Binary values expressed as polynomials can readily be manipulated using the rules of GF(2). The table below completely factors all polynomials in GF(2) up to degree 6. Irreducible (prime) polynomials are identified (these are unrelated to prime integers.).
Online Factoring Tool Table of Primes Factors of xn+1
INDEX | BINARY | POLYNOMIAL | FACTORS |
2 | 10 | x | irreducible |
3 | 11 | x+1 | irreducible [ LRS ] |
4 | 100 | x2 | (x)(x) |
5 | 101 | x2+1 | (x+1)(x+1) |
6 | 110 | x2+x | (x)(x+1) |
7 | 111 | x2+x+1 | irreducible [ LRS ] |
8 | 1000 | x3 | (x)(x)(x) |
9 | 1001 | x3+1 | (x+1)(x2+x+1) |
10 | 1010 | x3+x | (x)(x+1)(x+1) |
11 | 1011 | x3+x+1 | irreducible [ LRS ] |
12 | 1100 | x3+x2 | (x)(x)(x+1) |
13 | 1101 | x3+x2+1 | irreducible [ LRS ] |
14 | 1110 | x3+x2+x | (x)(x2+x+1) |
15 | 1111 | x3+x2+x+1 | (x+1)(x+1)(x+1) |
16 | 10000 | x4 | (x)(x)(x)(x) |
17 | 10001 | x4+1 | (x+1)(x+1)(x+1)(x+1) |
18 | 10010 | x4+x | (x)(x+1)(x2+x+1) |
19 | 10011 | x4+x+1 | irreducible [ LRS ] |
20 | 10100 | x4+x2 | (x)(x)(x+1)(x+1) |
21 | 10101 | x4+x2+1 | (x2+x+1)(x2+x+1) |
22 | 10110 | x4+x2+x | (x)(x3+x+1) |
23 | 10111 | x4+x2+x+1 | (x+1)(x3+x2+1) |
24 | 11000 | x4+x3 | (x)(x)(x)(x+1) |
25 | 11001 | x4+x3+1 | irreducible [ LRS ] |
26 | 11010 | x4+x3+x | (x)(x3+x2+1) |
27 | 11011 | x4+x3+x+1 | (x+1)(x+1)(x2+x+1) |
28 | 11100 | x4+x3+x2 | (x)(x)(x2+x+1) |
29 | 11101 | x4+x3+x2+1 | (x+1)(x3+x+1) |
30 | 11110 | x4+x3+x2+x | (x)(x+1)(x+1)(x+1) |
31 | 11111 | x4+x3+x2+x+1 | irreducible [ LRS ] |
32 | 100000 | x5 | (x)(x)(x)(x)(x) |
33 | 100001 | x5+1 | (x+1)(x4+x3+x2+x+1) |
34 | 100010 | x5+x | (x)(x+1)(x+1)(x+1)(x+1) |
35 | 100011 | x5+x+1 | (x2+x+1)(x3+x2+1) |
36 | 100100 | x5+x2 | (x)(x)(x+1)(x2+x+1) |
37 | 100101 | x5+x2+1 | irreducible [ LRS ] |
38 | 100110 | x5+x2+x | (x)(x4+x+1) |
39 | 100111 | x5+x2+x+1 | (x+1)(x+1)(x3+x+1) |
40 | 101000 | x5+x3 | (x)(x)(x)(x+1)(x+1) |
41 | 101001 | x5+x3+1 | irreducible [ LRS ] |
42 | 101010 | x5+x3+x | (x)(x2+x+1)(x2+x+1) |
43 | 101011 | x5+x3+x+1 | (x+1)(x4+x3+1) |
44 | 101100 | x5+x3+x2 | (x)(x)(x3+x+1) |
45 | 101101 | x5+x3+x2+1 | (x+1)(x+1)(x+1)(x2+x+1) |
46 | 101110 | x5+x3+x2+x | (x)(x+1)(x3+x2+1) |
47 | 101111 | x5+x3+x2+x+1 | irreducible [ LRS ] |
48 | 110000 | x5+x4 | (x)(x)(x)(x)(x+1) |
49 | 110001 | x5+x4+1 | (x2+x+1)(x3+x+1) |
50 | 110010 | x5+x4+x | (x)(x4+x3+1) |
51 | 110011 | x5+x4+x+1 | (x+1)(x+1)(x+1)(x+1)(x+1) |
52 | 110100 | x5+x4+x2 | (x)(x)(x3+x2+1) |
53 | 110101 | x5+x4+x2+1 | (x+1)(x4+x+1) |
54 | 110110 | x5+x4+x2+x | (x)(x+1)(x+1)(x2+x+1) |
55 | 110111 | x5+x4+x2+x+1 | irreducible [ LRS ] |
56 | 111000 | x5+x4+x3 | (x)(x)(x)(x2+x+1) |
57 | 111001 | x5+x4+x3+1 | (x+1)(x+1)(x3+x2+1) |
58 | 111010 | x5+x4+x3+x | (x)(x+1)(x3+x+1) |
59 | 111011 | x5+x4+x3+x+1 | irreducible [ LRS ] |
60 | 111100 | x5+x4+x3+x2 | (x)(x)(x+1)(x+1)(x+1) |
61 | 111101 | x5+x4+x3+x2+1 | irreducible [ LRS ] |
62 | 111110 | x5+x4+x3+x2+x | (x)(x4+x3+x2+x+1) |
63 | 111111 | x5+x4+x3+x2+x+1 | (x+1)(x2+x+1)(x2+x+1) |
64 | 1000000 | x6 | (x)(x)(x)(x)(x)(x) |
65 | 1000001 | x6+1 | (x+1)(x+1)(x2+x+1)(x2+x+1) |
66 | 1000010 | x6+x | (x)(x+1)(x4+x3+x2+x+1) |
67 | 1000011 | x6+x+1 | irreducible [ LRS ] |
68 | 1000100 | x6+x2 | (x)(x)(x+1)(x+1)(x+1)(x+1) |
69 | 1000101 | x6+x2+1 | (x3+x+1)(x3+x+1) |
70 | 1000110 | x6+x2+x | (x)(x2+x+1)(x3+x2+1) |
71 | 1000111 | x6+x2+x+1 | (x+1)(x5+x4+x3+x2+1) |
72 | 1001000 | x6+x3 | (x)(x)(x)(x+1)(x2+x+1) |
73 | 1001001 | x6+x3+1 | irreducible [ LRS ] |
74 | 1001010 | x6+x3+x | (x)(x5+x2+1) |
75 | 1001011 | x6+x3+x+1 | (x+1)(x+1)(x+1)(x3+x2+1) |
76 | 1001100 | x6+x3+x2 | (x)(x)(x4+x+1) |
77 | 1001101 | x6+x3+x2+1 | (x+1)(x5+x4+x3+x+1) |
78 | 1001110 | x6+x3+x2+x | (x)(x+1)(x+1)(x3+x+1) |
79 | 1001111 | x6+x3+x2+x+1 | (x2+x+1)(x4+x3+1) |
80 | 1010000 | x6+x4 | (x)(x)(x)(x)(x+1)(x+1) |
81 | 1010001 | x6+x4+1 | (x3+x2+1)(x3+x2+1) |
82 | 1010010 | x6+x4+x | (x)(x5+x3+1) |
83 | 1010011 | x6+x4+x+1 | (x+1)(x2+x+1)(x3+x+1) |
84 | 1010100 | x6+x4+x2 | (x)(x)(x2+x+1)(x2+x+1) |
85 | 1010101 | x6+x4+x2+1 | (x+1)(x+1)(x+1)(x+1)(x+1)(x+1) |
86 | 1010110 | x6+x4+x2+x | (x)(x+1)(x4+x3+1) |
87 | 1010111 | x6+x4+x2+x+1 | irreducible [ LRS ] |
88 | 1011000 | x6+x4+x3 | (x)(x)(x)(x3+x+1) |
89 | 1011001 | x6+x4+x3+1 | (x+1)(x5+x4+x2+x+1) |
90 | 1011010 | x6+x4+x3+x | (x)(x+1)(x+1)(x+1)(x2+x+1) |
91 | 1011011 | x6+x4+x3+x+1 | irreducible [ LRS ] |
92 | 1011100 | x6+x4+x3+x2 | (x)(x)(x+1)(x3+x2+1) |
93 | 1011101 | x6+x4+x3+x2+1 | (x2+x+1)(x4+x3+x2+x+1) |
94 | 1011110 | x6+x4+x3+x2+x | (x)(x5+x3+x2+x+1) |
95 | 1011111 | x6+x4+x3+x2+x+1 | (x+1)(x+1)(x4+x+1) |
96 | 1100000 | x6+x5 | (x)(x)(x)(x)(x)(x+1) |
97 | 1100001 | x6+x5+1 | irreducible [ LRS ] |
98 | 1100010 | x6+x5+x | (x)(x2+x+1)(x3+x+1) |
99 | 1100011 | x6+x5+x+1 | (x+1)(x+1)(x4+x3+x2+x+1) |
100 | 1100100 | x6+x5+x2 | (x)(x)(x4+x3+1) |
101 | 1100101 | x6+x5+x2+1 | (x+1)(x2+x+1)(x3+x2+1) |
102 | 1100110 | x6+x5+x2+x | (x)(x+1)(x+1)(x+1)(x+1)(x+1) |
103 | 1100111 | x6+x5+x2+x+1 | irreducible [ LRS ] |
104 | 1101000 | x6+x5+x3 | (x)(x)(x)(x3+x2+1) |
105 | 1101001 | x6+x5+x3+1 | (x+1)(x+1)(x+1)(x3+x+1) |
106 | 1101010 | x6+x5+x3+x | (x)(x+1)(x4+x+1) |
107 | 1101011 | x6+x5+x3+x+1 | (x2+x+1)(x2+x+1)(x2+x+1) |
108 | 1101100 | x6+x5+x3+x2 | (x)(x)(x+1)(x+1)(x2+x+1) |
109 | 1101101 | x6+x5+x3+x2+1 | irreducible [ LRS ] |
110 | 1101110 | x6+x5+x3+x2+x | (x)(x5+x4+x2+x+1) |
111 | 1101111 | x6+x5+x3+x2+x+1 | (x+1)(x5+x2+1) |
112 | 1110000 | x6+x5+x4 | (x)(x)(x)(x)(x2+x+1) |
113 | 1110001 | x6+x5+x4+1 | (x+1)(x5+x3+x2+x+1) |
114 | 1110010 | x6+x5+x4+x | (x)(x+1)(x+1)(x3+x2+1) |
115 | 1110011 | x6+x5+x4+x+1 | irreducible [ LRS ] |
116 | 1110100 | x6+x5+x4+x2 | (x)(x)(x+1)(x3+x+1) |
117 | 1110101 | x6+x5+x4+x2+1 | irreducible [ LRS ] |
118 | 1110110 | x6+x5+x4+x2+x | (x)(x5+x4+x3+x+1) |
119 | 1110111 | x6+x5+x4+x2+x+1 | (x+1)(x+1)(x+1)(x+1)(x2+x+1) |
120 | 1111000 | x6+x5+x4+x3 | (x)(x)(x)(x+1)(x+1)(x+1) |
121 | 1111001 | x6+x5+x4+x3+1 | (x2+x+1)(x4+x+1) |
122 | 1111010 | x6+x5+x4+x3+x | (x)(x5+x4+x3+x2+1) |
123 | 1111011 | x6+x5+x4+x3+x+1 | (x+1)(x5+x3+1) |
124 | 1111100 | x6+x5+x4+x3+x2 | (x)(x)(x4+x3+x2+x+1) |
125 | 1111101 | x6+x5+x4+x3+x2+1 | (x+1)(x+1)(x4+x3+1) |
126 | 1111110 | x6+x5+x4+x3+x2+x | (x)(x+1)(x2+x+1)(x2+x+1) |
127 | 1111111 | x6+x5+x4+x3+x2+x+1 | (x3+x+1)(x3+x2+1) |