+x3+1) | 
| 124 | 1111100 | x6+x5+x4+x3+x2 | (x)(x)(x4+x3+x2+x+1) | 
| 125 | 1111101 | x6+x5+x4+x3+x2+1 | (x+1)(x+1)(x4+x3+1) | 
| 126 | 1111110 | x6+x5+x4+x3+x2+x | (x)(x+1)(x2+x+1)(x2+x+1) | 
| 127 | 1111111 | x6+x5+x4+x3+x2+x+1 | (x3+x+1)(x3+x2+1) |